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Abstract

Background: A key open question in biology is if genes are physically clustered with respect to
their known functions or phenotypic effects. This is of particular interest for Quantitative Trait
Loci (QTL) where a QTL region could contain a number of genes that contribute to the trait being
measured.

Results: We observed a significant increase in gene density within QTL regions compared to non-
QTL regions and/or the entire bovine genome. By grouping QTL from the Bovine QTL Viewer
database into 8 categories of non-redundant regions, we have been able to analyze gene density and
gene function distribution, based on Gene Ontology (GO) with relation to their location within
QTL regions, outside of QTL regions and across the entire bovine genome. We identified a number
of GO terms that were significantly over represented within particular QTL categories.
Furthermore, select GO terms expected to be associated with the QTL category based on
common biological knowledge have also proved to be significantly over represented in QTL
regions.

Conclusion: Our analysis provides evidence of over represented GO terms in QTL regions. This
increased GO term density indicates possible clustering of gene functions within QTL regions of
the bovine genome. Genes with similar functions may be grouped in specific locales and could be
contributing to QTL traits. Moreover, we have identified over-represented GO terminology that
from a biological standpoint, makes sense with respect to QTL category type.

Background
Gene density has been shown to vary widely by
organism and genomic region and has been measured
both in terms of mean interval between genes and genes
per mega base pair of DNA [1,2]. It is known that gene
density is positively correlated with G+C content [2] and
that the heterochromatic regions surrounding centro-
meres and telomeres have a lower than average gene
density [3-5]. In general, measurements of gene density
have focused on correlations of gene density with
chromosomal structure or base composition [2,6].

However, to our knowledge no one has looked at the
correlation of gene density with Quantitative Trait Locus
(QTL) density over the genome. Furthermore, gene
density on its own is a fairly crude measurement of the
functional role of specific genomic domains. It would be
more informative to combine this with quantitative
information about the types of gene annotations found
across the genome, but to date this has not been done. In
this report we describe the correlation of gene density
with chromosomal regions defined on the basis of their
association with phenotypic traits (QTL regions) and we
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have determined if gene annotations associated with the
phenotypes in question are over represented in these
same regions. Our model system is the bovine genome
because it has a wealth of well annotated QTL [7] and
gene models that have been anchored to a high quality
draft genome sequence assembly.

While quantifying gene annotations on the basis of gene
descriptions is virtually impossible, quantitative distri-
butions of gene function can be determined on the basis
of Gene Ontology (GO) term annotations [8]. A gene
ontology is a controlled vocabulary within a structured
hierarchy that describes gene products in a species
independent manner. For us, GO terms provide a
straightforward link from gene coordinates to pheno-
type. Gene ontologies have been used in many ways for
the quantitative analysis of gene expression profiles, for
gene set analysis and for general annotation analyses
[9-11]. From our perspective, identifying over repre-
sented GO terms can provide insight into regional
genomic function, and while statistical methods of
measuring GO term distribution vary, we have adopted
a commonly used method based on the hypergeometric
distribution [12].

Until now, GO term analysis performed on the bovine
genome has focused on very specific gene expression
analysis [13-15]. We have carried out the first genome
wide analysis of GO term use correlated with genomic
regions known to control quantitatively regulated
phenotypes (QTL). One of the challenges of mining
GO terms is the large number of GO terms that are often
not grouped very tightly by phenotype. One way of
overcoming this problem is to use a GO slim, which is a
cut down version of the GO. A GO slim contains a subset
of terms in the whole GO and facilitates research by
streamlining the ontologies for specific areas of interest
[8]. At the time we undertook this study there was no
bovine GO slim, so we have created our own for this
analysis and have deposited it with the GO consortium.

Results and discussion
QTL region breakdown
QTL from the Bovine QTL Viewer database [7] were
anchored to Bos taurus assembly 3.1 (Btau 3.1) and QTL
vs non-QTL (no QTL coverage) regions were identified.
Btau 3.1 is approximately 2687 Mb in size, and after QTL
placement we have shown that 36.6% of the assembly
has not been shown to contain a QTL (non-QTL
regions). Mapped QTL lie within the remaining 63.4%
of the genome, and these regions were classified to create
8 distinctive phenotypic categories of QTL. QTL within
individual categories were collapsed on the basis of
overlap for the purpose of identifying non-redundant

regions (Fig. 1) of the genome associated with particular
phenotypes. For example, the QTL category for adiposity
"Fat" includes the greatest number of base pairs of the
non-redundant QTL regions (52.1%) and is composed of
the highest number of QTL; 161. Conversely the "Body
Conformation" QTL category spans the smallest number
of base pairs of the non-redundant QTL regions (5.5%),
and the "Disease Resistance" QTL category has the fewest
number of contributing QTL; 25 (Fig. 2).

