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Abstract

Background: Proteins are dynamic macromolecules which may undergo conformational
transitions upon changes in environment. As it has been observed in laboratories that protein
flexibility is correlated to essential biological functions, scientists have been designing various types
of predictors for identifying structurally flexible regions in proteins. In this respect, there are two
major categories of predictors. One category of predictors attempts to identify conformationally
flexible regions through analysis of protein tertiary structures. Another category of predictors
works completely based on analysis of the polypeptide sequences. As the availability of protein
tertiary structures is generally limited, the design of predictors that work completely based on
sequence information is crucial for advances of molecular biology research.

Results: In this article, we propose a novel approach to design a sequence-based predictor for
identifying conformationally ambivalent regions in proteins. The novelty in the design stems from
incorporating two classifiers based on two distinctive supervised learning algorithms that provide
complementary prediction powers. Experimental results show that the overall performance
delivered by the hybrid predictor proposed in this article is superior to the performance delivered
by the existing predictors. Furthermore, the case study presented in this article demonstrates that
the proposed hybrid predictor is capable of providing the biologists with valuable clues about the
functional sites in a protein chain. The proposed hybrid predictor provides the users with two
optional modes, namely, the high-sensitivity mode and the high-specificity mode. The experimental
results with an independent testing data set show that the proposed hybrid predictor is capable of
delivering sensitivity of 0.710 and specificity of 0.608 under the high-sensitivity mode, while
delivering sensitivity of 0.451 and specificity of 0.787 under the high-specificity mode.
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Conclusion: Though experimental results show that the hybrid approach designed to exploit the
complementary prediction powers of distinctive supervised learning algorithms works more
effectively than conventional approaches, there exists a large room for further improvement with
respect to the achieved performance. In this respect, it is of interest to investigate the effects of
exploiting additional physiochemical properties that are related to conformational ambivalence.
Furthermore, it is of interest to investigate the effects of incorporating lately-developed machine
learning approaches, e.g. the random forest design and the multi-stage design. As conformational
transition plays a key role in carrying out several essential types of biological functions, the design of
more advanced predictors for identifying conformationally ambivalent regions in proteins deserves
our continuous attention.

Background
Proteins are dynamic macromolecules which may
undergo conformational transitions upon changes in
environment, such as pH, temperature, or upon interac-
tions with other macromolecules [1]. It has been
observed in laboratories that conformational transition
plays a key role in carrying out several essential types of
biological functions, including enzyme catalysis, macro-
molecule recognition, binding, and signal transduction
[2]. For instance, the GTPase HRas protein, whose gene
serves as an oncogene of the bladder cancer, shows
different conformations in the Switch II region when this
protein switches between the RAS-GTP state and the
RAS-GDP state [3-6]. Another example is the U1 snRNP
A from Homo sapiens. The conformation of one portion
of the RNA binding region switches from a helix in the
unbound state to a loop in the bound state respectively
[7,8]. Conformational switches sometimes even cause
diseases. For instance, the prion protein (PrP) causes the
mad cow disease when a specific secondary structure
element changes from a helix to a b-sheet [9].

As conformational flexibility is related to protein
functions and interactions, scientists have been design-
ing various types of predictors for identifying conforma-
tionally flexible regions in proteins [10-12]. In this
respect, there are two major categories of predictors. The
problem that was firstly addressed by Young et al. [12]
concerns identifying polypeptide segments that may fold
to form different secondary structure elements in
different environments based on sequence analysis.
Another major category of the predictors attempts to
identify conformationally flexible regions through ana-
lysis of protein tertiary structures [2]. As the availability
of protein tertiary structures is generally limited, the
design of predictors that work completely based on
sequence information is crucial for advances of mole-
cular biology research.

In this article, we will propose a novel approach to
design a sequence-based predictor for identifying

conformationally ambivalent regions in proteins. The
novelty in the design stems from incorporating two
classifiers based on two distinctive supervised learning
algorithms that provide complementary prediction
powers. These two machine learning algorithms are the
relaxed variable kernel density estimation (RVKDE)
algorithm [13,14] and the QUICKRBF algorithm [15]
that we have recently proposed. With these two
classifiers, the proposed hybrid predictor can operate
under either the high-sensitivity mode or the high-
specificity mode, depending on the user' s application.
Experimental results show that the overall performance
delivered by the proposed hybrid predictor is superior to
the performance delivered by the existing predictors.
Furthermore, the case study presented in this article
demonstrates that the proposed hybrid predictor is
capable of providing the biologists with valuable clues
about the functional sites in a protein chain.

