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Abstract

Background: It has been a long-standing biological challenge to understand the molecular
regulatory mechanisms behind mammalian ageing. Harnessing the availability of many ageing
microarray datasets, a number of studies have shown that it is possible to identify genes that have
age-dependent differential expression (DE) or differential variability (DV) patterns. The majority of
the studies identify "interesting" genes using a linear regression approach, which is known to
perform poorly in the presence of outliers or if the underlying age-dependent pattern is non-linear.
Clearly a more robust and flexible approach is needed to identify genes with various age-dependent
gene expression patterns.

Results: Here we present a novel model selection approach to discover genes with linear or non-
linear age-dependent gene expression patterns from microarray data. To identify DE genes, our
method fits three quantile regression models (constant, linear and piecewise linear models) to the
expression profile of each gene, and selects the least complex model that best fits the available data.
Similarly, DV genes are identified by fitting and comparing two quantile regression models (non-DV
and the DV models) to the expression profile of each gene. We show that our approach is much
more robust than the standard linear regression approach in discovering age-dependent patterns.
We also applied our approach to analyze two human brain ageing datasets and found many
biologically interesting gene expression patterns, including some very interesting DV patterns, that
have been overlooked in the original studies. Furthermore, we propose that our model selection
approach can be extended to discover DE and DV genes from microarray datasets with discrete
class labels, by considering different quantile regression models.
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Conclusion: In this paper, we present a novel application of quantile regression models to
identify genes that have interesting linear or non-linear age-dependent expression patterns. One
important contribution of this paper is to introduce a model selection approach to DE and DV gene
identification, which is most commonly tackled by null hypothesis testing approaches. We show
that our approach is robust in analyzing real and simulated datasets. We believe that our approach
is applicable in many ageing or time-series data analysis tasks.

Background
Age-dependent gene expression patterns discovery in
microarray datasets
Ageing is an important risk factor to many diseases, but
the molecular basis of this complex process is still poorly
understood [1]. Due to the advances in high-throughput
experimental technologies, an increasing number of
large-scale microarray studies have been conducted to
identify ageing associated genes in human and model
organisms [2-7]. There are two important types of age-
dependent gene expression patterns that are of particular
interest to the community: differential expression (DE)
patterns, and differential variability (DV) patterns. A
gene is said to have age-dependent DE if its expression
has a strong positive or negative correlation with ageing.
Similarly, a gene has age-dependent DV (also called age-
dependent variability or heterogeneity [8,9]) if it exhibits
a strong increase or decrease of expression variability (or
heterogeneity) with ageing.

The identification of genes with age-dependent DE
patterns is the central microarray analysis task of many
ageing studies. For instance, linear regression is the
principle tool for identifying genes with strong (linear)
age-dependent expression trends in two recent large
meta-analysis of ageing microarray studies [5,7]. Linear
regression is a statistical method that models a depen-
dent variable (usually denoted as y) as a linear function
of one or more independent variables (usually denoted
as x). The linear function takes the form f(x, θ) = a + bx
where θ = {a, b}; therefore solving the linear regression
problem is equivalent to estimating the parameter
vector, θ. In the context of age-dependent gene expres-
sion pattern discovery, y is the expression of a gene, and x
is age. Given the expression profile of a gene in the form
of {( , )}x yi i i

n
=1 , the parameter vector θ can be estimated

by the method of ordinary least squares, which can be
written as the following minimization problem:

ˆ ( ( , ))θ θ
θ

= −
=
∑argmin y f xi i

i

n
2

1

(1)

The estimated linear function f x( , )θ is an estimate of a
conditional mean function of the data. Once the linear
regression function is estimated, a p-value is calculated to

determine whether the slope parameter, b, is significantly
different from zero. If a gene has an associated p-value
less than a predefined significance level after correcting
for multiple testing, this gene is deemed to be
differentially expressed.

We have previously introduced the concept of differ-
ential variability analysis (DVA) and showed that
changes in gene expression variability are biologically
relevant in understanding human diseases [10]. Our
approach is based on a trimmed F-test on two groups of
samples (e.g., disease vs. non-disease). One major
limitation of our previous approach is that we are
restricted to analyzing microarray datasets in which
samples are grouped into discrete classes. This limitation
excludes the application of our DVA method to discover
age-dependent DV genes. However, it is evident that such
age-dependent variability changes are real and biologi-
cally relevant. Bahar et al. [11] showed that there is an
increase in cell-to-cell gene expression variation in aged
mice’s heart muscle compared to those of younger mice.
Somel et al. [8] showed that there are a statistically
significant number of genes that have increased varia-
bility (or heteroskedasticity) in ageing by re-analyzing
eight microarray datasets for human and rat. Such an
age-dependent increase in gene expression variability is
also supported by a recent experiment that was designed
particularly for studying gene expression variability
changes in rat retina [9], which have identified 340
genes with significant increase in expression variability
across ages, but only 12 genes with significantly
decreased expression variability [9]. Many of these
genes are found to be biologically relevant to the process
of ageing. The analysis method used in both studies
relied on a two step procedure: (1) Obtain residuals of
the expression value after fitting a regression model (or
an ANOVA model) for every gene, and (2) Determine
whether there is a statistically significant change in
variability across age by fitting another linear regression
model through the absolute values of the residuals.