Figure 1
Grouping QTL into non-redundant regions. QTL were
grouped into 'non-redundant' QTL regions by combining
QTL length overlaps into single contiguous regions. The
figure illustrates a sample of Growth QTL category QTL
being combined to generate a non-redundant region. Non-
QTL regions contain no QTL whatsoever.

Figure 2
QTL category size distribution. Pie chart illustrates the
distribution of QTL category sizes. 'Fat' produced the largest
non-redundant QTL category of the genome, while 'Body
Conformation' produced the smallest. Note that some QTL
regions from different categories overlap, leading to a total
length of QTL regions that is longer than the genome as a
whole.
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Gene density analysis
Partitioning the QTL into non-redundant classes pro-
vided the opportunity to quantify correlations between
gene density and their associated ontology term
frequencies. We measured the distance between the
probability distributions for gene density between QTL
and non-QTL regions using Welch's t-test. The advantage
of this method over using the raw gene count distribu-
tion is that this approach gives very little weight to the 0
or low gene counts which would otherwise distort the
result. Our analysis (see Additional File 1) demonstrated
a statistically significant enrichment of gene density in
QTL regions (average of 5.3 genes/5 Mbp bin) compared
to non-QTL regions (average of 2.3 genes/5 Mbp bin) (p-
value 0.042). This could indicate that genes are clustered
in regions of the bovine genome that contribute to
quantitative traits. We were not convinced that this
correlation of increased gene density with QTL regions
indicated functional clustering of genes in those regions.
For this reason we decided to examine the quantitative
distributions of gene functions with respect to QTL
regions.

Enriched term (GO) t-test analysis
To measure the distribution of genes according to
function with respect to QTL regions, we analyzed GO
term frequencies with the aim of identifying significantly
enriched terms. We did this by searching for over-
represented terms in each QTL category, i.e. significantly
enriched terms when compared to the full genome. We
performed this analysis using two different methods. In
our first approach we binned the genome into 5 Mb
regions, and then counted the number of times each GO
term occurred and normalized that with respect to gene
density. The resulting distributions of GO term fre-
quency were normalized using a log transformation and
then Welch's t-test was used to determine significance.
Because this would have resulted in an enormous
number of tests, each with low counts, we cycled all
GO terms up to their second level and searched for over
representation of those terms in the 8 QTL regions, after
applying a Bonferroni correction to take into account
multiple testing. The GO enrichment t-test analysis
showed a single term to be over represented with respect

to genome wide occurrence (Table 1). The term 'binding'
(GO: 0005488), showed significant enrichment during t-
test analysis (0.00765% of total GO terms analyzed, 3%
of GO terms analyzed within 'Reproduction' QTL
category). Binding refers to the interaction of a molecule
with a specific site on another molecule. The term
'binding' could plausibly be involved in processes of the
overall QTL category 'Reproduction' where it was
enriched. We found two terms whose frequency was
lower in Reproduction QTL regions; 'synapse' (GO:
0045202) and 'synapse part' (GO:0044456). Genes
annotated with 'synapse' and 'synapse part' do not
have an obvious relationship with 'Reproduction'.
Because the analytical approach we used was novel, we
elected to use a well-known method to confirm our
analysis.

Enriched term (GO) GeneMerge analysis
To confirm the significant over represented GO termi-
nology across QTL regions/categories observed above,
we used the GeneMerge software tool [16], based on a
hypergeometric distribution. Note that this method does
not take into account differences in gene density.
Because our dataset was moderate in size, a hypergeo-
metric distribution analysis was suitable [17,18]. In
addition, GeneMerge allows for selection of population
and sub-population genes allowing us to compare QTL
(sub-population) genes to the full genome genes
(population). By using the second level GO terms as
the subpopulation, we identified a number of terms
found that were significantly over represented (Table 2).
A total of 22 of 49 second level GO terms (44%) were
found to be significantly over represented in their
respective QTL categories. Most notably the term
'binding' (GO: 0008152) showed significant over repre-
sentation corroborating the result of the t-test analysis.
This provided a strong indication that gene products
involved in 'binding' were clustered in QTL regions
associated with reproduction phenotypes. Other over
represented terms had a clearer biological association
with the relevant QTL category such as: 'transporter
activity' (GO:0005215) enriched in the 'Growth' QTL
category or ' t ranscr ipt ion regulator act iv i ty '
(GO:0030528) enriched in the 'Milk Yield' category.