Results
Overview of the proposed hybrid predictor
Fig. 1 presents an overview of the structure of the
proposed hybrid predictor. The hybrid predictor consists
of two classifiers that have been constructed based on
two distinctive supervised learning algorithms. As men-
tioned earlier, the motivation to incorporate two
distinctive classifiers was to exploit the complementary
prediction powers of alternative supervised learning
algorithms. During our study, we observed that for the
application addressed in this article the QUICKRBF
based classifier consistently delivered sensitivity around
0.7 and specificity around 0.6 regardless of how the user-
controlled parameter was set. Aiming to achieve higher
specificity, we therefore investigated the possibility of
incorporating two distinctive classifiers with comple-
mentary prediction powers. Our study ended up with the
design shown in Fig. 1. When the hybrid predictor
operates under the high-sensitivity mode, only the
QUICKRBF based classifier is enabled. On the other
hand, when the hybrid predictor operates under the
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high-specificity mode, both classifiers are enabled and
their outputs are merged to achieve higher specificity.
With respect to merging the outputs of two classifiers,
the following mechanism has been employed. In case
the RVKDE based classifier predicts a residue to be
conformationally ambivalent but the QUICKRBF based
classifier makes an opposite prediction, then the hybrid
predictor will check the predictions made by the
QUICKRBF based classifier for the four adjacent residues.
If three out of the four adjacent residues are marked as
conformationally ambivalent, then the concerned resi-
due will be marked as conformationally ambivalent as
well. Otherwise, it will be marked as conformationally
rigid. Similarly, in case the QUICKRBF based classifier
predicts a residue to be conformationally ambivalent but
the RVKDE based classifier makes an opposite predic-
tion, then the hybrid predictor will check the predictions
made by the RVKDE based classifier for the four adjacent
residues. If three out of the four adjacent residues are
marked as conformationally ambivalent, then the con-
cerned residue will be marked as conformationally
ambivalent as well. Otherwise, it will be marked as
conformationally rigid.

The basis of the mechanism described above for merging
the outputs of the QUICKRBF based classifier and the
RVKDE based classifier is to adopt a more cautious stand
in predicting a residue to be conformationally ambiva-
lent. During our study, we tried several alternative
mechanisms and decided to employ the one describe

above due to its effects observed in the cross validation
procedure. The detailed design of QUICKRBF based
classifier and the RVKDE based classifier as well as the
cross validation procedure employed to set the para-
meters of the classifiers will be elaborated in the section
entitled “Methods”.

Generation of the training data set
Both the learning processes of the RVKDE based classifier
and the QUICKRBF based classifier in Fig. 1 have been
carried out with the training data set generated by the
following procedure.

(1) All the protein chains in the PDB [16] (released on
01-April-2008) that have the same entry name and
primary accession number in SwissProt (release 55.1 of
18-March-2008) are grouped. In the end, there are a total
of 11084 groups of protein chains.

(2) The BLAST package [17] is invoked to check the
redundancy among the groups of protein chains. It is
guaranteed that no two protein chains in different
groups have a sequence identity higher than 25%. In
the end, 3496 groups of protein chains remain.

(3) For each of the 3496 groups of protein chains, the
CLUSTALW package [18] is invoked to carry out multi-
ple-sequence alignment on the protein chains in the
group and the DSSP package [19] is invoked to label
each residue in the protein chains with one of the
following 3 types of secondary structure: helix, sheet,
and coil. Then, one protein chain is randomly selected
from each group as the representative. In this respect, we
further checked the sequence identity between the 3496
representatives and the collection of 170 testing protein
chains described in the next subsection. We removed 92
representatives due to there existing a homologous
testing protein chain with a BLAST-computed sequence
identity higher than 20%. Finally, each residue in the
remaining 3404 representative protein chains was
examined to determine whether the residue and all the
residues in other protein chains that are aligned with the
residue have been labelled with the same type of
secondary structure. A conformationally ambivalent
region is defined to be a segment of 3 or more
consecutive residues within which each residue and the
aligned residues have discrepant types of secondary
structures.

