Methods | Accuracy | Precision | Recall | F1 | AUC |
---|---|---|---|---|---|
TransGeneSelector | 0.9623 | 0.9643 | 0.9643 | 0.9643 | 0.9871 |
TransGeneSelector (mix-up) | 0.9434 | 0.9032 | 1.0000 | 0.9492 | 0.9500 |
TransGeneSelector (MLP) | 0.9434 | 0.9032 | 1.0000 | 0.9492 | 0.9629 |
Random Forest with default parameter | 0.9434 | 0.9032 | 1.0000 | 0.9492 | 0.9586 |
Random Forest with 8 genes | 0.9245 | 0.9000 | 0.9643 | 0.9310 | 0.9457 |
Random Forest with 11 genes | 0.9434 | 0.9032 | 1.0000 | 0.9492 | 0.9471 |
Random Forest with 41 genes | 0.9245 | 0.9000 | 0.9643 | 0.9310 | 0.9464 |
Random Forest with 51 genes | 0.9434 | 0.9032 | 1.0000 | 0.9492 | 0.9500 |
Random Forest with 148 genes | 0.9434 | 0.9032 | 1.0000 | 0.9492 | 0.9557 |
Random Forest with 449 genes | 0.8679 | 0.8889 | 0.8571 | 0.8727 | 0.9507 |
NR-LR-MCP | 0.9245 | 0.9286 | 0.9286 | 0.9286 | 0.9443 |
SVM with default parameter | 0.8302 | 0.8800 | 0.7857 | 0.8302 | 0.9429 |
SVM with 8 genes | 0.9434 | 0.9032 | 1.0000 | 0.9492 | 0.9471 |
SVM with 11 genes | 0.9434 | 0.9032 | 1.0000 | 0.9492 | 0.9186 |
SVM with 41 genes | 0.9434 | 0.9032 | 1.0000 | 0.9492 | 0.9743 |
SVM with 51 genes | 0.9434 | 0.9032 | 1.0000 | 0.9492 | 0.9271 |
SVM with 148 genes | 0.9434 | 0.9032 | 1.0000 | 0.9492 | 0.9271 |
SVM with 449 genes | 0.9434 | 0.9032 | 1.0000 | 0.9492 | 0.9507 |
KNN with 8 genes | 0.8679 | 0.8889 | 0.8571 | 0.8727 | 0.8143 |
KNN with 11 genes | 0.9245 | 0.9000 | 0.9643 | 0.9310 | 0.8800 |
KNN with 41 genes | 0.8868 | 0.8929 | 0.8929 | 0.8929 | 0.8643 |
KNN with 51 genes | 0.9434 | 0.9032 | 1.0000 | 0.9492 | 0.8800 |
KNN with 148 genes | 0.9434 | 0.9032 | 1.0000 | 0.9492 | 0.8800 |
KNN with 449 genes | 0.9245 | 0.9000 | 0.9643 | 0.9310 | 0.8643 |