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Abstract

Background: Oligonucleotide design is known as a time-consuming work in bioinformatics. In
order to accelerate and be efficient the oligonucleotide design process, one of widely used
approach is the prescreening unreliable regions using a hashing (or seeding) algorithm. Since the
seeding algorithm is originally proposed to increase sensitivity for local alignment, the specificity
should be considered as well as the sensitivity for the oligonucleotide design problem. However, a
measure of evaluating the seeds regarding how adequate and efficient they are in the oligo design is
not yet proposed. Here, we propose novel measures of evaluating the seeding algorithms based on
the discriminability and the efficiency.

Results: To evaluate the proposed measures, we examine five seeding algorithms in
oligonucleotide design. We carried out a series of experiments to compare the seeding algorithms.
As the result, the spaced seed is recorded as the most efficient discriminative seed for oligo design.
The performance of transition-constrained seed is slightly lower than the spaced seed. Because
BLAT seeding algorithm and Vector seeding algorithm give poor scores in specificity and efficiency,
we conclude that these algorithms are not adequate to design oligos.

Consequently, we recommend spaced seeds or transition-constrained seeds with 15~18 weight in
order to design oligos with the length of 50 mer. The empirical experiments in real biological data
reveal that the recommended seeds show consequently good performance. We also propose a
software package which enables the users to get the adequate seeds under their own experimental
conditions.

Conclusion: Our study is valuable to the two points. One is that our study can be applied to the
oligo design programs in order to improve the performance by suggesting the experiment-specific
seeds. The other is that our study is useful to improve the performance of the mapping assembly in
the field of Next-Generation Sequencing. Our proposed measures are originally designed to be
used for oligo design but we expect that our study will be helpful to the other genomic tasks.

Page 1 of 10
(page number not for citation purposes)

BioMed Central

Open Access

mailto:whchung@sejong.knu.ac.kr
mailto:sbpark@sejong.knu.ac.kr
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Background
Since the beginning of human genome project, the
demand of designing oligonucleotide has been under-
going explosive growth. An oligonucleotide (shortly
oligo) is a small DNA sequence (usually ranging from
20 to 70 bp) designed for hybridization only with a
targeted position in a target sequence, and the oligonu-
cleotide design is a basic process for many bio-molecular
experiments including gene identification, PCR amplifi-
cation, DNA microarray, and so on. One of the most
important issues in oligonucleotide design is to minimize
the cross-hybridization event. The usual oligonucleotide
designs spend too much time to calculate the hybridiza-
tion values for all possible oligos and counterparts. Thus,
many heuristic algorithms have been applied to this
problem as a filter to remove unreliable regions before
checking the cross-hybridization. They are clustered into
threemajor categories: multiple alignments [1], suffix tree
[2], and hashing algorithm using seeds (shortly seeding
algorithm) [3,4]. Among these categories, the seeding
algorithm is the most widely used algorithm because of
the fast search speed with allowing some mismatches.

The seeding algorithm process consists of a filtering step
and an extension step in general. At the filtering step,
short fixed-length common words that are found at both
query and target sequences are selected. Then at the
extension step, it determines whether each word can be
extended into a significant alignment. BLAST [3] is the
most popular program using this process. BLAST uses
fixed-length continuous matches as a template for
finding common words, and the template is called a
seed. Most oligo design programs [5-7] adopt BLAST as a
filter. However, the seeding algorithm has a problem of
trade-off between sensitivity and search speed. Enlarging
the seed size increases the risk of missing true align-
ments, while shortening it generates more random hits
and results in computational slowdown. Pattern-
Hunter [4] showed that the problem can be weakened
by introducing a non-continuous seed such as
“111010010100110111,” so-called a spaced seed. After
the notion of non-continuous seed was presented, the
spaced seed has been studied by many researchers in
aspects of computational complexity [8-12] as well as
adapting the seeds for more specific biological sequences
[13,14]. Recently, oligo design programs have been
adopting such enhanced seeding algorithms. A oligo
design programs ProDesign [15], used YASS [14] to
improve its computational speed.