(4) The training data set is generated by associating each
residue in the 3404 representative protein chains with a
feature vector. The feature vectors are derived from the
position specific scoring matrices (PSSM) computed by
the PSI-BLAST package [20] with window size set to 7. As

Figure 1
The overall structure of the proposed hybrid
predictor.
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illustrated in Fig. 2(a), those rows in the PSSM that
correspond to residue types that are neither charged nor
polar are deleted. Furthermore, as illustrated in Fig. 2(b),
those rows corresponding to residue types with charge
are duplicated to increase their influence. Then, a new

row is added to record whether the corresponding
position is at one end of the protein chain. Finally, the
feature vector is generated by concatenating all the rows
in the matrix and the values in the feature vectors are
scaled to range from 0 to 1 by applying the standard
logistic function:

1

1+ −e x
.

One may wonder why we discarded those rows in the
PSSM that correspond to residue types that are neither
charged nor polar. The reason was that we conducted an
analysis on the propensity of residue types in conforma-
tionally ambivalent regions and found that the propen-
sity of hydrophobic residues is essentially uniform in
conformationally ambivalent regions and in rigid
regions. On the other hand, the conformationally
ambivalent regions contain significantly higher percen-
tage of charged and/or polar residues than rigid regions.
Therefore, we duplicated those rows in the PSSM that
correspond to residues with charge.

Generation of the independent testing data set
The experiments reported in this article have been
conducted with an independent testing data set derived
from the collection of protein conformational ambiva-
lence regions created by Boden et al. http://pprowler.itee.
uq.edu.au/sspred/[10]. According to Boden' s descrip-
tion, this collection of 170 protein chains was extracted
from MolMovDB http://www.molmovdb.org/[21,22],
which is a database that records the motion of
macromolecules, especially proteins, from literatures of
PubMed. As mentioned earlier, it was guaranteed that
none of these 170 testing protein chains is homologous
to the training protein chains described in the previous
subsection by having a BLAST-computed sequence
identity higher than 20%.

In generating the independent testing data set, we
followed the procedure elaborated above for generating
the training data set in order to associate each residue in
the testing protein chains with a feature vector and
labelled each residue as conformationally ambivalent or
not based on the annotations in the MolMovDB
database. In the end, the testing data set generated
contains 5807 positive samples and 54823 negative
samples.

Performance metrics
In this article, the experimental results are reported with
the following performance metrics, where TP, TN, FP,
and FN represent the numbers of true positive, true
negative, false positive, and false negative, respectively.

Figure 2
An illustration of the process employed to generate
the feature vector of the residue of concern. (a) The
feature vectors are derived from PSSM with window size set
to 7. Rows corresponding to residue types that are neither
charged nor polar are deleted. (b) Rows corresponding to
residue types with charge are duplicated and one additional
row is included to indicate whether the residue is at one end
of the protein chain or not.
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The F-score is the harmonic mean of sensitivity and
precision and is a widely used metric in machine
learning research for providing a balanced assessment
of the performance of a predictor.

Comparison with Boden' s predictor of protein
conformational ambivalence
In this section, the performance of the hybrid predictor
proposed in this article is compared with that of the
predictor proposed by Boden and et al. The approach
proposed by Boden is in fact based on a predictor of
protein secondary structures [23]. In Boden' s approach,
if a segment of polypeptide sequence cannot be
decisively classified by the predictor of protein secondary
structures, then the conformation of this segment is
considered to be ambivalent under different environ-
ments [24,25]. Accordingly, Boden and et al. calculated
the entropy associated with each residue in the testing
chain based on the probabilities output by the predictor
of protein secondary structures. If the entropy of a
residue is higher than a cut-off value, then the residue is
classified as being in a conformationally ambivalent
region. In calculating the entropy of a residue, Boden

et al. employed two options of the predictor of protein
secondary structures. With the first option, each residue
in a protein chain is predicted to belong to one of the
following 3 classes of protein secondary structures,
alpha-helix, beta-sheet, or coil. On the other hand,
with the second option, each residue is predicted to
belong to one of the 8 classes of protein secondary
structures defined in [19]. Table 1 summarizes the
performance delivered by Boden' s 3-class predictor
with the independent testing data set. In Table 1, each
row corresponds to the performance delivered by the
predictor under one specific cut-off value of entropy.