Despite the wealth of microarray time-series analysis
procedures devised to date (such as [12,13]), only simple
linear regression methods are used in analyzing micro-
array data generated from most of the published ageing
studies (for example, [3,5,7-9]). We believe this is due to
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the nature of the common experimental designs of this
type of ageing study, which precludes the need for
mining more complex time-series patterns (such as
oscillation of gene expression). Ageing studies are
typically designed to look at age-dependent steady state
gene expression changes at a population level, therefore
the fine-grained dynamic molecular responses of a cell to
particular external or internal stimuli is not of great
concern. Despite many recent studies showing that
accurate identification of genes with age-dependent DE
and DV patterns can lead to deeper biological insight
into the complex regulatory processes through ageing
[5,7-9], relatively little attention has been paid to the
bioinformatics methods of identifying such patterns.
Since linear regression approach is known to perform
poorly in the presence of outliers or if the underlying
pattern is non-linear, we sought a more robust and
flexible method to identify various age-dependent
patterns. In this paper, we present a simple solution
based on the technique of quantile regression. The basics
of quantile regression are introduced in the next
subsection, followed by a detailed description of our
new approach in the Results section.

Introduction to quantile regression
The standard linear regression approach aims to estimate
a conditional mean function of y = f(x) given any x.
Quantile regression, on the other hand, aims to estimate
a conditional quantile function for any quantile 0 <τ < 1.
For instance, we can obtain a conditional median
function by estimating a quantile regression function
with τ = 0.5. In addition to its robustness against
outliers, quantile regression gives flexibility in terms of
modeling various parts of a data distribution beside the
mean [14].

The quantile regression technique was first developed by
Koenker and colleagues in 1978 [15] and has been
continuously studied and extended since then [14]. It
has been used in various fields such as econometrics [16]
and ecology [17,18]. Quantile regression has also
been recently applied to various areas of bioinformatics,
such as visualization of array Comparative Genomic
Hybridization (CGH) data [19,20], identification of
differentially expressed genes in two-color microarray
datasets [21] and outlier detection in mass spectrometry
data [22].

Similar to the formulation of linear regression, the aim
of quantile regression is to estimate the parameter vector,
θ, of a quantile function y = f(x, θ) given a data series
{( , )}x yi i i

n
=1 . The main difference between quantile

regression and linear regression is that θ is estimated
by minimizing an objective function based on a skewed

absolute difference between every yi and f (xi, θ), as
shown below:

ˆ ( ( , ))θ ρ θ
θ

τ= −
=
∑argmin y f xi i

i

n

1

(2)

where rτ (u) is a check function (also called pinball
function) with parameter τ which specifies the quantile.

The check function is defined as:
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τ
ττ ( )
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We can obtain various linear and non-linear quantile
regression lines by using different parametric models for
the quantile function. In this paper, we refer to such a
parametric model as a quantile regression model. We focus
on three basic quantile regression models in this paper:
the constant model, the linear model and the piecewise
linear model. The constant model takes the form
fc(x, θc) = a where θc = {a}. The linear model takes the
form fl(x, θl) = a + bx where θl = {a, b}. The piecewise
linear model takes the form

f x
a b x x x

a x b b b x x xpl pl( , )
( )

θ =
+ ≤
+ − + >

⎧
⎨
⎩

1 0

0 1 2 2 0

if 

if 
(4)

where x0 is the location of the change point and θpl =
{a, b1, b2, x0}. We note that our piecewise linear model
specifies a continuous piecewise linear function with one
change-point at (x0, a + b1x0). These three models form
the basis of our approach for identifying various age-
dependent gene expression patterns.

Results
Our approach
Here we describe our novel method to discover various
age-dependent gene expression patterns based on a
model selection strategy. An important observation is
that the goodness-of-fit of a quantile regression model to
a given data series can be assessed by the residual sum of
absolute differences (RSAD), which is analogous to the
residual sum of squares (RSS) in the linear regression
case. Given the estimated parameter of a quantile
regression model as in Equation 2, RSAD is defined as

RSAD y f xi i

i

n

= −
=
∑ ρ θτ ( ( , ))

1

(5)

In other words, RSAD is the optimal value of the
objective function after solving the minimization of
Equation 2. The smaller the RSAD, the better a model fits
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the data. It is also known that a model with more
parameters tends to gives lower RSAD than a model with
fewer parameters (see [23] for a discussion). For
example, the RSAD of fitting a linear quantile regression
model must be smaller than or equal to the RSAD of
fitting a constant quantile regression model to the same
data series. The RSADs of the fitted constant and linear
models are the same when the a parameter in both
models is the same, and parameter b of the linear model
is zero, since other non-zero estimate of b should always
give a smaller RSAD for the linear model. The main idea
of our approach is to select the least complex model
which can fit the data with a low RSAD. In the context of
model selection, a model M1 is more complex than M2 if
M1 has more parameters than does M2. Therefore, we can
order our three quantile regression models from the least
complex to the most complex as: constant, linear, and
piecewise linear. We note that the three models are nested
in the sense that a less complex model can be obtained
by imposing constraints to a more complex model (that
is, a model with more parameters). A piecewise linear
model with a constraint b1 = b2 is identical to a linear
model regardless of the parameter choice of x0, and a
linear model can be reduced to a constant model by
restricting b = 0 in the linear model. Various criteria can
be used for model selection, including various informa-
tion-theoretic criteria [23]. In this paper, we present a
simple, yet intuitive, criterion for choosing between two
quantile regression models: select a more complex
model over a more simple model if the ratio of the
RSADs of the two fitting models is smaller than a
predefined threshold. The optimal threshold of a
particular problem can be chosen by considering the
estimated false discovery rate at different threshold
values, which is further explained later in the paper.

