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Abstract

Background: Grouping genes into clusters on the basis of similarity between their expression
profiles has been the main approach to predict functional modules, from which important inference
or further investigation decision could be made. While the univocal determination of similarity
metric is important, current practices are normally involved with Euclidean distance and Pearson
correlation, of which assumptions are not likely the case for high-throughput microarray data.

Results: We advocate the use of a novel metric - BayesGen - to measure similarity between gene
expression profiles, and demonstrate its performance on two important applications: constructing
genome-wide co-expression network, and clustering cancer human tissues into subtypes.
BayesGen is formulated as the evidence ratio between two alternative hypotheses about the
generating mechanism of a given pair of genes, and incorporates as prior knowledge the global
characteristics of the whole dataset. Through the joint modelling of expected intensity levels and
noise variances, it addresses the inherent nonlinearity and the association of noise levels across
different microarray value ranges. The full Bayesian formulation also facilitates the possibility of
meta-analysis.

Conclusion: BayesGen allows more effective extraction of similarity information between genes
from microarray expression data, which has significant effect on various inference tasks. It also
provides a robust choice for other object-feature data, as illustrated through the results of the test
on synthetic data.

Background
With the development of high-throughput experimental
techniques, biological research have been transformed
into a data-rich discipline. DNA microarray, which
allows user to measure the expression levels of

thousands of gene simultaneously in a single experi-
ment, emerged to be one of the most widely used
technology. The analysis of microarray data is normally
based on the reasoning that variations in gene expression
patterns under different experimental conditions are the
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results of underlying cellular pathway changes [1]. During
its inception, gene expression was analysed using semi
qualitative considerations; for example, genes having the
expression roughly two fold of their basal values were
considered co-expressed. Nowadays we are using micro-
array data in a quantitative way, which has elicited the
proposal of a large number of clustering algorithms
tailored specifically for bioinformatics. By grouping genes
with similar expression profiles into clusters, researchers
have been able to make meaningful inference of
regulatory modules and functional pathways [2].

Before a clustering procedure could be performed, it is
naturally conceivable to ask if the metric of similarity
between expression profiles has been univocally deter-
mined. While the normal practice has been largely
involved with Euclidean distance and Pearson correlation,
these metrics either assume a clean experimental space or
the linearity between similar genes, which are not likely the
case for high-throughput expression data. We expect a
metric that could handle the dependency on the respon-
siveness/determination accuracy of different concentra-
tions, and the nonlinearities that are likely to result from
the production of mRNAs and deficiencies of measuring
devices. Moreover, as commonly observed, the measure-
ment average and dependency may be linked, or high
intensity values are likely to be affected by larger error [3].

In this paper we apply Bayesian model selection to
construct a principled framework for similarity/distance
definition. One emergent feature about Bayesian
approach is that it requires explicit statement of under-
lying assumptions, making it easier for users to evaluate
the suitability of a given metric. We then propose a novel
distance metric that addresses the nonlinearity and the
variation of noise levels across different microarray value
ranges, through the joint modelling of data points'
intensity levels and noise variances. Another important
aspect is that by deriving a full Bayesian model, it also
facilitates the employment of meta-analysis through the
estimation of the hyper-parameters.

Bayesian model selection
Bayesian model selection uses the probability rules and
Bayes theorem to choose among alternative hypotheses.
To evaluate the plausibility of a given model H, one
considers the probability of the data D given H (or the
evidence of H) by marginalising over unknown para-
meters:

P D H P D H P H d( | ) ( | , ) ( | ) .= ∫ θ θ θ (1)

This quantity automatically encodes the Occam's factor
or the preference for models with more constrained

generating mechanism. In other words, since complex
models have the capability of explaining over a wider
range of data, their evidence distributions are more
widely spread over the data space. Hence, if H2 is a more
complex model compared to H1, and given a data D that
could be explained by both H1 and H2, the evidence
P (D|H1) will be larger than P (D|H2). More detailed
discussion about Bayesian model selection could be
found elsewhere [4].