Table 2 shows the performance delivered by the
proposed hybrid predictor with the independent testing
data set in comparison with Boden' s predictor under the
3-class mode and the 8-class mode. As mentioned
earlier, the hybrid predictor can operate in two modes,
namely the high-sensitivity and the high-specifinty mode.

The numbers in Table 2 reveal that when the hybrid
predictor and Boden' s predictor deliver comparable
sensitivity, the hybrid predictor can deliver higher
specificity and precision. Furthermore, when the hybrid
predictor and Boden' s predictor deliver comparable
specificity, the hybrid predictor can deliver higher
sensitivity and precision.

Comparison with Kuznetsov' s predictor of
protein conformational ambivalence
In this section, the performance of the hybrid predictor
proposed in this article is compared with that of the
sequence-based predictor proposed by Kuznetsov
[11,26]. It must be noted that Kuznetsov employed a

Table 1: Performance of Boden' s predictor with different cut-off values of entropy

Entropy Cuf-off TP FP TN FN accuracy sensitivity specificity precision F-score MCC

0.05 5803 54661 113 0 0.098 1.000 0.002 0.096 0.175 0.014
0.10 5792 54364 410 11 0.102 0.998 0.007 0.096 0.176 0.020
0.15 5703 49720 5054 100 0.178 0.983 0.092 0.103 0.186 0.079
0.20 5572 46635 8139 231 0.226 0.960 0.149 0.107 0.192 0.093
0.25 5328 43024 11750 475 0.282 0.918 0.215 0.110 0.197 0.097
0.30 4903 38576 16198 900 0.348 0.845 0.296 0.113 0.199 0.092
0.35 4468 34265 20509 1335 0.412 0.770 0.374 0.115 0.201 0.088
0.40 4009 30101 24673 1794 0.473 0.691 0.450 0.118 0.201 0.084
0.45 3584 26400 28374 2219 0.528 0.618 0.518 0.120 0.200 0.080
0.50 3142 22971 31803 2661 0.577 0.541 0.581 0.120 0.197 0.073
0.55 2702 19722 35052 3101 0.623 0.466 0.640 0.120 0.191 0.064
0.60 2254 16500 38274 3549 0.669 0.388 0.699 0.120 0.184 0.055
0.65 1730 12617 42157 4073 0.724 0.298 0.770 0.121 0.172 0.047
0.70 1100 8011 46763 4703 0.790 0.190 0.854 0.121 0.148 0.036
0.75 684 5183 49591 5119 0.830 0.118 0.905 0.117 0.117 0.023
0.80 463 3443 51331 5340 0.855 0.080 0.937 0.119 0.095 0.020
0.85 272 2238 52536 5531 0.872 0.047 0.959 0.108 0.065 0.009
0.90 142 1339 53435 5661 0.884 0.024 0.976 0.096 0.039 0.000
0.95 71 664 54110 5732 0.894 0.012 0.988 0.097 0.022 0.000
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different definition of protein conformational ambiva-
lence. By Kuznetsov' s definition, a residue in a protein
chain is said to be flexible, if its phi degree varies more
than 62 or its psi degree varies more than 68 in two
different conformations. In order to accommodate
Kuznetsov' s definition, we labelled the residues in our
collection of training protein chains based on Kuznetsov'
s definition and then trained our hybrid predictor with
this separately-generated training data set.

The testing data set used in this experiment was derived
from Boden' s collection of testing protein chains. Again, in
order to accommodate Kuznetsov' s definition of protein
conformational ambivalence, we labelled the residues in the
testing protein chains based on Kuznetsov' s definition.
Furthermore, in order to carry out a fair comparison, we
removed those testing protein chains in Boden' s collection
that are homologous to one or more protein chains in
Kuznetsov's training set by having a sequence identify
higher than 20%. In the end, 137 out of the 170 testing
protein chains in Boden' s collection were used for carrying
out the benchmark reported in this section.