Table 1: Second level GO terms that differed when comparing QTL to the full genome using the t-test

QTL Category GO Term Description QTL GO term density Genome wide GO term density Ratio p. value

Reproduction GO:0005488 binding 1.00 0.83 1.19 0.0001
Reproduction GO:0045202 synapse 0.03 0.05 0.64 0.0032
Reproduction GO:0044456 synapse part 0.03 0.04 0.65 0.0053

Table describes second level GO terms found to be significantly different via t-test analysis. GO term densities are mean values normalized with
respect to gene content. To be considered statistically significant, the p-value must be less than 0.00625 (Bonferroni corrected). QTL category
describes the QTL group from which the terms where found in abundance.

BMC Genomics 2009, 10:184 http://www.biomedcentral.com/1471-2164/10/184

Page 3 of 8
(page number not for citation purposes)



In order to visualize the magnitude of the GO term
enrichment, we calculated the ratio of the GO frequen-
cies in QTL regions to the full genome frequencies
(Fig. 3). The more frequent a QTL region GO term was
relative to the full genome, the redder the box.
Conversely, the less frequent a GO term was relative to
the full genome, the greener the box. Frequency ratios
that were not significantly different were greyed out on
the heat map. Terms whose frequencies were found to
differ significantly showed a tendency to be over, rather
than under represented. Some significant terms such as
' synapse ' (GO:0045202) and ' synapse par t '
(GO:0044456) and 'reproductive process' (GO:022414)
were at very high frequency within their respective QTL
regions compared to the genome as a whole. In these
cases, the QTL regions were the smallest, possibly
indicating that gene clusters/families in these small
regions could be driving the frequency ratios up. Most
other GO terms in Table 2 showed a frequency ratio very
close to 1.0 while still showing statistically significant
over representation (i.e. 'Growth'-'Cell' (GO:0005620),
'Growth'-'Cell Part'(GO:0044464)). The association of
the 'Reproduction' QTL regions and the 'binding' GO
term category was found when comparing QTL to non-
QTL regions, or the genome as a whole. These second
level GO terms allowed us to compare low granularity
QTL regions to low granularity GO terms, possibly
exposing associations of broad biological functions with

broadly grouped phenotypes. This type of analysis trades
off specifically meaningful annotations in favor of
sometimes rather uninformative ones. In some cases
high level GO terms showed no correlation with QTL
categories whose meanings were similar, such as
'reproductive process' and 'reproduction' GO terms
with the 'reproduction' QTL category. In order to address
this, we moved our comparisons further along the
ontology to provide a higher level of specificity.

Lowest level GO terms were analyzed for over represen-
tation within QTL regions using GeneMerge (Table 3). As
a result, 45 GO terms (0.00025%) were found to be
significantly more prevalent within QTL regions. Again,
the two QTL categories encompassing the smallest
number of base pairs had the highest number of
correlated GO terms, possibly indicating a sample size
effect. When comparing the GO terms across QTL
categories, it was obvious that there was some overlap
of GO terms across QTL regions. This was probably a
function of physically overlapping QTL regions resulting
from traits that are known to be correlated such as the
'fat', 'carcass' and 'milk protein' traits. In this case, the
two GO terms found for 'fat' were included in the other
two QTL categories. It is known that milk fat content is
inversely correlated with milk protein content [19] and
that intramuscular fat accumulation is positively corre-
lated with carcass traits that measure meat tenderness

Table 2: Second level GO terms that differed when comparing QTL to the entire genome using GeneMerge