Despite the possibility of speeding up the design time of
a seed, a measure of evaluating seeds regarding how
adequate and efficient they are in the oligo design has
been not yet examined as far as we have explored. We

noticed that the seeding algorithms have been developed
only to maximize the sensitivity of finding all possible
alignments. However, oligonuleotides should be specific
to non-target sequences as well as sensitive to the target
sequences. Thus, in order to design oligonuleotides for
using a seeding algorithm, the seeding algorithm needs
to be selected by considering the ability of discriminat-
ing target and non-target regions properly.

In this paper, we propose a novel measure of evaluating
the seeding algorithms based on the discriminability and
the efficiency. By the measure proposed, we examine five
seeding algorithms in oligonucleotide design. We carried
out a series of experiments to compare the existing
seeding algorithms. The results show that the spaced seeding
algorithm was generally preferred to the other seeding
algorithms. The performance of transition-constrained
seeding algorithm was slightly lower than the spaced
seeding algorithm. Considering discriminability only, con-
tinuous seeding algorithm is as good as the spaced seeding
algorithm in the comparison of low weights of the seeds.
However, in the others of the comparison, the performance
of continuous seeding algorithm degrades rapidly. Because
BLAT seeding algorithm and Vector seeding algorithm give
poor scores in specificity and efficiency, we conclude that
these algorithms are not adequate to design oligos.
Consequently, we recommend spaced seeds or transition-
constrained seeds with 15~18 weight in order to design
oligos with the length of 50 mer. The recommended seeds
show consequently good performance in real biological
data. We propose a software package, SeedChooser, which
enables the users to get the adequate seeds under their own
experimental conditions. Our study is valuable to the two
points. One is that our study can be applied to the oligo
design programs in order to improve the performance by
suggesting the experiment-specific seeds. The other is that
our study is useful to improve the performance of the
mapping assembly in the field of Next-Generation Sequen-
cing. Our proposed measures are originally designed to be
used for oligo design but we expect that our study will be
helpful to the other genomic tasks.

The rest of the paper is organized as follows. First, we
define the performance measures to evaluate seeding
algorithms on oligo design: discriminability, efficiency
and efficient discriminability. In Result section, the five
well-known seeding algorithms are compared with the
proposed measures. The five types of the seeds are also
estimated with two real biological data sets. We propose
a software package which enables to design and evaluate
the appropriate seeds with empirical manners. Then we
discuss the issues which appeared in the results and
draws conclusions. Lastly, we describe how to evaluate a
set of the seeds for oligo design in Method section.
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Problem definition
It is a general idea in the oligo design that an ideal
seeding algorithm should filter all regions as fast as
possible that have no possibility of being chosen as an
oligo. However, actually there are three issues to be
considered regarding how adequate and efficient a
seeding algorithm is in the oligo design. First, a seed
should find as many oligos as possible. Second, a
seed should not find any non-oligo region. Lastly, a seed
should generate hash values as few as possible which are
useful to find oligos. There are trade-off relationships
among the issues. Therefore, we propose a novel
measure of efficient discriminability which considers all
of them. This measure is based on the two metrics:
discriminability and efficiency. The discriminability is a
balance between sensitivity and specificity to minimize
both false positives and false negatives. The efficiency is
the proportion of useful regions filtered by the seeding
algorithm.

Discriminability
The illustration of the effect of a seeding is shown in
Figure 1. It shows the oligo selection in the event of
filtration using a seeding algorithm. Let the hash value
filtered by a seed be a ‘seed hash’. For an oligo P0, the
seed hash S0 in P0 is used to find possible oligos in
the target sequences. When a seed hash S1 is occurred in
the oligo P1. it is called as ‘hit’. This is a desirable case
because the seeding finds an oligo successfully. It is also
possible that the seed hashes S2 and S3 fail in finding
their oligos. Another undesirable case is that oligo P2
does not have any seed hash. These cases are summar-
ized as follows:

• True positive (TP): the seeding hits oligos (SO), or
oligos contains at least a seed hash (OS).
• False negative (FN): oligos have no seed hash
(OS ).