To determine if a gene exhibits a DE pattern, we
separately fit to the expression profile of that gene
three quantile regression models at τ = 0.5: the constant
model, the linear model and the piecewise linear model
with one change-point as presented in the Background
section. The model that best describes the available data
is said to be the target model of the gene (see Figure 1A
for an example of fitting the three models to a gene with
a non-linear age-dependent DE pattern). If a linear
model or a piecewise linear model is the best fitting
model based on a predefined threshold, this gene is said
to have an age-dependent DE pattern. Denoting the
RSAD of fitting a data series with the constant, linear and
piecewise linear models as rC, rL and rPL respectively, we
can choose the appropriate model by considering the
two ratios: rPL/rL and rL/rC. We note that both of these
quantities must be less than or equal to one, and that the
smaller the quantities, the stronger support there is for
the more complex model. Based on a predefined

threshold a, we can select the best fitting model by the
following rules (see Figure 1B):

rPL/rL ≥ (1 - 2a) and rL/rC ≥ (1 - a) ⇒ no DE pattern (C)

rPL/rL ≥ (1 - 2a) and rL/rC < (1 - a)⇒ linear DE pattern (L)

rPL/rL < (1 - 2a) and rL/rC ≥ (1 - a) ⇒ piecewise linear
DE pattern (PL)

rPL/rL < (1 - 2a) and rL/rC < (1 - a) ⇒ piecewise linear
DE pattern with a linear trend (PL+L)

The constant 2 in (1 - 2a) arises from the ratio of the
number model parameters in each model pair: 4:2 for
comparing between a piecewise linear model and a
linear model, and 2:1 for comparing between a linear
model and a constant model. In general a can be chosen
based on false discovery rate estimation or by simulation
of data. It is important to note that the selection
threshold a is not a significance level, as is commonly
used in the context of null hypothesis testing. The
significance level in the null hypothesis testing frame-
work has a probabilistic meaning, while the threshold
we used here is to define how much better a more
complex model needs to fit the data in order for it to be
selected over the simpler model. Similarly we can
determine whether a gene has a DV pattern by fitting
and comparing the goodness-of-fit of two quantile
regression models: the non-DV model and the DV
model (Figure 1C). The non-DV model consists of two
piecewise linear functions, one for an upper quantile and
one for a lower quantile, which share the same slope
parameters b1 and b2 and change-point parameter x0. The
DV model consists of two piecewise linear quantile
regression functions that have independent slope para-
meters but the same change-point parameter x0. In both
non-DV and DV models, we fit the upper quantile and
lower quantile trend model at τupper = 0.85 and τlower =
0.15 respectively. We observe that choosing other
reasonable values of τ (that is, ± 0.1 on both τupper and
τlower) does not make a substantial difference in practice.
The parameters of both non-DV and DV models are
estimated by solving a joint optimization problem
which can be formulated as follows:

ˆ ( ( , )) ( ( , )θ ρ θ ρ θ
θ

τ τ= − + −argmin y f x y f x
upper loweri i upper i i lower ))

i

n

=
∑

1

(6)

where θ = θupper ∪ θlower. Analogously, the RSAD of both
models is the optimal value of the objective function
after solving the minimization problem in Equation 6.
Using the RSADs of the fitted non-DV and DV models,
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Figure 1
Illustration of our model selection approach to identifying both age-dependent DE and DV patterns. The four
plots in this figure illustrate the core idea of our model selection approach to identifying genes with age-dependent change in
expression (DE) or variability (DV). (A) A gene with an artificially simulated expression profile is fitted with three quantile
regression models: the constant model, the linear model and the piecewise linear model. The estimated quantile regression
lines are superimposed onto the expression profile. The simplest model that fits the data reasonably well is selected to be the
target model. If the linear model or piecewise linear model is selected, this gene is said to be DE. (B) The distribution of rPL/rL
and rL/rC of 500 artificially simulated genes with non-linear age-dependent expression changes. Given a predefined threshold, a,
all genes are partitioned into one of four groups (C, L, PL, and PL+L), based on where they are located in this plot. (C) This
plot shows the expression profile of a gene that has been simulated to have increasing variability with ageing. Both a non-DV
and a DV quantile regression models are fitted to the data of this gene, and the fitting regression quantile lines are
superimposed onto the plot of the expression profile. (D) A histogram showing the distribution of the rDV/rNDV value
generated by fitting the non-DV and DV models to 500 simulated genes with DV. Most of the genes have a rDV/rNDV value less
than the (1 - a) threshold, and are therefore correctly identified as DV.
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denoted rNDV and rDV respectively and a predefined
threshold, 0 < a < 1, we can determine whether the DV
model should be chosen over the simpler non-DV model
by checking whether rDV/rNDV < (1 - a) (Figure 1D).

We use the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method implemented in R’s optim function to solve the
optimization problems associated with estimating the
quantile regression model parameters. BFGS method is a
general method to solve unconstrained nonlinear opti-
mization problems.

Simulation results
We performed an extensive simulation study to empiri-
cally establish the sensitivity and specificity of our
quantile regression based methods compared with the
linear regression based methods (see Methods).

The basic experimental design is to simulate datasets
with different noise characteristics, and calculate the true
positive (TP), true negative (TN), false positive (FP) and
false negative (FN) rates in each simulated dataset at
different a threshold values by checking whether a gene
with true age-dependency is correctly identified or not.
Further details of the simulation study are given in the
Methods section. The trade-off between the true positive
rates and the false positive rates of a method at different
values of a is visualized in a Receiver Operator
Characteristic (ROC) curve for each simulated dataset.

To test the ability of our method to identify age-
dependent DE genes, we simulated five 3000-gene
datasets, each containing a different degree and type of
noise. There are two types of noise that we investigated
here: systematic noise (a consistent amount of noise that
affects all the samples regardless of age), and non-
systematic outliers (noise that are only present in some
data points, which we refer to as outliers). Each
simulated dataset consists of three equal proportions
of non-DE genes, DE genes with linear age-dependency,
and DE genes with non-linear age-dependency. As a
base-line, we compared our method with a method
based on a second order linear regression method.

