Skip to main content

Table 4 The performance of different methods in six models with 5,000 sample size

From: Ge-SAND: an explainable deep learning-driven framework for disease risk prediction by uncovering complex genetic interactions in parallel

Sample Size

Model

Method

AUC-ROC

AUC-PR

KS

MCC

ACC

Recall

Precision

F1 Score

5,000

LN

Ge-SAND

0.664

0.649

0.272

0.276

0.636

0.720

0.616

0.664

LASSO

0.645

0.635

0.256

0.254

0.626

0.568

0.643

0.603

Ridge

0.600

0.590

0.192

0.190

0.594

0.672

0.581

0.623

Random Forest

0.586

0.566

0.136

0.136

0.568

0.604

0.563

0.583

SVM

0.594

0.581

0.184

0.181

0.590

0.544

0.599

0.570

XGBoost

0.652

0.643

0.268

0.266

0.632

0.572

0.650

0.609

Naive Bayes

0.576

0.581

0.116

0.138

0.558

0.288

0.626

0.395

MLP

0.585

0.598

0.192

0.200

0.596

0.460

0.632

0.532

CNN

0.516

0.523

0.052

0.052

0.526

0.588

0.523

0.554

LSTM

0.600

0.577

0.184

0.184

0.592

0.612

0.588

0.600

QD

Ge-SAND

0.689

0.670

0.304

0.300

0.650

0.660

0.647

0.654

LASSO

0.667

0.665

0.256

0.273

0.626

0.432

0.706

0.536

Ridge

0.631

0.626

0.192

0.208

0.594

0.380

0.664

0.484

Random Forest

0.554

0.563

0.120

0.124

0.560

0.436

0.580

0.498

SVM

0.626

0.626

0.180

0.184

0.588

0.736

0.568

0.641

XGBoost

0.641

0.643

0.216

0.236

0.608

0.408

0.680

0.510

Naive Bayes

0.579

0.580

0.140

0.140

0.570

0.564

0.571

0.567

MLP

0.608

0.595

0.184

0.184

0.592

0.588

0.593

0.590

CNN

0.522

0.526

0.080

0.085

0.540

0.368

0.561

0.444

LSTM

0.500

0.510

0.056

0.056

0.528

0.580

0.525

0.551

LN + QD

Ge-SAND

0.717

0.701

0.340

0.360

0.668

0.848

0.624

0.719

LASSO

0.681

0.693

0.288

0.292

0.644

0.724

0.624

0.670

Ridge

0.666

0.685

0.260

0.265

0.630

0.532

0.662

0.590

Random Forest

0.636

0.606

0.212

0.226

0.606

0.432

0.663

0.523

SVM

0.655

0.674

0.260

0.261

0.628

0.528

0.660

0.587

XGBoost

0.690

0.666

0.304

0.310

0.650

0.524

0.701

0.600

Naive Bayes

0.639

0.662

0.252

0.287

0.624

0.372

0.750

0.497

MLP

0.643

0.648

0.248

0.253

0.624

0.720

0.604

0.657

CNN

0.509

0.504

0.060

0.063

0.530

0.672

0.523

0.588

LSTM

0.497

0.490

0.040

0.039

0.516

0.808

0.510

0.625

CB

Ge-SAND

0.697

0.647

0.324

0.347

0.662

0.840

0.620

0.713

LASSO

0.655

0.633

0.280

0.294

0.638

0.808

0.603

0.691

Ridge

0.624

0.586

0.220

0.221

0.610

0.664

0.599

0.630

Random Forest

0.599

0.590

0.168

0.176

0.584

0.432

0.621

0.509

SVM

0.624

0.594

0.196

0.220

0.598

0.824

0.568

0.672

XGBoost

0.669

0.627

0.288

0.285

0.642

0.680

0.632

0.655

Naive Bayes

0.624

0.588

0.224

0.221

0.610

0.664

0.599

0.630

MLP

0.607

0.570

0.212

0.216

0.606

0.700

0.589

0.640

CNN

0.509

0.513

0.060

0.062

0.530

0.416

0.539

0.470

LSTM

0.522

0.530

0.060

0.062

0.530

0.664

0.524

0.586

LN + CB

Ge-SAND

0.711

0.686

0.328

0.324

0.662

0.660

0.663

0.661

LASSO

0.688

0.683

0.288

0.284

0.642

0.648

0.640

0.644

Ridge

0.640

0.634

0.216

0.218

0.608

0.544

0.624

0.581

Random Forest

0.593

0.591

0.140

0.141

0.570

0.508

0.580

0.542

SVM

0.635

0.634

0.232

0.235

0.616

0.536

0.638

0.583

XGBoost

0.689

0.680

0.284

0.294

0.642

0.512

0.692

0.589

Naive Bayes

0.609

0.614

0.172

0.177

0.586

0.700

0.570

0.628

MLP

0.640

0.639

0.220

0.224

0.610

0.516

0.635

0.570

CNN

0.530

0.559

0.108

0.136

0.554

0.252

0.636

0.361

LSTM

0.533

0.550

0.072

0.075

0.536

0.668

0.528

0.590

QD + CB

Ge-SAND

0.746

0.748

0.364

0.360

0.680

0.672

0.683

0.677

LASSO

0.693

0.692

0.308

0.308

0.652

0.576

0.679

0.623

Ridge

0.656

0.664

0.236

0.242

0.616

0.760

0.590

0.664

Random Forest

0.599

0.604

0.152

0.171

0.576

0.804

0.552

0.655

SVM

0.644

0.647

0.228

0.229

0.614

0.580

0.622

0.600

XGBoost

0.693

0.665

0.284

0.281

0.640

0.596

0.654

0.623

Naive Bayes

0.588

0.590

0.136

0.158

0.568

0.312

0.639

0.419

MLP

0.637

0.632

0.224

0.239

0.612

0.784

0.583

0.669

CNN

0.467

0.482

0.084

0.011

0.504

0.168

0.512

0.253

LSTM

0.493

0.496

0.076

0.128

0.538

0.940

0.521

0.670