• False positive (FP): the seeding misses oligos ( SO )
• True negative (TN): the seeding does not hit any
non-oligo region.

The sensitivity and the specificity of a seeding in the
oligo design are the most common and widely-used
measures. However, they have a problem that the
amount of true negatives is not considered. Therefore,
instead of them, it is more appropriate to use precision
and recall in evaluating a seeding in the oligo design.
They have ability to measure false positives and false
negatives. In addition, they can be merged into one
easily. Precision P is defined as the proportion of seed
hashes hitting oligos to all seed hashes, while recall R is
the proportion of oligos containing the matched seed
hashes to all selected oligos.
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For the unified measure discriminability, F-measure is
used which is the weighted harmonic mean of precision
and recall. In real oligo design problem, it is needed to
set the different weight between precision and recall.
Recall is more valuable than precision in minimizing
false negatives, while precision is more valuable than
recall in minimizing false positives. This is controlled
by importing a non-negative parameter a into the
F-measure. Therefore, the discriminability, Fa is given as
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Then, a discriminative seed is defined as a seed that has
the maximum discriminability. The discriminability Fa
has following properties: The maximum value of the
discriminability is 1 and it can be obtained only when
both P and R are 1. When the discriminability has the
maximum value, there is no false positive and no false
negative. The balance of the sensitivity and the specificity
is controlled by a. Increasing a over 1, the weight of
precision becomes higher than that of recall. It makes Fa
sensitive to false positives. Decreasing a below 1, the
weight of precision becomes lower than that of recall. It
makes Fa sensitive to false negatives.

Efficiency
The efficiency of a seed on oligo design can be measured
by two points: (i) the duplicated generation of hash
values and (ii) the average number of seed hashes in an
oligo. Some seeding algorithms allowing some mis-
matches such as BLAT [16] and VectorSeeds [13] generate

Figure 1
The illustration of the effect of seeding on oligo
design. The oligos are selected from target sequences using
a seed. T1, T2 and T3 are the target sequences. P1 and P2 are
the matched oligos for an oligo P0, while S1, S2 and S3 are
the matched hashes for S0 by a seed.
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multiple hash values at a single position. It increase
sensitivity in that it generates more hash values than
simple seeding algorithms, in most cases, it over-
generates hash values to find an oligo. Therefore, it is
desirable to minimize the duplicated hash values during
the generation time. The duplication rate of the
generated seed hashes, D is defined as follows.

D = number of generated seed hashes
number of unique seed hashhes

.

Another consideration for the efficiency is about the
number of seed hashes in an oligo. Since the length of an
oligo is longer than that of a seed, an oligo could be
found by multiple seed hashes. However, only one seed
hash is sufficient in finding an oligo. The average rate of
seed hashes in an oligo, A is defined as follows.

A = number of seed hashes in oligos
number of oligos

.

Both the duplication rate D and the average rate A are at
least 1 because the value of numerator includes the value
of denominator. Each of the rates is normalized as
follows: 1/(1 + weight·log rate). The efficiency is defined
as the multiplication of the normalized D and A. The
weight b for D and the weight g for A are both ranged
from 0 to 1. Then the efficiency Eb, g is given as

E
D Aβ γ β γ, log log
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Since the values D and A are non-negative and their
minimum values are 1, the maximum value of the
efficiency Eb, g is 1. It means that an oligo contains only
one seed hash when Eb, g has the maximum efficiency, 1.

Efficient discriminability
Finally, we define the efficient discriminability, Ga, b, g as a
product the discriminability (Fa) and the efficiency
(Eb, g).

G F Eα β γ α β γ, , , .= ⋅

Then, the efficient discriminative seed is the seed that has
the maximum efficient discriminability value for given
a, b and g. When all the parameters a, b and g are not
zero, the seed with the maximum value of Ga, b, g is
optimal. The value of Ga, b, g is maximized when both Fa
and Eb, g are maximized. According to the definitions of
discriminability and efficiency, the optimal seed has no
false positive and false negative, and it appears only in
one oligo.