To test the ability of our method to identify age-
dependent DV genes, we simulated two 3000-gene
datasets, each containing a different type of noise —

one dataset without outliers and one dataset with
outliers. Each simulated dataset comprised three equal
proportions of non-DV genes, DV genes with linear age-
dependency, and DV genes with non-linear age-depen-
dency. We compared the performance of our method
with a variant of the linear regression based approach of
[8] to identify age-dependent variability. The results are

summarized in Figure 2. From the ROC curves, we can
see that our approach consistently out-performs linear
regression based methods in terms of both sensitivity
and specificity for both DE and DV detection, regardless
of the type and level of noise that is present in the
datasets we studied here. One important question is
‘how to select the best a threshold value?’ To address this
question, we investigated how TF, TN, FP and FN vary
with a in our seven simulated datasets. As illustrated in
Figure 3, we found that an a value between 0.02 and
0.05 is appropriate as it generally shows a good trade-off
between sensitivity and false positive rate in our seven
simulated datasets. Furthermore, we calculated the false
discovery rate (FDR) of each method for the seven
simulated datasets at the threshold value 0.05. In this
simulation analysis, a false discovery rate is defined as
the proportion of false positive calls in all positive calls,
i.e., FP/(FP+TP). The results in Table 1 indicate that our
quantile regression approach consistently yields FDRs
that are only one third of their corresponding FDR of the
linear regression based method.

Analysis of two human brain ageing datasets
We applied our method to analyze two real microarray
datasets that study human brain ageing in non-diseased
individuals. The Colantuoni dataset [6] consists of gene
expression measurements for 31 schizophrenia suscept-
ibility genes in the prefrontal cortex of 72 non-diseased
individuals with age range of 18 to 67. The second
dataset, which we referred to as the Lu dataset, consists
of the expression profiles of 12625 genes for 30 non-
diseased individuals with age ranging from 26 to 106 [2].

The false discovery rates of discovering genes with DE
and DV patterns at various a values were estimated by a
randomization procedure that is described in the
Methods section. The results are shown in Figure 4. To
ensure that our DE gene discovery approach yields a low
FDR, we chose a = 0.04 (at FDR ≈ 0.2) for the
Colantuoni dataset and a = 0.1 (at FDR ≈ 0.2) for the
Lu dataset. For DV gene discovery, we chose a = 0.05 (at
FDR ≈ 0.0005) for the Colantuoni dataset and a = 0.15
(at FDR ≈ 0.2) for the Lu dataset. The analysis was
performed on a desktop machine with an Intel Core 2
CPU (1.86 GHz) and a Windows XP (Professional)
operating system. The DE analysis of the Colantuoni
datasets (31 genes) completed in one second, while the
analysis of the Lu dataset (12625 genes) took about 6.5
minutes. The computational time taken to perform the
DV analysis for the two datasets is similar.

The Colantuoni dataset
Among the 31 genes surveyed in the Colantuoni dataset,
we identified ten "interesting" genes, which include
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seven genes with strong evidence for the presence of a
linear DE pattern (PRODH, DARPP32, GRM3, CHRNA7,
MUTED, RGS4 and NTRK1), and three genes with a
moderate support for a non-linear DE pattern (NTK3,
ERBB3, and ERBB4). A plot showing the rL/rC and rPL/rL

values for all the genes, along with the expression
profiles of these 10 genes, is given in Figure 5.
Independently, we used our method to discover two
genes with strong support for DV (ERBB4 and MUTED;
see Figure 6). Most of our results are consistent with

Figure 2
Comparison of our quantile regression method to a linear regression based method using the ROC curves. This
figure shows the ROC curves generated by analyzing seven simulated datasets using our quantile regression method, and a
linear regression method. Each simulated dataset has a different type and level of noise. The ROC curves show that our
approach consistently out-performs the linear regression method studied in this work in terms of both sensitivity and
specificity in all seven simulated datasets.
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what was found in the original study [6], but our
analysis reveals three major differences.

First, by fitting a piecewise linear regression function
(with one change-point) to all genes Colantuoni et al.

identified three genes (ERBB3, NRG1 and NGFR) to have
"statistically significant" changes in the slope of the two
segments of the linear regression line about the change-
point. However, among the three, only ERBB3 has a
reasonably good support for having a non-linear DE

Figure 3
The relationship of the model selection threshold, a, with the various performance measures. This figure shows
how four different performance measures vary with different values of model selection threshold, a, based on analyzing the
seven simulated datasets The four performance measures are the true positive rate (TP), the true negative rate (TN), the false
positive rate (FP) and the false negative rate (FN). We note that an a value between 0.02 and 0.05 generally gives a reasonable
trade-off between the true positive rate and the false positive rate. a high true positive rate while maintaining a low false
positive rate.
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Table 1: Comparison of false discovery rate (FDR) of our quantile regression methods and linear regression methods using simulation
data

DE DV
FDR DE2 DE5 DE5 + outliers DE9 DE9 + outliers DV DV + outliers

Quantile Regression (QR) 0.021 0.040 0.049 0.082 0.151 0.017 0.023
Linear Regression (LR) 0.061 0.160 0.204 0.230 0.38 0.083 0.262

FDRQR/FDRLR 0.340 0.247 0.237 0.357 0.396 0.214 0.087

The FDRs of applying our quantile regression method to seven simulated datasets are compared to the corresponding FDRs of applying linear
regression based methods to identify DE and DV genes at a predefined threshold of a = 0.05 (for quantile regression) and al = 0.05 (for linear
regression). At this commonly accepted threshold, we found that our quantile regression method yields FDRs that are consistently about only one
third of that the corresponding FDR when the linear regression approach is used.

Figure 4
Estimated FDR at various a values for applying our method to the two real datasets. The means and standard
deviations of the estimated FDR of applying our method to the two real datasets. These plots enable us to determine a
reasonable a value such that the FDR of a real analysis is kept reasonably low.
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pattern in our analysis based on its low rPL/rL value (see
Figure 5). Instead, we found good evidence that NTK3
and ERBB4 exhibit such a piecewise linear DE pattern
since their rPL/rL values are low and cluster quite closely
with ERBB3 in our plot of rPL/rL against rL/rC (Figure 5).
Further we note that although no gene actually has a rPL/
rL value less than (1 - 2a), the fact that the rPL/rL values

for these three genes are much lower from the rest of the
28 genes already implies that these genes have some kind
of interesting patterns, and should be investigated
further.