Bayesian evidence serves as the basis for Bayes Factor (BF),
which is defined as the evidence ratio P(D|H1)/P (D|H2)
times the hypotheses prior ratio P (H1)/P (H2). In the case
of no prior bias exists between the two hypotheses, the
prior ratio could be safely ignored. Due to the Bayesian
evidence's ability of automatically choosing the right
model, BF was known to be more robust with sparse data
in comparison to the popular likelihood ratio test (LRT).
However, this advantage comes at the computational cost
of integration over the parameter space, which normally
employed Monte Carlo intergration and importance
sampling [4]. Another option is to estimated BF through
asymptotic approximation methods such as Bayesian
information criterion (BIC) [5].

Bayes Factor and its approximated versions have recently
attracted more interest as a tool for selecting alternative
hypotheses in bioinformatics [6-8]. The task of grouping
similar gene expression profiles into clusters was also
recently formulated under the Bayesian framework [9].
Although considering a full Bayesian generative model,
the authors assigned genes to clusters by estimating the
single point at which the posterior distribution over
latent variables was maximised. This MAP (maximum a
posterior) approach inherently used Euclidean distance
to measure expression profile similarities.

In this paper, we apply the model averaging principle of
Bayesian evidence, which takes into account all possible
models rather than relying on the best one. We start by
constructing the general Bayesian formulation for pair-
wise similarity/distance measurement, from which the
new distance metric BayesGen is described. We then
compare BayesGen performance with Euclidean distance
and Pearson correlation through three test sets. The first
test on simulated data suggests that the full Bayesian
approach is better in differentiating homologous and
heterogeneous pairs. The second test on two genome-
wide S. cerevisiae datasets examines the capability of
similarity/distance metrics in directly inferring the pairs
of interacting proteins. The last test on four human
cancer datasets quantifies the effect of metric selection
on hierarchical clustering results, both in terms of cluster
structure and partition accuracy. BayesGen delivers best
or competitive performance in all cases.
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Results and discussion
Bayesian pairwise distance
Suppose we are interested in a set of n objects {o1, ...,
on} of which observations of their behaviour are
available as dataset D = {x1, ..., xn}. We assume an
object behaviour is the result of an underlying generative
process that takes into account its properties. We
formalise such generative process as a probability
distribution F(.|θ) over the experimental space, where
all observation vectors are generated from.

The similarity between two objects oi and oj would be
best specified as the similarity between their inherent
properties. Although such information is not directly
available to us, it has been encoded into the generative
processes that resulted in our observations. The similar-
ity between oi and oj could then be defined to be
proportional to the probability that two samples xi and
xj were generated from the same process. Denoting Hsame

as the hypothesis that xi and xj are from a single process,
and Hdiff as its complement (two samples were generated
from two different processes), we have:

s i j p H

p i j Hsame p Hsame
p i j Hsame

same i j( , ) ( | , )

( , | ) ( )

( , | )

∝

=

x x

x x
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(2)

=
+
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1
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( )

( )
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x x
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(3)

where s(i, j) is the similarity function between two
objects oi and oj, and p(Hsame) and p(Hdiff) are the prior
beliefs. Since similarity/distance measurement are invar-
iant to monotonic transformations, we could define a
distance measurement between two objects oi and oj as
the Bayes factor between the two hypotheses, employing
the evidence expansion from (1):

d i j
p i j Hdiff
p i j H same

( , )
( , | )

( , | )
=

x x

x x
(4)
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θθ θθ θθ
(5)

BayesGen distance for gene expression data
Given a dataset D measuring the expression of n genes
through d different experimental conditions, our objects
of interest could be the set of n genes or the set of d
conditions. Without violation to generality, we assume a
default interest on genes.