Table 3 reports how the hybrid predictor proposed in
this article performed in comparison with Kuznetsov' s
predictor [26]. The numbers in Table 3 reveal that when
the parameters of Kuznetsov' s predictor and the hybrid
predictor are set to deliver comparable levels of
specificity, the hybrid predictor can deliver higher
sensitivity and precision. It must be noted that in this

experiment we carried out an additional run of cross
validation to set the parameters of the hybrid predictor
differently due to the fact that a different definition of
conformational ambivalence is adopted. Furthermore,
the results of the proposed hybrid predictor reported in
Table 3 include those obtained with only the RVKDE
based classifier enabled and those with both classifiers
enabled. In this experiment, when both classifiers in the
proposed hybrid predictor were enabled, the outputs of
these two classifiers were merged based on a slightly
different mechanism described in the following. In case
the RVKDE based classifier predicts a residue to be
conformationally ambivalent but the QUICKRBF based
classifier makes an opposite prediction, then the hybrid
predictor will check the predictions made by the
QUICKRBF based classifier for the four adjacent residues.
If any one of the four adjacent residues is marked as
conformationally ambivalent, then the concerned resi-
due will be marked as conformationally ambivalent as
well. Otherwise, it will be marked as conformationally
rigid. Similarly, in the case where the QUICKRBF based
classifier predicts a residue to be conformationally
ambivalent but the RVKDE based classifier makes an
opposite prediction, then the hybrid predictor will check
the predictions made by the RVKDE based classifier for
the four adjacent residues. If any one of the four adjacent
residues is marked as conformationally ambivalent, then
the concerned residue will be marked as conformation-
ally ambivalent as well. Otherwise, it will be marked as
conformationally rigid.

Table 2: Performance comparison between the hybrid predictor and Boden' s predictor

Predictor TP FP TN FN accuracy sensitivity specificity precision F-score MCC

The hybrid predictor (high-sensitivity mode) 4123 21492 33331 1684 0.618 0.710 0.608 0.161 0.262 0.189
The hybrid predictor (high-specificity mode) 2617 11682 43141 3190 0.755 0.451 0.787 0.183 0.260 0.165
Boden' s predictor (3-class mode)with entropy
threshold = 0.4

4009 30101 24673 1794 0.473 0.691 0.450 0.118 0.201 0.084

Boden' s predictor (3-class mode)with entropy
threshold = 0.65

1730 12617 42157 4073 0.724 0.298 0.770 0.121 0.172 0.047

Boden' s predictor (8-class mode)with entropy
threshold = 0.52

2388 27895 26879 976 0.503 0.710 0.491 0.079 0.142 0.094

Boden' s predictor (8-class mode)with
entropy threshold = 0.69

1198 11563 43211 2166 0.764 0.356 0.789 0.094 0.149 0.082

Table 3: Performance comparison between the hybrid predictor and Kuznetsov' s predictor