Second, MUTED is determined to not have a significant
linear correlation with age because its associated p-value

Figure 5
Some age-dependent DE genes discovered in the Colantuoni dataset. The plot in the centre of the figure shows the
distribution of the rL/rC and rPL/rL of the 31 genes profiled in the Colantuoni dataset. Based on this plot, seven genes exhibit
strong support for a linear age-dependent DE pattern, and three genes have moderate support for a non-linear age-dependent
DE pattern. The expression profile of these 10 genes, along with their three fitted quantile regression lines.
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(0.062) is just a little higher than the predefined
threshold (0.05), so no further analysis on this gene
was undertaken. However, our analysis shows that
MUTED exhibits both age-dependent DE and DV
patterns, which warrant further investigation. The
expression of MUTED increases with age, but the
variability decreases. MUTED codes for a component in
the BLOC-1 complex, which is involved in the trafficking
of particular membrane proteins to synaptic vesicles
during their formation [24]. It is uncertain what effect an
increase in MUTED expression will have, however
decreased variability of expression might reflect a loss
of regulation of MUTED activity. This might manifest as
decreased synaptic plasticity with age occurring at the
level of synaptic vesicle maturation.

Third, ERRB2 is found to have the strongest support to
exhibit an age-dependent DV pattern (Figure 6), but it is
deemed "not significant" as it only has a p-value of 0.056
found in the original study [6]. ERRB2 is a member of
the epidermal growth factor receptor family (ErbB) of
receptor tyrosine kinases. It is expressed in neurons in
the adult cerebral cortex and hippocampus and on
oligodendrocytes, and is involved in neuronal migra-
tion/glial cell-neuron interactions during CNS develop-
ment, as well as oligodendrocyte maturation/
myelination [25]. We found that the variability of
ERBB2 expression also decreases with age (see Figure 6).
A hypothesis of such changes of expression variability is
that the aged prefrontal cortex is attempting to compen-
sate for structural or functional deficits by de novo
neurogenesis, neuronal migration or myelination
which requires upregulating ERBB2 expression (and
some brains are more efficient at carrying out this

compensatory process), but that there is a ceiling of
maximum upregulation, and this is resulting in the
phenomenon of decreased DV. Indeed, it has been
suggested that the prefrontal cortices increase their
activity/connectivity with age in response to declining
cognitive function in other areas of the brain [26].
Further experimental validation is needed to test our
hypothesis, but our analysis here is sufficient to show
that our quantile regression approach is useful for
identifying genes with interesting DV patterns. Also,
the quantile regression lines themselves act as a good
tool for visualizing the DV patterns, which aid the
interpretation of the results.

The Lu dataset
By applying our quantile regression approach to analyze
the Lu dataset, we found 984 genes with linear DE
pattern, 12 genes with non-linear DE pattern, and 120
genes with DV pattern. Since most of the genes we found
with strong evidence of DE are also found and analyzed
in the original study, we mainly focused on analyzing
the genes that show strong evidence of DV. The
expression profiles of 12 selected genes with strong
evidence of DV, i.e., having a low rDV/rNDV ratio, are
shown in Figure 7. We observed that most of these 12
genes exhibit increasing expression variability with age
(including RCAN2,, NGRN, SERCA2, NSF, SERPINI1),
and this change in variability seems to correlate with a
reduction in expression of varying magnitudes. This
implies differing trajectories of ageing for different
individual brains. Calcineurin is a serine-threonine
kinase, abundant in the brain, that regulates neuronal
cell death, neurite outgrowth and synaptic plasticity.

Figure 6
Some age-dependent DV genes discovered in the Colantuoni dataset. Based on the rDV/rNDV value, we identified
two genes, ERBB2 and MUTED, with strong evidence of DV pattern. The expression profile of these two genes shows that the
expression variability decreases for both.

BMC Genomics 2009, 10(Suppl 3):S16 http://www.biomedcentral.com/1471-2164/10/S3/S16

Page 11 of 18
(page number not for citation purposes)



Figure 7
Some age-dependent DV genes discovered in the Lu dataset. This figure shows 12 genes with strong evidence of DV
(by having small rDV/rNDV value) in the Lu dataset. Most of these genes have an increasing expression variability among older
individuals. Many of these genes are found to have be involved in important neuronal processes.
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RCAN2 (Regulator of calcinuerin 2) is a facilitatory
regulator of calcineurin activity. It was shown that
RCAN1/2 double knock-out (KO) mice exhibit hyper-
activity and working memory deficits [27]. NRGN
(Neurogranin) is expressed in the forebrain and hippo-
campus and is a regulator of Ca2+-mediated and Ca2+-
CaM-mediated signalling pathways. NGRN mRNA and
protein expression has been shown to decrease with age
[28,29]. NRGN KO mice show deficits in spatial learning
[30,31] with associated disrupted CaMKII activity and
LTP [30,32]. The gene ATP2A2 codes for the sarco/
endoplasmic reticulum Ca2+ ATPase pump 2 (SERCA2),
which is highly expressed in various parts of the brain,
including the hippocampus and cortex [33]. It is involved
in regulating intracellular Ca2+ homeostasis. NSF (N-
ethylamide sensitive factor) is a key protein associated
with a myriad of processes in the central nervous system
including trafficking of synaptic vesicles and regulation of
neuronal glutamatergic, GABAergic, adrenergic and mus-
carinic membrane receptors [34]. SERPINI1 codes for a
protein involved in many processes including synaptic
plasticity and the prevention of neuronal death due to
ischemia. A number of mutations of SERPINI1 are shown
to be associated with early-onset dementia [35]. The
pattern of increased DV of these genes with important
roles in neuronal function and pathology with varying
reduction in expression with age implies a possible role in
the observed differential rate/incidence of cognitive
decline in older people [26]. It seems that of all the
genes found to be DV with age, this pattern is the most
common, implying that loss of maintenance of stable
expression of genes expressed in the central nervous
system might be a key process in ageing.