As cellular processes are carried out through the coordi-
nation of genemodules, where the expression levels of co-
regulated genes within each module are similar under a
given condition, we assume that each sample xi, i = 1.. n is
generated from a Gaussian distribution with parameter
θ = {μ, Σ}. μ is a vector of length k that defines the
expected expression level under k conditions, while Σ
specifies the variance range accounted for measurement
noise and cellular process inherent stochasticity. The
formal generative process for each experimental condi-
tion is as follows (we remove parameters' sub- and super-
scripts for presentation clarity):

p( , ) ~ ( | , ) ( | , ),μμ μμ μμΣ Σ Σ ΣN 0 0

2
0 0λ

χ ν− (6)

p i i( | , ) ~ ( | , ).x xμμ μμΣ ΣN (7)

where μ0, Σ0, l0, and ν0 are hyperparameters indicating
the prior mean, prior variance, and their belief levels
respectively. Note that μ and Σ are not independent,
reflecting the dependency between variance and intensity
levels observed in expression data. The generative process
has two stages: firstly, different processes are generated by
mutating the global mean μ0 with the expected variance
of Σ0; secondly, each process's samples are generated by
adding fluctuations Σ to its expected expression level μ.
Suppose that all observations of the given condition
could be fitted to a Gaussian distribution N (m, V), our
model hyper-parameters should be estimated such that:

μμ0 0
0

= + =m V, .
Σ Σ
λ

(8)

Assuming no prior knowledge, the expected decomposi-
tion of process-generated and sample-generated variance
is equiprobable and equals V/2. Plugging the model of
(6-8) to (5), and assuming that Σ is a diagonal matrix, we
obtain the closed-form formula for BayesGen distance
measurement for two given genes i and j as follows:
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and mk, vk, μ̂μ k , and σ̂σ k are the kth component of the
data global mean and variance, and the two sample local
mean and variance respectively.

Experiment 1: Synthetic data
The first experiment was designed to compare the
capability of the three metrics in differentiating between
sample pairs that are generated from a single process,
and those generated from two different processes. In
order to explore the strengths and weaknesses of the
metrics in a reasonably exhaustive way, we use synthetic
data with different generating assumptions, which are
not necessarily the valid assumptions for real microarray
expression datasets.

We conducted the test over three cases, distinguished by
the way samples within a process are linked: (1) Samples
are independently generated from a Gaussian distribu-
tion, with different expected noise levels for different
conditions; (2) Samples are independently generated
from a Gaussian distribution, with fixed noise levels over
all conditions; (3) Samples are generated as linear
transformations from a common mean vector, with
random noises added.

A dataset is the composition of 200 samples coming from
two different processes (100 samples each). The distances
between all pairs in the dataset were calculated, ranked,
and scaled so that they are evenly distributed over the
range [0, 1]. We then grouped distance values into
two classes by the origin of their objects: within (the two
samples were from the same process), and across (the two
samples were from different processes). The results are
averaged over 100 independent datasets for each case.

Figure 1 shows the distance distributions of the two
classes (red to within, blue to across) obtained when
BayesGen, Euclidean distance, and Pearson correlation
were used as distance metrics over the three cases. The
intersection between the two lines could be interpreted
as the probability of error when using the distance as a
tool for sample origin prediction. As expected, each
metric was the best choice under its favoured assump-
tions. However, while Euclidean distance and Pearson
correlation performance deviated when getting off their
favouring case, BayesGen remained to be the best or
competitive to the best over all three cases, suggesting its
position as the safe choice for most application
problems.

Experiment 2: Functional association discovery
In the second experiment, we examined the direct
application of the proposed measurement approach in
predicting protein pairs that participate in the same

cellular processes from high throughput microarray
expression data. Our application was based on the
guilt-by-association heuristic [1], which says that genes
with similar expression profiles are likely to belong to
the same functional module. Using this heuristics, co-
expression gene networks were often constructed by
Pearson correlations for all gene pairs [10].

Datasets
We used two public datasets measured genome-wide
gene expressions of Saccharomyces cerevisiae under differ-
ent experimental conditions. Each row corresponds to a
gene, which we treated as a sample, and each column
corresponds to a sample feature.