Results
We compared the performance of the five seeding
algorithms (continuous, spaced, transition-constrained,
BLAT, and Vector) on oligo design in perspective. The
brief descriptions of those seeding algorithms are found
at ‘Seeds for Assessment’ in Method. In order to estimate
the performance of the seeding algorithms, they were
evaluated by three measures, discriminability, efficiency,
and efficient discriminability, respectively. The weight
parameters a, b, and g were set to 1 by default.

Empirically the selected seeds which are believed to
represent their seeding algorithms were estimated by
the measures and plotted by the weight of the seeds. The
reason why the seeds are plotted by weight is that the
seeds having the same weight are generally considered to
spend the same computing costs. We selected 85 seeds
for test empirically as shown in Table S1 and S2 of the
Additional File 1. Nineteen seeds were selected respec-
tively for continuous seeding algorithm, spaced seeding
algorithm, and trnasition-constrained seeding algorithm
granting different weights from 7 to 25. For BLAT seeding
algorithm and Vector seeding algorithm, fourteen seeds
which have the different weights from 14 to 27 were
selected, respectively. The above two seeding algorithms
allowing mismatches in their seeds are exceedingly more
sensitive than the other seeding algorithms. Generally, a
seed’s weight is in inverse proportion to sensitivity. That
is, if a seed’s weight is increased, the seed’s sensitivity is
decreased. So We skipped the selection of the seeds
below 14-weight instead of the additional selection of 26
and 27-weight seeds.

We tested the selected seed on a set of the simulated data
and the two sets of biological data. The simulated data is
a set of artificially generated oligos and target sequences.
The biological data are obtained from an oligo design
program HPD [17]. The details of the data are described
at ‘Sequences for Assessment’ in Method. To summarize
the experimental results, we identified that the 16-weight
spaced seed showed the highest performance among the
examined seeds in accordance with the efficient dis-
criminability. Without the considering efficiency, the
12-weight spaced seed achieved the highest performance.
The results show that spaced seeding algorithm is
generally preferred to the other seeding algorithms in
the viewpoint of the efficient discriminability. The
results of transition-constrained seeding algorithm are
as good as the results of the spaced seeding algorithm.
Considering discriminability only, continuous seeding
algorithm is as good as the spaced seeding algorithm in
the comparison of low weights of the seeds. However, in
the others of the comparison, the performance of
continuous seeding algorithm degrades rapidly. We
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also identify that the seeding algorithms which allow
mismatches in the seeds show high performances only
considering sensitivity. Therefore, both BLAT seeding
algorithm and Vector seeding algorithm are not adequate
to design oligos. The recommended seeds show conse-
quently good performance in real biological data.

Discriminability of the five seeding algorithms
Under the default parameter (a = 1), the comparison of
the five seeding algorithms in considering of the
discriminability is given in Figure 2. The X-axis of this
figure is the weight of seed, and the Y-axis is the value of
discriminability. The weight implies the real size of a seed
to be compared. In the figure, the 12-weight spaced seed
ranks the highest where its discriminability is 0.96 at
highest peak point. The 11-weight continuous seed and
the 12-weight transition-constrained seed also achieve
the next highest results. Their discriminabilities are as
high as the best score of the spaced seed. These two
seeding algorithms show similar curves, where the curve
of the spaced seed is slightly above that of the continuous
seed. On the other hand, all BLAT seeds and all Vector
seeds show very low discriminability results around 0.3.
Their low discriminabilities come from their extreme
sensitivity. Their precisions are both equal to 1, while the
recall is just 0.18 for both algorithms.

Efficiency of the five seeding algorithms
The efficiency monotonously increases with the weight
of a seed increased (see Figure 3). The spaced seed and
the transition-constrained seed show the best efficiency.
The curve of the continuous seed is lowered after that of

the 15-weight of the seed while the curve of Vector seed
increases steadily.