Since Lu et al. [2] used a microarray platform that
interrogated the entire genome, as opposed to a brain
specific platform used in Colantuoni et al. [6], the ability
of our method to identify many DV genes to have known
roles in various neurological processes further reinforces
the importance of identifying DV genes when perform-
ing microarray analysis.

Discussion
Some remarks on our approach
Our approach is based on selecting the least complex
model that is reasonably strongly supported by the data.
There are two important ingredients that need to be
defined in a model selection approach: (1) A small set of
models which we believe are able to explain the data,
and (2) A set of criteria that enables us to compare these
models. In this work, we show how the task of
identifying age-dependent gene expression patterns
from ageing microarray datasets can be formulated as a
model selection problem and solved accordingly.

This model selection approach to scientific data analysis
is strongly advocated by Burnham and Anderson [23],
who note that the original concept was proposed more
than a century ago by Chamberlin under the name of
method of multiple working hypotheses [36]. Although
Chamberlin’s work mostly focuses on the philosophy
of scientific investigation, that multiple working hypoth-
eses should be considered simultaneously when design-
ing a research study, the work by Burnham and Anderson
focuses on the use of model selection as a preferred
method over null hypothesis testing approach when
analyzing and interpreting scientific data. In this sense,
the method that we present in this paper is indeed an
application of the concept of model selection to solve a
problem that is commonly solved by null hypothesis
testing approaches.

Similar to a null hypothesis approach, our approach also
requires a threshold, which we referred to as a, to be
defined prior to the analysis in order to decide if a gene
is deemed to have "interesting" patterns, either DE or
DV. The threshold a controls the minimum proportional
difference in RSAD, i.e., (RSADS - RSADC)/RSADS, in
order for a more complex model (MC) to be selected over
a less complex model (MS). In general, we believe such a
model selection threshold is intuitive and easily
extended to analyzing more complex models since no
null distribution has to be defined. Further, we note that
the term "significant" or "significance" were not used to
describe a gene we identified to have strong support for a
particular pattern, as these wording tend to be mislead-
ing. Moreover we note that our approach is similar to the
likelihood ratio test method if we treat RSAD to be
inversely related to the likelihood of fitting a model. A
further research direction is to investigate how a model
selection strategy based on information theoretic criteria
such as Akaike Information Criteria (AIC) or Bayesian
Information Criteria (BIC) is compared to our approach.

Our application of quantile regression in analyzing
ageing microarray datasets has three advantages over
the standard linear regression method in analyzing
microarray time-series data — robustness against noise,
ease of visualizing DV patterns, and the ability to model
various parts of a data distribution — which are all
clearly exemplified in our analysis of the simulated and
real datasets. In particular, we stress the importance of
obtaining a regression trend at various quantiles, rather
than a regression trend through the mean of a distribu-
tion. It has been argued that a biologically important
limiting factor in ecological studies may not affect the
average behaviour of the measured variable, but may
strongly affect the behaviour at the extreme quantiles
[17]. Such a phenomenon is attributed to the effect of
unobserved variables.
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Another contribution of our paper is the application of a
piecewise linear quantile regression model to identify
genes with age-dependent DE and DV patterns. The
application of piecewise linear regression for biological
responses has been studied by [37,38]. Here we explicitly
use a piecewise linear quantile regression model with
one change-point. We chose to use a piecewise linear
model to model various gene expression patterns
because it is a flexible yet interpretable model. Non-
linear or non-parametric model can provide similar level
of flexibility but is hard to interpret without manual
inspection. For high-throughput data analysis, being
able to uncover a wide range of patterns without manual
intervention is highly desirable. The change-point loca-
tion may also be biologically informative.

From a methodological point of view, our work still has
a few limitations. First, although we have empirically
validated the superior performance of our approach in
analyzing noisy microarray data, we did not give any
theoretical justification of why this is the case. Without
further investigation it is very difficult to discern how
much of this improvement is due to the model selection
strategy, and how much is due to the robustness of the
quantile regression method. This should therefore be
further investigated. Second, we only used a generic non-
linear optimization algorithm to solve our optimization
problem (as in Equations 5 and 6) associated with
estimating the parameters of a quantile regression
model. Although the BFGS method works well in
practice given a good initial parameter estimates, there
is no guarantee that the result is indeed the global
optimum. This is an even larger problem with models
that have many parameters as they are more likely to
have complicated (e.g., non-convex) solution surfaces.
One line of research direction is to re-frame the
optimization problem as a linear programming problem
and solve it with the Simplex method [14].

Biological significance of differential gene expression
variability in ageing
A number of recent studies showed that the changes in
expression variability may be associated with mamma-
lian ageing [8,9] and human diseases [10]. In this paper,
we provide further evidence that differential gene
expression variability is indeed a real phenomenon
that is useful in understanding various biological
processes. In our study of the two brain ageing datasets,
we found a number of DV genes that play important
roles in normal and pathological neuronal processes. We
found that expression variability is generally increasing
with age, while decrease in variability with age can also
be observed.

Differential variability analysis is often ignored in many
gene expression studies because the main aim of these
studies is to identify genes that have "significant"
changes in mean expression across the study population.
However, it is clear that such responses are not sufficient
to capture the information in the data. It is important to
acknowledge that expression of a gene varies across the
population, and this expression variability can change
depending on factors such as age and disease. Our
previous work showed that genes with decreased
variability also tend to have decreased gene-to-gene
coexpression in human diseases, which implies that loss
of gene expression variability is associated with a loss in
gene regulation [10].