QTL Category GO Code Description Population Frequency QTL/Population p value

Body Conformation GO:0044456 synapse part 0.00429 4.00155 0.0004
Body Conformation GO:0045202 synapse 0.00810 3.06373 0.0004
Disease Resistance GO:0022414 reproductive process 0.00664 2.31530 0.0030
Fat GO:0040007 growth 0.01040 1.20290 0.0197
Growth GO:0005623 cell 0.42688 1.05397 0.0014
Growth GO:0031974 membrane-enclosed lumen 0.02531 1.24800 0.0070
Growth GO:0044464 cell part 0.42683 1.05408 0.0014
Growth GO:0009987 cellular process 0.40776 1.06011 0.0007
Growth GO:0005215 transporter activity 0.05160 1.18584 0.0034
Growth GO:0030528 transcription regulator activity 0.04947 1.15047 0.0161
Milk Protein GO:0044421 extracellular region part 0.01633 1.21375 0.0196
Milk Yield GO:0005623 cell 0.42688 1.04582 0.0041
Milk Yield GO:0044464 cell part 0.42683 1.04531 0.0044
Milk Yield GO:0009987 cellular process 0.40776 1.04050 0.0123
Milk Yield GO:0030528 transcription regulator activity 0.04947 1.16269 0.0077
Milk Yield GO:0043234 protein complex 0.07580 1.11389 0.0160
Reproduction GO:0008152 metabolic process 0.27284 1.05689 0.0174
Reproduction GO:0005488 binding 0.38440 1.06651 0.0007
Reproduction GO:0009987 cellular process 0.40776 1.04258 0.0159
Reproduction GO:0030528 transcription regulator activity 0.04947 1.24460 0.0005
Reproduction GO:0043226 organelle 0.25103 1.08465 0.0015
Reproduction GO:0005198 structural molecule activity 0.02566 1.26584 0.0059

The table describes second level GO terms found to be significantly over represented via hypergeometric analysis. The 'QTL categories' group
provides the category from which the subsequent terms were found to be in abundance. Population frequency describes the frequency of the
occurrence of the term genome wide. QTL/Population describes the ratio of the frequency of a GO code within a QTL region compared to the
frequency of that GO code genome wide.
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[20]. Of all the QTL categories, milk yield showed the
most interesting, or 'biologically plausible' set of
associated GO terms. Most of the time, however, there
was not a clear relationship between GO terms and the
associated QTL category. This could be because many
GO terms are not clearly associated with specific
phenotypes, in spite of being useful biological annota-
tions. Or, it could reflect our sketchy understanding of
the genetic networks that underlie many phenotypes.

This type of analysis is biased by the nature and
comprehensiveness of the annotations in the Gene
Ontology and by the number of GO annotated gene
models in the bovine genome. It is beyond the scope of
this report to comment on the former, but since the
bovine annotations depend overwhelmingly on the
transfer of GO annotations from human, we know that
many of the bovine gene models remain un-annotated.
It is also likely that in spite of stringent sequence
similarity criteria for the transfer of GO annotations that
some will be incorrect.

GO slim result
During the course of this analysis a GO slim was created
to reduce the large number of total GO terms to create a
list of terms more specific for bovine analyses. We
identified 272 terms whose meanings associated them
with QTL, or terms enriched in QTL regions, or terms
commonly known to be associated with physiologically/
commercially important bovine traits that did not
correspond to QTL.

Conclusion
The idea that genes are not randomly distributed
throughout the genome can be traced back to R.A. Fisher
[21], who showed that interacting genes tend to become
more closely linked. More recently, tissue specific patterns
of gene expression have been shown to map to
chromosomal domains [22]. Our quantitative analysis
of the gene content of QTL regions should be viewed in
this context, and was able to provide evidence that gene
density is higher in QTL regions and that some gene
functions, as reflected by GO terms are also over-
represented in QTL regions. While many of the GO
terms found to be associated withQTL categories were not
obviously linked through a biological context, these
results were consistent with the hypothesis that genes
may be clustered in a manner that reflects their functional
association with particular traits. This was most obvious
for the 'milk yield' QTL category, where the associated GO
terms were highly biologically plausible.

Figure 3
GeneMerge analysis heat map. Each box represents the
ratio of GO term frequency in the QTL category to the full
genome [25]. In order to better visualize the differences, the
frequencies were log transformed to generate the heat map.
Red indicates a higher frequency in the QTL regions, green
indicates a higher frequency across the genome. White
boxes represent GO terms that were not found in the QTL
category regions. Some GO terms from specific categories
have shown statistical significant over representation when
compared to the full genome. The grayed areas of the figure
are not statistically significant, while the vibrant colors
highlight the statistically significant GO term differences.
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Table 3: Lowest level GO terms that differed in QTL regions compared to the genome as a whole