Efficient discriminability of the five seeding algorithms
The efficient discriminabilities of the five seeds were
compared with the parameters of a, b and g fixed as the
default value. Figure 4 shows the comparison results. In
this figure, the Y-axis is the efficient discriminability. The
highest efficient discriminative seed is the 16-weight
spaced seed of which efficient discriminability was
0.133703. All spaced seeds were positioned at the first
or second ranks. The transition-constrained seeds
showed similar curve with the spaced seeds, but the
highest result was lower than that of the spaced seed. The

Figure 2
The discriminability of the five seeding algorithms.

Figure 3
The efficiency of the five seeding algorithms.

Figure 4
The efficient discriminability of the five seeding
algorithms.
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efficient discriminabilities of the continuous seeds
declined steeply above the weight 15. all BLAT seeds
and all Vector seeds were ranked the lowest expectiviely.

Seed estimation with the biological data sets
Performance of the seeds is estimated with the two
biological data sets, pmoA and nirS. The results are listed
in Tables 1 and 2. From pmoA data we identified 19-
weight spaced seed as the highest efficent discriminative

seed. The estimated value is 0.2323. The highest
discriminative seed was 18-weight transition-constrained
seed scored with 0.8857. For nirS data, the best efficient
discriminative seed was 14-weight spaced seed scored
with 0.1697. This seed was also the best discriminative
seed for the data set. We noticed that the estimation
results of pmoA data set followed the simulation results.
The results of nirS data set was lower than the simulation
results. We predict that it was related to the average
similarity of the data set. Therefore we conclude that

Table 1: Evaluation results for pmoA data set

Efficient Discriminability Discriminability Efficiency

Weight Cont Spaced Trans Cont Spaced Trans Cont Spaced Trans

7 0.09071 0.1027 0.1025 0.5341 0.5826 0.5848 0.06188 0.07246 0.07246
8 0.1067 0.1184 0.1167 0.6011 0.6443 0.6382 0.07627 0.08734 0.08568
9 0.122 0.1318 0.1295 0.659 0.6806 0.6728 0.09095 0.0999 0.09755
10 0.1335 0.1437 0.1439 0.6949 0.7161 0.7189 0.1023 0.112 0.1124
11 0.1447 0.1517 0.1532 0.7245 0.7317 0.7378 0.1135 0.1196 0.1214
12 0.1538 0.1611 0.1561 0.7447 0.756 0.738 0.1245 0.1295 0.1244
13 0.1638 0.1788 0.1752 0.7657 0.7997 0.7893 0.135 0.1503 0.146
14 0.174 0.1845 0.1875 0.7839 0.8129 0.8186 0.146 0.1591 0.1606
15 0.1597 0.2016 0.2016 0.7323 0.8374 0.8343 0.1496 0.1797 0.1791
16 0.1633 0.2043 0.2045 0.7356 0.8383 0.8392 0.1584 0.1887 0.1879
17 0.1679 0.2187 0.2161 0.7412 0.8697 0.8605 0.1676 0.2046 0.1998
18 0.1561 0.2259 0.229 0.6971 0.878 0.8857 0.1713 0.2144 0.2125
19 0.1562 0.2323 0.2269 0.6895 0.8697 0.8546 0.1794 0.2285 0.221
20 0.1622 0.2134 0.2148 0.6977 0.796 0.8044 0.1892 0.2349 0.2308
21 0.1575 0.2249 0.2223 0.6741 0.8119 0.8099 0.1955 0.2494 0.2444
22 0.1411 0.2085 0.208 0.6153 0.7535 0.7527 0.1976 0.2514 0.2486
23 0.1414 0.1998 0.2004 0.6087 0.7056 0.7085 0.2071 0.259 0.2616
24 0.1421 0.2209 0.2168 0.6028 0.7285 0.7119 0.2163 0.2855 0.2936
25 0.1318 0.2313 0.2216 0.5627 0.7386 0.7069 0.2188 0.3029 0.2995

Cont indicates the continuous seed type, Spaced indicates the spaced seed type, and Trans indicates the transition-constrained seed type.