Our quantile regression approach is a very powerful tool
to assess DV in time-series microarray data, thus opening
up the opportunity for a large scale meta-analysis of
many microarray datasets to assess the prevalence of DV
in human and other organisms, in ageing and diseases.
We believe a good understanding of population based
gene expression variability is a crucial step towards
developing personalized medicine strategies [39,40].

Extension to analysis of microarray datasets with
multiple discrete class labels
While preparing this manuscript, we realized that our
quantile regression approach can be extended to identify
genes with DE and DV patterns in microarray datasets
with discrete class labels. The general concept of fitting
and comparing a small number of competing models to
a dataset (such as a non-DE model vs. a DE model) can
be readily applied to identifying genes with interesting
patterns, where these patterns are predefined using
biological knowledge and are encapsulated in the
model formulation. Here we propose a simple approach
to identify genes that have class-dependent DE and DV
patterns.

For identifying DE genes, we propose to fit and compare
the goodness-of-fit of two models, where one model
specifies that the median expression values are the same
across multiple classes (the non-DE model), and the
second model specifies that the median expression
values can differ across multiple classes (the DE
model). The non-DE model only requires fitting one
parameter — the median value of the data, while the DE
model requires fitting k parameters where k is the
number of distinct class labels. If the RSAD of the DE
model is much smaller than the RSAD of the non-DE
model, based on a predefined threshold, a gene is
deemed to be differentially expressed (see Figure 8A for
an example).
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For identifying genes with DV, one can similarly fit and
compare two competing models — the non-DV model
and the DV model. The non-DV model specifies that the
lower quantile for each class is estimated independently
while sharing the same inter-quantile range (the absolute
difference between the upper and lower quantiles)
among the k classes. The DV model specifies that both
the lower quantile and the inter-quantile range of each
class are independent. If the RSAD of the DV model is
much smaller than the RSAD of the non-DV model,
based on a predefined threshold estimated as before, a
gene is deemed to have a DV pattern (see Figure 8B for
an example). It should be noted that the non-DV and DV
models here differ only by whether the inter-quantile
range is the same across all classes, so the detection of
DV should be independent of whether a gene is DE or
not. We believe that this proposed approach can over-
come the limitation of the simple DV analysis procedure
that we described previously [10].

Similar to linear regression, quantile regression techni-
ques are most commonly used in finding ‘interesting’
trends in time-series data, such as various econometric,
social and ecological data [14]. We note that our
proposed approach for analyzing multi-class microarray

datasets is a novel application of quantile regression
technique to analyze non-time series data. Although
further research is required to investigate the applic-
ability of our proposal, we show conceptually how
quantile regression models may be applied to a broader
range of non-time series data analysis problems.

Conclusion
Themain objective of this paper is to present and evaluate a
novel approach to discovering genes with various age-
dependent expression patterns. Through an extensive
simulation study, we show that our quantile regression
approach is superior to linear regression based methods in
terms of sensitivity and specificity of identifying linear and
non-linear DE and DV patterns. We applied our method to
two human brain ageing microarray datasets and show that
biologically interesting patterns can be discovered.

Further, we propose that our model selection approach
to pattern identification can be extended to handle DE
and DV discovery tasks in microarray datasets with
multiple discrete class labels. Therefore we believe that
our approach is an important tool in our quest to
understand the nature of gene expression regulation.

Figure 8
A proposed approach to identify DE and DV genes in a multi-class microarray dataset using quantile
regression. Genes that are DE across multiple classes of samples can be identified by checking whether the RSAD for fitting a
DE model, which specifies one median value per class is much smaller than the RSAD for a simpler model (a non-DE model)
which specifies only one median value for all k classes. Similarly, we can identify DV genes by checking whether the DV model
with 2k parameters is much better than the non-DV model with k + 1 parameters, where k is the number of distinct classes.
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Methods
Simulation of artificial microarray data
We simulated seven datasets with different noise proper-
ties to evaluate the performance of our quantile
regression method compared to other linear regression
based methods (described in the next subsection) in
terms of discovering DE and DV patterns. All simulated
datasets contained 3000 genes and 80 samples, and the
samples were grouped into 8 groups of 10 samples.
Among the 3000 genes, 1000 of them had no age-
dependent expression patterns (C), 1000 of them had a
linear age-dependent trend (L), and the remaining 1000
genes had a non-linear age-dependent trend (NL). All
data values in each artificial dataset were drawn from a
normal distribution with mean μ and standard deviation
s. The μ and s of each data point depended on the
dataset and the age group to which its sample belonged.
In other words, various age-dependent expression
patterns were simulated by choosing different μ and s
for each set of genes at different age groups (see Table 2).
Datasets containing outliers were simulated by randomly
selecting some data points in the dataset and scaling
their value by an arbitrary amount randomly drawn from
a uniform distribution U(-5, 5).

Comparison with linear regression based methods
To provide a baseline for comparison, we also analyzed
our simulated datasets with two linear regression based
methods for DE and DV patterns discovery. For
identifying genes with either linear or non-linear DE
patterns, we used a second order linear regression model
of the form f(x) = a + b1x + b2x

2. We then independently
tested whether b1 = 0 and b2 = 0 by performing a t-test on
each parameter, which gives us two p-values: p1 and p2
respectively for parameter b1 and b2. Given a predefined
significance level al, a gene is classified to have one of
the three patterns using the following set of rules:

p p

p p
l l

l l

1 2

1 2

≥ ≥ ⇒
< ≥ ⇒
α α
α α

 and no DE pattern C

 and linear DE

( )

  pattern L

non-linear DE pattern NL

( )

( )p l2 < ⇒α

A second order linear regression model is more
commonly known as the quadratic regression model,
but we deliberately avoid the this terminology since it
may be easily confused with the term quantile regres-
sion, also abbreviated as QR. We note that the above
linear regression based method is a variant of the
quadratic regression method of Liu et al. [41].