The first dataset was extracted from the gene expressions
of wild-type and Mec1 defective yeasts in response to
two different DNA-damaging agents: methylmethane

Figure 1
Distance distributions of the homologous and
heterogeneous groups. Comparison of the three distance
metric capability in differentiating between homologous and
heterogeneous sample pairs over three generating cases. Red
lines: densities of homologous distances (two samples are
from the same process); blue lines: densities of
heterogeneous distances (two samples are from two
different processes). Case 1: Samples are independently
generated from a Gaussian distribution with varying noises
(favours BayesGen); Case 2: Samples are independently
generated from a Gaussian distribution with fixed noise
(favours Euclidean distance); Case 3: Samples are generated
as noisy linear transformations from a common mean vector
(favours Pearson correlation).
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sulfonate and ionising radiation [11], making a total of
52 observed features for each gene. The experiments were
performed on spotted microarrays.

The second dataset contains the gene expressions from
triple replicates of 14 yeast samples differentiated by
their sucrose gradients [12], making a total of 42 features
for each gene. The experiments were also performed on
spotted microarrays, with the focus on protein biosynth-
esis process.

Since the purpose of our experiment was to evaluate the
proposed measurement directly, without intervention
from any other algorithms, we did not apply any
imputation method here. All the rows that contain
missing values were ignored, leaving a total of 2,222
genes for [11] and 1,758 genes for [12]. To account for
possible unfairness towards traditional approaches due
to the inherent column-wise normalisation of BayesGen,
we created a normalised version for each dataset, on
which later we repeated the tests for Euclidean distance
and Pearson correlation. Formally, for each column Xk,
the following transformation was applied:

X
X k X k

knorm
k = −

Σ
.

where X k and Σk are the mean and variance of feature k,
leaving each feature column with the mean of 0 and
variance of 1.

Experiment and results
For each dataset, 5 pairwise distance matrices were
computed using: Euclidean distance on original data,
Euclidean distance on normalised data, Pearson correla-
tion on original data, Pearson correlation on normalised
data, and BayesGen on original data (BayesGen has the
inherent column-wise normalisation in its formula).

Given a distance matrix, the smallest t% were marked as
positive pairs, which means protein pairs that belong to
the same molecular process, where t is a user-specified
threshold. For our experiment, we ranged t from 0.01
to 7.

To evaluate the quality of our prediction, we compared
the predicted pairs against the positive pairs derived
from the combination of Gene Ontology (GO) [13] and
the associated annotations of S. cerevisiae [14]. Both the
GO term and annotations files were downloaded from
[15] on 16/02/2009. Since the GO structure consists of
several thousands of terms, each of different levels of
specificity, counting any protein pairs that were co-
annotated by a GO term as positive would be

misleading. We selected a list of 140 qualified terms
which got 5/6 votes in the survey performed by Myers et
al. [16] on the validity of GO terms for concluding that
co-annotated proteins actually interact. We obtained
2,467,531 pairs for the 2,222 genes presented in Gasch et
al. [11] data, and 1,544,403 pairs for the 1,758 genes of
Avara et al. [12] data, which are equivalent to 6.6% and
7.2% of all possible pairs respectively, and agreed with
estimated proportion of yeast (about 5%). The results
are shown in Figure 2.

Experiment 3: Hierarchical clustering application
The aim of the third experiment was to quantify the
advantage of the proposed approach in application to a
distance-based clustering method. We chose agglomera-
tive hierarchical clustering due to its popularity in the
area of gene expression analysis. Starting from a set of N
objects, considered as N clusters, the algorithm itera-
tively builds up a tree by linking the two closest clusters
at each step. It goes through N - 1 steps in total, resulting
in a single tree for all the objects.

Datasets
We used four public datasets of gene expression profiles
measured on cancer patients during the diagnosis stage
[17]. Unlike the previous experiment, here we treated
patients as the objects of interest, and genes as features.
The classification of patients into distinct classes was
known a priori, and only used for evaluation purpose.