Table 2: Evaluation results for nirS data set

Efficient Discriminability Discriminability Efficiency

Weight Cont Spaced Trans Cont Spaced Trans Cont Spaced Trans

7 0.0493 0.05717 0.05845 0.2952 0.3239 0.3327 0.02892 0.03411 0.03505
8 0.07998 0.08818 0.08992 0.4637 0.4877 0.499 0.05206 0.05835 0.05991
9 0.1073 0.1186 0.1191 0.6056 0.6374 0.6399 0.07727 0.08782 0.08781
10 0.1263 0.1425 0.1415 0.6991 0.7474 0.7443 0.09885 0.1155 0.1147
11 0.1406 0.1506 0.1528 0.7632 0.7766 0.7884 0.1175 0.1275 0.1315
12 0.1425 0.1558 0.1538 0.7793 0.8008 0.7941 0.1329 0.1379 0.1364
13 0.1438 0.1657 0.1657 0.7866 0.8397 0.8396 0.1449 0.1607 0.1597
14 0.1429 0.1697 0.1629 0.7833 0.8517 0.8278 0.1549 0.1712 0.1691
15 0.1401 0.1627 0.1659 0.7702 0.8193 0.8306 0.163 0.1807 0.182
16 0.138 0.1608 0.1637 0.7581 0.8132 0.8231 0.1687 0.185 0.186
17 0.138 0.1631 0.1647 0.7533 0.8148 0.8216 0.1734 0.1902 0.1913
18 0.1315 0.1622 0.1643 0.7224 0.806 0.8131 0.1754 0.193 0.1932
19 0.1299 0.1634 0.1639 0.711 0.7965 0.7985 0.178 0.1991 0.1987
20 0.1293 0.1513 0.1513 0.7037 0.7414 0.7419 0.1808 0.2003 0.2006
21 0.129 0.1536 0.1578 0.6972 0.7428 0.7569 0.1833 0.2041 0.2048
22 0.1284 0.1487 0.1491 0.6894 0.7169 0.719 0.185 0.2054 0.2057
23 0.1295 0.1504 0.151 0.6883 0.7014 0.7033 0.1873 0.2133 0.2136
24 0.1274 0.1538 0.1591 0.6747 0.6959 0.7036 0.1883 0.2193 0.2253
25 0.128 0.1496 0.1533 0.6714 0.6716 0.6727 0.1902 0.2224 0.2268

Cont indicates the continuous seed type, Spaced indicates the spaced seed type, and Trans indicates the transition-constrained seed type.
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longer spaced seed is good to the data set showing higher
similarity and shorter spaced seed is good to the
diversely distributed data set.

SeedChooser: seed evaluation and recommendation tools
The results of the above empirical test yield clues to the
guideline of selecting an appropriate seed on considering
discriminability as well as efficiency. Based on the
results, the users may predict which seeding algorithm
is prefer to their tasks. However, they really want to
know the most appropriate seed length and weight as
well as the adequate seeding algorithm in detail. To
maximize the effect of the seed recommendation in
practice, we constructed the software package including
the evaluation process and design process.

We built a user-friendly package of the tools to provide
both seed evaluation and seed recommendation. It
consists of three programs; SeedChooser, SeedEvaluator,
and OligoGenerator. SeedChooser is the main program
which recommends a good seed by three parameters a, b
and g SeedEvaluator is the program which evaluates a set
of the input seeds by the parameters. OligoGenerator is
the program to generate a set of oligos for the desired
experimental conditions.