GO Term Description Population Frequency QTL/Population p-value

Body Conformation
GO:0005254 chloride channel activity 0.00115 8.29 2.89E-04
GO:0030594 neurotransmitter receptor activity 0.00159 8.39 1.61E-05
GO:0048500 signal recognition particle 0.00040 14.38 9.38E-04
GO:0004890 GABA-A receptor activity 0.00102 11.25 1.09E-05
GO:0005230 extracellular ligand-gated ion channel activity 0.00159 9.58 1.35E-06
GO:0007214 gamma-aminobutyric acid signaling pathway 0.00111 8.63 2.38E-04
GO:0045202 synapse 0.00766 2.99 7.42E-04
GO:0045211 postsynaptic membrane 0.00394 4.36 2.22E-04
Carcass
GO:0050806 positive regulation of synaptic transmission 0.00031 3.38 2.00E-04
GO:0016600 flotillin complex 0.00031 3.38 2.00E-04
GO:0051059 NF-kappaB binding 0.00088 2.36 2.24E-04
GO:0006986 response to unfolded protein 0.00208 1.87 2.07E-04
Disease Resistance
GO:0046785 microtubule polymerization 0.00035 15.50 5.33E-06
GO:0031116 positive regulation of microtubule polymerization 0.00035 15.50 5.33E-06
GO:0009925 basal plasma membrane 0.00049 13.53 1.64E-06
GO:0001937 negative regulation of endothelial cell proliferation 0.00044 12.40 2.24E-05
GO:0007154 cell communication 0.00389 3.38 2.10E-04
GO:0042493 response to drug 0.00195 4.51 3.30E-04
GO:0004620 phospholipase activity 0.00022 19.85 1.27E-05
GO:0019900 kinase binding 0.00058 9.54 1.03E-04
GO:0042470 melanosome 0.00049 9.02 6.90E-04
GO:0043434 response to peptide hormone stimulus 0.00084 6.53 7.63E-04
GO:0030659 cytoplasmic vesicle membrane 0.00035 12.40 1.61E-04
GO:0016599 caveola 0.00053 10.34 6.58E-05
GO:0019905 syntaxin binding 0.00058 9.54 1.03E-04
GO:0009395 phospholipid catabolic process 0.00031 14.18 8.33E-05
GO:0050998 nitric-oxide synthase binding 0.00035 15.50 5.33E-06
GO:0030321 transepithelial chloride transport 0.00031 14.18 8.33E-05
GO:0042311 vasodilation 0.00040 11.03 2.81E-04
GO:0019861 flagellum 0.00111 5.95 3.87E-04
GO:0007595 lactation 0.00084 6.53 7.63E-04
GO:0030317 sperm motility 0.00084 7.83 7.29E-05
Fat
GO:0051059 NF-kappaB binding 0.00088 2.33 1.06E-04
GO:0006986 response to unfolded protein 0.00208 1.85 1.01E-04
Growth
GO:0007586 digestion 0.00133 2.79 2.66E-04
Milk Protein
GO:0050785 advanced glycation end-product receptor activity 0.00027 4.67 9.67E-05
GO:0051059 NF-kappaB binding 0.00088 3.27 4.36E-06
GO:0006986 response to unfolded protein 0.00208 2.28 2.71E-05
GO:0007584 response to nutrient 0.00217 2.19 6.25E-05
Milk Yield
GO:0005922 connexon complex 0.00080 3.31 2.05E-04
GO:0030375 thyroid hormone receptor coactivator activity 0.00040 4.64 9.74E-05
GO:0042809 vitamin D receptor binding 0.00071 3.35 3.82E-04
GO:0042974 retinoic acid receptor binding 0.00031 5.96 3.71E-06
GO:0004886 retinoid-X receptor activity 0.00044 4.77 2.03E-05
Reproduction
GO:0005882 intermediate filament 0.00186 3.16 1.38E-06

The table describes fine detail GO terms found to be significantly over represented through hypergeometric analysis. In bold are the QTL categories
from which the subsequent terms were found to be in abundance. Population frequency describes the frequency of the occurrence of the GO
code genome wide. QTL/Population describes the ratio of the frequency of a GO code within a QTL region compared to the frequency of that
GO code genome wide.
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Methods
Placement of additional USDA Marc Markers onto
Btau 3.1 assembly through BLAST and E-PCR
STS sequence data was downloaded from the NCBI
website. All markers with unknown locations (i.e. not in
the STS data from NCBI) were aligned to the Btau 3.1
assembly using MegaBLAST and BLASTN. Markers whose
alignments were 100% identical with over 90% of their
length were verified by ensuring that each marker could
be placed on the same chromosome in both the linkage
map and the sequence assembly. This method placed 78
sequence tagged sites onto the assembly. However, after
both BLAST analyses, some markers could not be placed
on the assembly because they either had no BLAST hit or
none of their hits fulfilled the above criteria. There were
also a number of linkage markers without NCBI
accessions which not be anchored to the genome via
BLAST/MegaBLAST due to a lack of sequence data [23].
We attempted to place these markers using e-PCR,
permitting 1 gap and 1 mismatch [24]. E-PCR allowed
us to place an additional 42 sequence tagged sites on the
assembly.