The first dataset contained bone marrow samples
obtained from acute leukemia patients, measured on
the Human Genome HU6800 Affymetrix microarray
[18]. Among the 38 patients, 11 were of acute myeloid
leukemia (AML), and 27 were of acute lymphoblastic
leukemia (ALL). The ALL group could be further divided
into 2 subtypes: T-lineage (8 samples), and B-lineage
(19 samples), making a total of 3 known classes.

The second dataset consisted of leukemia bone marrow
samples from ALL-type pediatric patients, measured on
the Human Genome U95 Affymetrix microarray, with
the focus on the patients' risk of relapse [19]. Among the
248 samples, 43 were of T-lineage, and 205 were of B-
lineage. The B-lineage groups was further divided into 5
prognostically important subtypes: 15 containing t(9;22)
[BCR-ABL], 27 containing t(1;19) [E2A-PBX1], 79 con-
taining t(12;21) [TEL-AML1], 20 containing rearrange-
ments in the MLL gene, and 64 containing hyperdiploid
karyotype, making a total of 6 known classes.

The third dataset contained 103 cancer samples from 4
distinct tissues (26 breast, 26 prostate, 28 lung, and 23
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colon), measured on the Human Genome U95 Affyme-
trix microarray [20].

The last dataset consisted of diagnostic samples from
diffuse large B-cell lymphoma patients, measured on the
Human Genome U133A and U133B Affymetrix micro-
arrays [21]. Among the 141 subtypes, 3 discrete subtypes
had been identified: oxidative phosphorylation (49
samples), B-cell receptor/proliferation (50 samples),
and host response (42 samples).

Since it is possible that the datasets contained multiple
signatures other than the known phenotypes, they had
been preprocessed by applying a signal-to-noise ratio test
and selecting the most up-regulated genes for each class
[22], so that the observed phenotype would be the
dominant signature in the data.

Experiment and results
For each of the described dataset, we calculated the
distance matrix using the 5 approaches: Euclidean
distance, Euclidean distance with z-score normalisation,
Pearson correlation, Pearson correlation with z-score
normalisation, and the newly proposed BayesGen. These
distance matrices were then fed as inputs to the
agglomerative hierarchical clustering to obtain one
linkage tree for each metric. We used average linkage,
which defines the distance between two clusters as the
average of all between-cluster distances. Formally, given

2 clusters C1 and C2 of n1 and n2 objects respectively, the
distance between C1 and C2 is:

d C C
n n

d x x
x C x C

( , ) ( , ).
,

1 2 1 2
1

1 2
1 1 2 2

=
∈ ∈
∑

Hierarchical clustering does not require users to specify
the number of clusters beforehand. One could later
decides on the number of partitions by looking at the
tree structure. However, this process is normally bias and
based on one's prior expectation about the data. In an
attempt of achieving a reasonable fairness level for all
approaches, we estimated the appropriate number of
clusters for each tree using gap statistics [23]. The idea of
gap statistics is to find the point at which the within-
cluster dispersion is minimised, by comparing it to a null
reference distribution. More details about gap statistics is
in the Method section. To evaluate the predicted clusters
quality we used the adjusted Rand index [24] to compare
between the known class labels and the cluster labels.
The index ranges from 0 to 1, where 1 corresponds to
perfect agreement, and 0 to the expected value of
random cluster assignment. The computation detail of
Rand index goes in the Method section.

Table 1 presents the adjusted Rand indices obtained
using different distance matrices as the input for the
hierarchical clustering and gap statistics procedure.
While the Bayesian generative input is the clear winner

Figure 2
Protein functional association discovery. Comparison of the three distance metric capability in predicting interacting
yeast protein pairs from genome-wide microarray expression data. The standard positive pairs are derived from the
annotations of GO terms that got 5/6 votes of expert survey. (A) Results from Gasch et al. [11] data; (B) Results from
Avara et al. [12] data.
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for all 4 data sets, the position of the second best
fluctuates among normalised Pearson correlation, Pear-
son correlation, and normalised Euclidean distance.
Although z-score normalisation overally increased the
performance of both Euclidean distance and Pearson
correlation, in some cases it may lead to the loss of
necessary information and decreased clustering accuracy.