Discussion
Multiple seed selection method is not good at aligo design
The seeding algorithms wihch allow some mismatches in
the seeds, the BLAT seeding algorithm and the Vector
seeding algorithm, is originally proposed to increase
sensitivity intentionally by generating multiple seed
variations from a seed. These algorithms have been
successfully applied to the specific-purpose alignments
which are required very high sensitivity. Protein
sequence alignment is a good example of the algorithms.
However, this is not efficient in the oligo design. In the
experiments of the discriminability, recalls are always 1
with the all possible weights, but the precisions are as
low as 0.18. It implies that BLAT seed and Vector seed
find all oligos since they are too sensitive, but too many
seeds are found in non-oligo regions. Thus, they show
lower discriminability than other seeding algorithms.
The multiple selection of seeds results in also low
efficiency. This is because too many seeds are found to
get a single oligo. Therefore, they are neither discrimi-
native nor efficient in the oligo design.

The effect of the weight parameters
Generally, precision is in proportion to the seed weight
and recall in reverse proportion to the seed weight. Since
the discriminability is the harmonic mean of precision
and recall, the highest discriminative seed is found at the
cross-point of the precision curve and the recall curve

with given one to all weight parameters. (see Figure S1 in
the Additional File 2) The parameter a which is the
weight parameter controlling the balance of precision
and recall forces the user’s intention. As increasing the
parameter a, discriminability gets more dependent to the
precision. (see Figure S2 in the Additional File 2) While
discriminability gets more dependent to the recall as
decreasing a. A user should choose the lower weighted
seeds or the sensitive seeds in order to do the lossless
filtration. The best discriminability of a = 2-8 is
0.998985, and that of a = 28 is 0.999119, whereas that
of a = 1 is 0.959362. We also noticed that the
discriminability changes in proportion to the seed
weight even if precision and recall are fixed. Therefore,
the value of discriminability should be compared with
between the seeds which have the same weight. The
weights of b and g for efficiency should be also
considered in the same way. Figure S3 in the Additional
File 2 is the graphical view of the effect of b and g with
given the rates fore efficiency D = 0.28 and A = 0.35.

An efficient discriminative seed improves the
oligo design performance
The oligo design process using a seeding algorithm consists
of two steps. The first step is a fast filtration of the unreliable
regions for all possible oligos using a seeding algorithm.
Since a seeding algorithm uses a hashing data structure, the
filtration by the seeding can be executed fast in the linear
time. The second step is an accurate filtration step by
simulating hybridization. The time complexity of this step is
generally quadratic. For example, the 11-weight BLAST seed
saves 10% of the seed hashes compared with the 7-weight
blast seedwith the cost of 1.8%missing of the true positives.
It reduces the computational time of the second step up to
81%. The first step also saves the computational time by the
amount of 10%. Therefore, the selection of the efficient
discriminative seeds reduces the cost of the oligo design by
speeding up the computational time with the little loss of
accuracy.

Seed evaluation for next-generation sequencing
Recently, introduction of the new strategies for high-
throughput DNA sequencing dramatically reduced the
cost of genome sequencing. However, the great sequen-
cing performance of these new technologies is come at
the expense of the considerable shorten of read lengths.
For example, a typical run of the Illumina Genome
Analyzer yields about 50 million reads. But the read size
is only 32~40 [18]. One of the promising applications is
the re-sequencing projects among the applications of the
Next-Generation Sequencing. The object of the re-
sequencing project is to reconstruct a sample genome
and find genomic variations by mapping the reads to a
reference genome. The mapping process raises two new
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computationally challenging problems. One is that the
vast amount of the data requires much faster mapping
speed. The other is the mapping of the error-containing
reads to the correct positions of the reference genome.
Most previous works for mapping process have been
used the indexing strategy in order to solve the problems
[19]. The representative indexing strategy is to construct
indices based on exact matches of length k (k-mer). The
reads sharing a k-mer are only compared with each other.