Predictor TP FP TN FN accuracy sensitivity specificity precision F-score MCC

The hybrid predictor with only the RVKDE based
classifier enabled

1236 9697 34877 1033 0.771 0.545 0.782 0.113 0.187 0.166

The hybrid predictor with both the QUICKRBF
and RVKDE based classifiers enabled

813 4792 39782 1456 0.867 0.358 0.892 0.145 0.207 0.166

Kuznetsov' s predictor With false positive
rate = 20

1020 9205 35369 1249 0.777 0.450 0.793 0.100 0.163 0.126

Kuznetsov' s predictor With false positive
rate = 10

633 4676 39898 1636 0.865 0.279 0.895 0.119 0.167 0.118
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Discussion
Experimental results reported above show that the
hybrid approach designed to exploit complementary
prediction powers of distinctive supervised learning
algorithms works more effectively than the existing
predictors. In this section, we will present a real case to
demonstrate the effects delivered by the proposed hybrid
predictor. Fig. 3(a) depicts two conformations of protein
Ap4A hydrolase from Lupinus angustifolius L. One
conformation is with ligand ATP·MgFx, of which the
PDB ID is 1JKN [27], and another conformation is
without the ligand, of which the PDB ID is 1F3Y [28].
Fig. 3(b) and 3(c) depict the conformationally ambiva-
lent regions identified in [27,28], and those regions
predicted by the proposed hybrid predictor, respectively.
It must be noted that in drawing Fig. 3(c) if a gap
between two predicted conformationally ambivalent
segments contains 4 or fewer residues, then the residues
in the gap were also colored as if they were predicted to
be in a conformationally ambivalent region. Fig. 3(a),
(b), and 3(c) altogether reveal that the conformationally
ambivalent regions predicted by the proposed hybrid
predictor largely overlap with the structural segments
that swing widely in Fig. 3(a). Furthermore, the three
predicted conformationally ambivalent regions cover
three out of the four conformationally ambivalent
regions identified in [27,28]. Meanwhile, the only
conformationally ambivalent region identified in
[27,28] that does not overlap with the predicted
conformationally ambivalent regions is the one with
the smallest swing, which is colored by blueviolet in
Fig. 3(b). As conformational transition plays a key role
in carrying out several essential types of biological
functions, including enzyme catalysis, macromolecule
recognition, binding, and signal transduction, what the
case presented in Fig. 3 demonstrates is that the hybrid
predictor proposed in this article is capable of providing
the biologists with valuable clues about the functional
sites in a protein chain.

Conclusion
In this article, we propose a novel approach to design a
sequence-based predictor for identifying conformation-
ally ambivalent regions in proteins. The novelty in the
design stems from incorporating two classifiers based on
two distinctive supervised learning algorithms that
provide complementary predictive powers. Experimental
results show that the overall performance delivered by the
hybrid predictor proposed in this article is superior to the
performance delivered by the existing predictors. Further-
more, the case study presented in this article demonstrates
that the hybrid predictor proposed in this article is
capable of providing the biologists with valuable clues
about the functional sites in a protein chain.

Figure 3
A case study. (a) Two conformations of protein Ap4A
hydrolase are plotted by Chimera [36] with different colors.
The one colored by yellow is with red-colored ligand
ATP·MgFx, and the one colored by blue is without the ligand.
(b) The conformationally ambivalent regions reported in
[27,28] are plotted by Jmol [37] with colors yellow,
blueviolet, darkblue, and greenyellow. (c) The
conformationally ambivalent regions predicted by the
proposed hybrid predictor are plotted by Jmol [37] with
colors lawngreen, royalblue, and lightgreen.
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Nevertheless, experimental results also show that there
exists a large room for improvement with respect to the
performance of the predictor. Therefore, it is of great
interest to investigate how to design more advanced
predictors. In this respect, it is of interest to investigate
how physiochemical properties of polypeptide segments
can be more effectively exploited. In this study, we have
only exploited the information in the PSSM and a
natural extension is to investigate the effects of incorpor-
ating the other physiochemical properties of polypeptide
segments recently exploited by the related studies
[29-31]. Furthermore, it is of interest to investigate the
effects of incorporating the lately-developed machine
learning approaches, e.g. the random forest design and
the multi-stage design [32,33]. As conformational
transition plays a key role in carrying out several
essential types of biological functions, design of more
advanced predictors deserves our continuous attention.

Methods
Design of the proposed hybrid predictor
As shown in Fig. 1, the hybrid predictor proposed in this
article consists of two classifiers that are constructed with
two distinctive supervised learning algorithms. The
motivation to incorporate two distinctive classifiers was
to exploit the complementary prediction powers of
distinctive supervised learning algorithms. Fig. 4 depicts
the schematic diagram of a RBF (Radial Basis Function)
network for data classification applications. A RBF
network consists of three layers, namely the input
layer, the hidden layer, and the output layer. The input
layer broadcasts the feature vector of the input query
sample to each node in the hidden layer. Upon receiving
an input vector, each node in the hidden layer then
generates an activation based on its associated radial

basis function ji(v). Finally, each node in the output
layer computes a linear combination of the activations
generated by the hidden nodes. The general mathema-
tical expression of the output nodes in a RBF network
with Gaussian activation functions is as follows:

f w i

i
j ji

i

k

( ) exp ,v
v

=
− −

=
∑ μ

σ

2

2 2
1

(1)

where fj (v) is the function corresponding to the j-th
output node and is a linear combination of k radial basis
functions with center μi and bandwidth si; wji is the
weight associated with the link between the j-th output
node and the i-th hidden node. For data classification
applications, the RBF network has one output node
corresponding to one class of samples and a query
sample is predicted to belong to the class of which the
corresponding output node yields the maximum value.
The tasks that the learning algorithm of a RBF network
carries out include: (1) determining the centers of the
activation functions associated with the hidden nodes;
(2) setting the parameters associated with the activation
functions; (3) optimizing the weights associated with the
links between the hidden layer and the output layer.