The numbers of clusters estimated from gap statistics are
shown in Table 2, and the cluster structure obtained
from hierarchical clustering partitions are in Figure 3. For
clarity, we only show the structures of the best (which is
always Bayesian generative), and the second best
partitions (as of table 1) for each dataset. It can be
seen that both in terms of cluster number estimation,
and cluster structure, our approach outperformed the
remaining four.

Conclusion
We suggested the use of BayesGen - a new metric for
measuring similarity/distance between gene expression
profiles. Based on the observation that both data points'
intensity levels and their relative variance jointly
contribute to the identification of the underlying cellular
processes, the metric was derived using a full Bayesian
approach, which incorporates as prior knowledge the
global characteristics of the whole dataset.

In comparison to Euclidean distance and Pearson
correlation, BayesGen was shown to be the superior in
predicting the interacting protein pairs through the
construction of pairwise relevance networks. The pro-
found effect of metric selection on clustering results was
confirmed in the last experiment, showing significant
improvement brought by BayesGen to hierarchical

clustering both in term of partition accuracy and cluster
structure. Although encoding more information, Bayes-
Gen shares the calculation simplicity of the other two,
and we expect its seamless integration capability to any
downstream distance-based approach.

Despite the inspiration from gene expression data,
BayesGen was designed with a general purpose in

Table 1: Clustering expression profiles into cancer subtypes

euclid euclidNorm corr corrNorm bayesGen

General leukemia 0.5447 0.1175 0.7491 0.1817 0.8076
Pediatric leukemia 0.1982 0.4789 0.2014 0.9129 0.9413
Multiple tissues 0.5304 0.9082 0.6416 0.783 0.9726
B-cell lymphoma 0.0016 0.0008 0.4407 0.1745 0.9053

Average 0.3187 0.3764 0.5082 0.5130 0.9067

Table 2: Predicting number of clusters using gap statistics

true number euclid euclidNorm corr corrNorm bayesGen

General leukemia 3 3 3 3 3 4
Pediatric leukemia 6 3 13 2 15 7
Multiple tissues 4 6 7 6 9 4
B-cell lymphoma 3 2 2 15 15 6

Average difference 1.2 2.2 3.6 5.2 1.0

Figure 3
Cluster structures resulted from the use of different
metrics on hierarchical clustering. Comparison of the
resulted cluster structures resulted from the use of different
distance metrics on hierarchical clustering over 4 cancer
datasets. Top row: the true structure derived from known
phenotypes; Middle row: the structure resulted from
BayesGen (offered highest Rand indices); Bottom row: the
structure resulted from the metric that offered the second
best Rand indices.
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mind, and could be well applied to other object-feature
data. The test on synthetic data under different generat-
ing assumptions showed that BayesGen is robust enough
to be considered as the safe choice in most cases. Work in
progress is to extend the same Bayesian framework to
other data types, including relational and structured
data.

Methods
Euclidean distance
The Euclidean distance between two expression profiles
xi and xj is defined as follows:

d i j i
k

j
k

k

d

( , ) ( ) .= −
=

∑ x x 2

1

which measures the absolute distance between expres-
sion profiles in the d-dimensional experimental space.
From the statistical point of view, the unification
between Bayesian distance and Euclidean distances
occurs when generative processes are differentiated by
only their expected intensity levels or θ = {μ}, and no
restriction is put on the selection of possible means.
Formally, each condition data points are generated as
follows:

p I p i i( ) ~ ( | , ), ( | ) ( | , ).μμ μμ μμ μμN N0 0∞ =x x Σ

where σ 0
2 is a constant and ℛ is the set of all real

numbers. Plugging this model to (5), and assuming that
Σ0 is of the form l I, the resulted distance between two
given genes i and j is:

d i j p p pi
k

j
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i
k

j
k
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which is the squared version of Euclidean distance.