Gene dataset
14,354 bovine genes were annotated with Gene Ontol-
ogy data from human orthologs by David Lynn.
Additional non-annotated genes from the GLEAN 5
dataset were included for a total of 22,418 bovine gene
models. We identified all the bovine gene models within
each non-redundant QTL region.

Non-redundant QTL categories
Each QTL category was collapsed into non-redundant
regions. Overlapping QTL regions for each QTL category
were combined into single, contiguous non-redundant
regions. Figure 1 provides an illustration of how Growth
QTL were combined to create non-redundant regions.
Non-QTL regions are locations of the genome in which
no QTL are known to be present. There were a total of
597 QTL used in this study with the following break-
down: Body Conformation 47, Carcass 94, Disease
Resistance 25, Fat 162, Growth 67, Milk Protein Yield
114, Milk Yield 61 and Reproduction 35.

Binning strategy employed for t-tests
QTL category regions and non-QTL regions of the
genome were divided into sequential 5 Mb "bins."
Gene counts/GO term counts were measured in each bin
across the regions. For gene counts, a histogram plot of
the bin counts showed that the distribution was not
normal; mostly due to a large number of zero count bins.
For gene density comparison, we transformed the bin
counts into probability distributions of gene density,
which removed the zero count bins and normalized the

distribution. For GO terms similar problems were
encountered, with many zero count bins. For this
analysis we used a log transformation to remove the
zero counts and normalize the distributions (see below).

GO analysis using counts normalized for gene density
Second level gene ontologies were counted in non-
redundant QTL category regions. The structure of GO is
that the child terms are to be more specific and targeted
than their parent terms. Gene products associated with a
GO term are expected to be loosely associated with the
parent term and even more loosely associated each term
up the ontology. Using a mysql database of GO terms
downloaded from the Gene Ontology website http://
www.geneontology.org/ we were able to cycle up terms
from associated gene products, to higher parent terms.
GO terms can be traversed to multiple parents. So as not
to negate any possible contributing factors, all second
level GO term parents of child GO terms were counted
and incorporated into bin counts.

All the genes within the boundaries of non-redundant
QTL regions in each category were identified and the GO
terms for each gene were counted. A number of bins
produce zero GO terms if: (a) there were no genes
present or (b) the genes did not produce terms for
specific second level GO. To overcome this problem, we
started all counts at 1 rather than zero. The number of
genes in a given bin can be a source of ascertainment
bias because bins with high numbers of genes will
produce high GO counts. In order to control for this, the
GO count per bin was divided by the number of genes in
the bin. Since the resulting distributions were very
skewed, we normalized these by log transformation.
Bin values were therefore calculated as follows:

n
y

x
=

+( )
+( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
ln

1

1

Where n = normalized bin value, x = gene count, y = GO
term count

GeneMerge analysis
GeneMerge analysis was performed according to [16],
using the raw GO term counts from all bins across QTL
regions and the full genome. Genes within each of the 8
QTL categories were grouped and GO term frequencies
associated with gene products from those genes were
compared against GO term frequencies found across the
genome as a whole (population). By using the second
level GO terms from each QTL category regions as the
subpopulation, via GeneMerge we identified second
level GO terms found to be statistically significantly
over represented. We compared fine level GO terms in
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the same manner; by grouping QTL region GO terms
(subpopulation) and comparing against second level GO
terms from the entire genome (population). To illustrate
the results of the GeneMerge analysis integrated with the
ratio of the frequency of GO terms within QTL regions to
the genome, the Mayday platform [25] was used to
create heat maps. A data file was produced and loaded
into Mayday containing QTL categories, GO terms and
values of GO term ratios between QTL regions and the
genome. Non-statistically significant relationships were
washed out by colour shading. The enhanced heat map
(Fig. 3) displays which GO terms were significantly
enriched, and the extent to which GO term frequency
from particular QTL regions vary with respect to the
entire genome.
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