In our implementation of the QUICKRBF package, the user
can specify the number of hidden nodes to be incorporated
and then the learning algorithm will place the activation
functions at a set of randomly selected training samples.
Our experience suggest that how a RBF network performs
in terms of classification accuracy is not sensitive to how
the bandwidths associated with the activation functions are
set, as long as the weights in Equation (1) are optimized.
Therefore, the QUICKRBF algorithm simply employs a
default value and resorts to the Cholesky decomposition
[34] to optimize the weights in Equation (1).

The second classifier in the proposed hybrid predictor is
based on the relaxed variable kernel density estimation
(RVKDE) algorithm. A kernel density estimator is in fact
an approximate probability density function. Let {s1,
s2, ..., sn} be a set of sampling instances randomly and
independently taken from the distribution governed by
probability density function f in the d-dimensional
vector space. Then, with the RVKDE algorithm, the
value of f at point v is estimated as follows:
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Figure 4
The schematic diagram of a RBF network.
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2) R(si) is the maximum distance between si and its k
nearest training instances;

3) Γ(·) is the Gamma function [35];

4) b and k are parameters to be set either through cross
validation or by the user.

For data classification applications, one kernel density
estimator is created to approximate the distribution of
each class of training instances. Then, a query instance
located at v is predicted to belong to the class that gives
the maximum value with the likelihood function defined
as follows:

L
S j f j
Sq fq

q

j( )
| | ( )

| | ( )
,v

v

v
=

⋅
⋅∑

Where |Sj| is the number of class-j training instances, and
f̂ j (v) is the kernel density estimator corresponding to
class-j training instances. In our current implementation,
in order to improve the efficiency of the classifier, we
include only a limited number, denoted by k', of the
nearest class-j training instances of v while evaluating
f̂ j (v).

Parameter setting
As equation (2) exhibits, there are 3 parameters, b, k, and
k' associated with a RVKDE based classifier. Supposedly,
d should be equal to the dimension of the feature vectors
associated with the samples. However, due to the fact
that there may exist correlations among features, d is
treated as a parameter to be set during the learning
process. As a result, to create a RVKDE based classifier,
there are a total of 4 parameters to be set. On the other
hand, to create a QUICKRBF based classifier, the user
only need to determine the number of hidden nodes to
be incorporated.

In order to figure out the optimal parameter settings for
the proposed hybrid predictor, we have carried out the
conventional 5-fold cross validation with the 3404
training protein chains described earlier. The parameters
whose values were set with the 5-fold cross validation
include the number of hidden nodes in QUICKRBF
based classifier, parameters b, k, k', and d associated with
the RVKDE based classifier, as well as the width of the
window employed to derive the feature vector of a
residue from the PSSM. Table 4 and Table 5 summarize
how these parameters have been set in the proposed
hybrid predictor. In the experiment conducted to
compare the performance of the hybrid predictor and
Kuznetsov' s predictor, the parameter values shown in

Table 5 were adopted because a different definition of
conformational ambivalence had been employed. In this
respect, the parameter values shown in Table 5 were only
adopted in this particular experiment and the prediction
shown in Fig. 3(c) was obtained with the parameters in
the proposed hybrid predictor set in accordance with
Table 4.
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Table 4: Parameter settings of the proposed hybrid predictor for
the experiment reported in Table 2

QuickRBF RVKDE

Number of hidden nodes d b k k'
1400 1 4 30 200

Table 5: Parameter settings of the proposed hybrid predictor for
the experiment reported in Table 3

QuickRBF RVKDE

Number of hidden nodes d b k k'
1400 1 5 25 190
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