Skip to main content

Table 4 Best overall models, which are based on the highest ratio between the root mean squared error (RMSE) and squared spearman correlation (rho2), identified for each predictive scenario and the respective hyperparameters used in the model

From: Integration of epigenomic and genomic data to predict residual feed intake and the feed conversion ratio in dairy sheep via machine learning algorithms

Prediction

Model

Hyperparameters

RMSE

rho2

mRFI_RFI

xgboost

max_depth = 5; eta = 0.05; nround = 315; min_child_weight = 1; subsample = 1; colsample_bytree = 0.5

0.10

0.86

mFCR_FCR

deeplearning

hidden = 5,5,5,5,5; epochs = 5.087879; l1 = 1e-04; rate = 1

0.19

0.73

mCons_RFI

deeplearning

hidden = 100,100,100; epochs = 51.294697; l1 = 1e-05; rate = 0.001

0.07

0.37

mCons_FCR

xgboost

max_depth = 5; eta = 0.05; nround = 343; min_child_weight = 1; subsample = 1; colsample_bytree = 0.5

0.17

0.93

mRFI_RFI + VARs

xgboost

max_depth = 5; eta = 0.05; nround = 303; min_child_weight = 1; subsample = 1; colsample_bytree = 0.5

0.12

0.73

mFCR_FCR + VARs

RF

mtry = 80; ntrees = 27; sample_rate = 1.0

0.19

0.51

mCons_RFI + VARs

RF

mtry = 45; ntrees = 15; sample_rate = 0.5

0.07

0.62

mCons_FCR + VARs

deeplearning

hidden = 10,10,10,10; epochs = 10.450117; l1 = 1e-04; rate = 1

0.23

0.80