Table 2: Parameters for simulating the seven artificial datasets

Sample (in ascending order of age)

Dataset Pattern 1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80

DE, 2 C 4, 2 4, 2 4, 2 4, 2 4, 2 4, 2 4, 2 4, 2
L 1, 2 2, 2 3, 2 4, 2 5, 2 6, 2 7, 2 8, 2

NL 1, 2 2, 2 3, 2 4, 2 5, 2 4, 2 3, 2 1, 2

DE, 5 C 4, 5 4, 5 4, 5 4, 5 4, 5 4, 5 4, 5 4, 5
L 1, 5 2, 5 3, 5 4, 5 5, 5 6, 5 7, 5 8, 5

NL 1, 5 2, 5 3, 5 4, 5 5, 5 4, 5 3, 5 1, 5

DE, 5+outliers C 4, 5 4, 5 4, 5 4, 5 4, 5 4, 5 4, 5 4, 5
L 1, 5 2, 5 3, 5 4, 5 5, 5 6, 5 7, 5 8, 5

NL 1, 5 2, 5 3, 5 4, 5 5, 5 4, 5 3, 5 1, 5

DE, 9 C 4, 9 4, 9 4, 9 4, 9 4, 9 4, 9 4, 9 4, 9
L 1, 9 2, 9 3, 9 4, 9 5, 9 6, 9 7, 9 8, 9

NL 1, 9 2, 9 3, 9 4, 9 5, 9 4, 9 3, 9 1, 9

DE, 9+outliers C 4, 9 4, 9 4, 9 4, 9 4, 9 4, 9 4, 9 4, 9
L 1, 9 2, 9 3, 9 4, 9 5, 9 6, 9 7, 9 8, 9

NL 1, 9 2, 9 3, 9 4, 9 5, 9 4, 9 3, 9 1, 9

DV C 4, 3 4, 3 4, 3 4, 3 4, 3 4, 3 4, 3 4, 3
L 4, 1 4, 2 4, 3 4, 4 4, 5 4, 6 4, 7 4, 8

NL 4, 1 4, 2 4, 3 4, 4 4, 5 4, 3 4, 2 4, 1

DV+outliers C 4, 3 4, 3 4, 3 4, 3 4, 3 4, 3 4, 3 4, 3
L 4, 1 4, 2 4, 3 4, 4 4, 5 4, 6 4, 7 4, 8

NL 4, 1 4, 2 4, 3 4, 4 4, 5 4, 3 4, 2 4, 1

Gene expression values can be simulated by drawing values from a normal distribution with mean μ and standard deviation s. The choice of μ and s
depends on the age group of a sample and the type of pattern each gene is simulating. The complete list of μ and s used to simulate the seven artificial
microarray datasets are shown here, given as μ, s pairs.
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To identify genes with linear or non-linear DV patterns
using a linear regression based method, we use the
following two step scheme: (1) Fit the data with a third-
order linear regression model (commonly known as a
cubic regression model) of the form f(x) = a + b1x + b2x

2 +
b3x

3, and obtain the residuals as ri = yi - f(xi), then (2) Fit
a second order linear model to the absolute residuals, i.e.,
|r| = a + b1x + b2x

2, which enables us to calculate a p-value
for each of b1 and b2 (p1 and p2 respectively) using t-tests.
Using the two p-values, we have the following rules for
determining whether a gene has a ‘significant’ DV pattern
given a significance level al:

p p

p p
l l

l l

1 2

1 2

≥ ≥ ⇒
< < ⇒
α α
α α

 and no DV pattern NDV

 or DV patte

( )

rrn DV( )

The linear regression model fitting and p-value calcula-
tion are performed by the function lm in R.

Construction and interpretation of the ROC curves
A Receiver Operator Characteristic (ROC) curve is a two
dimensional plot of two important performance mea-
sures of a pattern discovery method — the true positive
rate (TPR; or sensitivity) and the false positive rate (FPR;
or 1-specificity). A desirable pattern discovery method
should achieve a high TPR while maintaining a low FPR.
If TPR = FPR for all threshold values, the pattern
discovery method is performing just as badly as a
random binary classifier that randomly assigns an object
into one of the two classes with probability 0.5. Given
the true positive (TP), true negative (TN), false positive
(FP) and false negative (FN) rates at a given a, TPR = TP/
(TP+FN) and FPR = FP/(FP+TN).

Analysis of real datasets
The Colantuoni dataset [6] and the Lu dataset [2] were
obtained from the Gene Expression Omnibus (GEO)
[42] using accession number GSE11546 and GSE1572
respectively. We used the preprocessed data available for
each dataset to enable maximum consistency with the
original studies.

We estimated the false discovery rate (FDR) of our
procedure in discovering age-dependent patterns in the
two real datasets using a randomization procedure.
Using the concepts and notation developed by Storey
and Tibshirani [43], a false discovery rate given a
particular threshold value a is the expected proportion
of false positives (F) in all positive calls (S), which can be
written as

FDR E
F
S

E F
E S

( )
( )
( )

[ ( )]
[ ( )]

α α
α

α
α

=
⎡

⎣
⎢

⎤

⎦
⎥ ≈ (7)

The last approximation can be shown to be valid if the
number of genes tested is large [43]. In our estimation,
we approximate E[S(a)] to be the number of genes
identified to have an age-dependent pattern (either DE
or DV) based on the threshold a, and we estimate
E[F(a)] as the average number of genes identified to
have an age-dependent pattern in m permuted datasets,
by uniformly permuting the age associated with samples
without altering the expression data. Since the resulting
FDR estimates are relatively stable among permutations,
we decided to set m = 10 in analyzing both real datasets
as we can already obtain a reasonable estimate of FDR,
without further computational expenses.
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