Pearson correlation
The Pearson correlation between two expression profiles
xi and xj is defined as follows:

corr i j
i
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i j
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ik
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i
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ik
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( , )
( )( )

( ) ( )
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− −=∑
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x x x x

1
2

1
2

1∑∑
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where x i and x i ) are the average expression levels over
all d experimental conditions of gene i and gene j
respectively. Pearson correlation takes lightly the magni-
tude of each data point, but pays attention to the shapes

of vectors. It ranges from -1 to +1, with the absolute
value specifies the level of correlation between two
variables, and the sign indicates the direction of such
correlation. The perfect correlation corr(i, j) = 1 is
reached when xi = axj where a is a random coefficient.
Using Pearson correlation as a tool of similarity/distance
measurement, one may choose to pay attention only to
positive correlations, or utilise also the negative values
by taking their absolute values.

Note that while Euclidean and Bayesian distance treat
each expression profile xi as a vector of d features,
Pearson correlation treats it as a sequence of d
independent observations of object i.

Gap statistic
Gap statistic [23] was developed to estimate the
appropriate number of clusters k̂ for a dataset given
the set of partitions resulted from a clustering technique
with k = 1 .. K. Although its specific computation was
designed for k-means clustering, gap statistic is applic-
able to any method of data groupings. To estimate the
number of clusters from a linkage tree, we applied gap-
uniform with empirical adjustment in the last step of
deciding the appropriate k̂ .

Given a partition with k clusters C1, ..., Ck of size n1, ...,
nk, the dispersion index at k is defined as:

W
nr

Dk r

r

k

=
=

∑ 1
2

1

,

where Dr is the sum of within-cluster distances of
cluster r:

D d x xr i j

i j Cr

=
∈
∑ ( , ).
,

At each point of k, gap statistic compares this dispersion
index with its expectation under the null hypothesis. The
null hypothesis assumes that the whole dataset is of a
single uniformly distributed cluster. The expectation
Wk

null is computed by averaging over B randomly
generated datasets. The gap statistic is defined as follows:

G W Wk k
null

k= −log log ,

where

W
B

Wk
null

kb
null

b

B

=
=

∑1

1

.

Tibshirani et al. [23] suggested to choose the number of
clusters as the smallest k such that
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G G sdk k k≥ −+ +1 1.

where sdk+1 is the standard deviation of Wk
null over B

simulated datasets. However, in the case of hierarchical
clustering, where the resulted trees may contain leafs or
very small clusters, we suggest that k should be estimated
as follows:

1. Choose candidate numbers {kc}as all k that
satisfies Gk ≥ Gk+1.
2. Choose the number of clusters as the smallest kc

such that G G sd
k k kc c c≥ −+ +1 1 .

Adjusted Rand index
The Rand index [25] was developed to measure the
agreement of two partitions of the same set of N objects.
The two key assumptions underlying its derivation are:
first, each object is assigned to exactly one cluster; and
second, all objects are of equal importance in forming
the clusters. Given two partitions P1 and P2, with k1 and
k2 groups respectively (k1 and k2 are not necessarily
equal). The matching of the two partitions is defined as
confusion matrix C of size k1 × k2, where Cij is the
number of objects in group i of partition P1 that are also
in group j of partition P2. Rand index computes the
probability that any 2 out of N objects were grouped
similarly. However, it is not well scaled and is bias
towards increasing number of clusters.

The adjusted Rand index [24] addressed these issues, and
is computed as follows:

R

S S S
N

S S S S
N

=
−

⎛

⎝
⎜

⎞

⎠
⎟

+ −
⎛

⎝
⎜

⎞

⎠
⎟

( ) /

( ) ( ) /

,
1 2 2

1
2 1 2 1 2 2

where

S
C

S
C

S
Cij

j

k

i

k
i

i

k
j=

⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟

== =
∑∑ ∑2 2 2

11

1

1

2

21 1

, ,. .

jj

k

=
∑

1

2

,

and

C C C Ci ij

j

k

j ij

i

k

. ., .= =
= =

∑ ∑
1 1

2 1
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