The notable point of k-mer indexing strategy is that it is
exactly the same process of the first step of the oligo
design. The k-mer is directly regarded as a continuous
seed because both are the templates of the exact matches.
Our evaluation measure of the seeds can be used for
improving the performance of the mapping assembly
due to the following reasons. First, efficiency calculates
the expected cost of constructing the k-mer indices.
Second, discriminability calculates the compromisable
point of sensitivity and specificity. Finally, it is allowed
to incorporate the five well-known seeding algorithms
while selecting a best seed for the mapping assembly.
Discontinuous seeds including spaced seed will improve
the mapping sensitivity without loss of the specificity in
mapping assembly. Recently, Lin et al. [20] pointed out
those problems and proposed a mapping assembly tool
as a solution by introducing the spaced seed. Lin et al.
described a disadvantage of the exact matching process
and proved that the spaced seeding can achieve full
mapping sensitivity. We ensure that our proposed
measures and the developed software will be contributed
to the Next-Generation Sequencing field.

Conclusion
In this paper, we proposed a novel measure of evaluating
the seeding algorithms based on the discriminability and
the efficiency. By the measure proposed, we examined
five well-known seeding algorithms: continuous, spaced,
transition-constrained, BLAT, and Vector. From the
results, we concluded the comparison of the seeds as
below. The spaced seeding algorithm was generally
preferred to the other seeding algorithms. The perfor-
mance of transition-constrained seeding algorithm was
slightly lower than the spaced seeding algorithm. The
BLAT seeding algorithm and Vector seeding algorithm
were not adequate to design oligos because the poor
scores in specificity and efficiency. Consequently, we
recommend spaced seeds or transition-constrained seeds
with 15~18 weight in order to design oligos with the
length of 50 mer. The recommended seeds showed
consequently good performance in real biological data.

We tested the effect of three weight parameters for
discriminability and the efficiency. The highest

discriminative seed was found at the cross-point of the
precision curve and the recall curve with given one to all
weight parameters. Performance of the seeds was
estimated with the two biological data, pmoA and nirS.
The estimation of the real data showed that the longer
spaced seed was good to the data having higher
similarities in their alignments and shorter spaced seed
was good to the diversely distributed data. We also
proposed a user-friendly package of the tools to provide
both seed evaluation and seed recommendation, which
enables the users to get the adequate seeds under their
own experimental conditions.

We conclude this paper after pointing two promising
usages. One is that our study can be applied to the oligo
design programs in order to improve the performance by
suggesting the experiment-specific seeds because this
work is originally designed to elevate the performance of
the existing programs. The other is that the measures
proposed by here can be extended to the general purpose
to evaluate and recommend the seed-like instances.
Therefore it can be applied to any kind of studies such as
the mapping process in the Next-Generation Sequencing
as well as the oligo design and the sequence alignment
problems.

Methods
An overview of our experiments is given as follows.

1. A set of sequences is prepared. The sequences
which are randomly generated are used for this work.
2. A set of all possible oligos and their counterparts
are created from the prepared sequences. The oligo
design criteria and selection process are described
below.
3. Three parameters of a, b and g ofGa, b, g are assigned
according to the conditions of the oligo design.
4. A seed to be examined is selected. This work
examines five seeding algorithms by changing seed
weights.
5. All possible seed hashes generated from the
prepared sequences are stored in a hash data
structure. The hash key is a string filtered by the
given seed, and the hash values are the sequence
indexes and positions where each hash is found. The
number of generated hashes is stored to calculate the
duplication rate.
6. The discriminability and the efficiency are com-
puted from the results of step 2 and 4. Here, this step
produces the value of the efficient discriminability
Ga, b, g for the seed selected at step 3.
7. Repeat from step 4 to step 6 with a query seed
changed. The results are sorted and the best efficient
discriminative seed is informed.
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Sequences for assessment
Simulated data set
We prepare a set of randomly generated sequences. The
set consists of 100 artificial sequences with size of 50 bp
generated by Bernoulli alignment model. Each sequence
is mutated with 5,000 variations by imposing mismatch.

Biological data set
Two biological data sets pmoA and nirS are obtained
from the example sequences of HPD [17]. They are
ecologically important genes involved in the nitrogen
and carbon cycles: nitrite reductase (nirS) and methane
monooxygenase (pmoA). A sample set that contains 47
nirS sequences having 64% of average identity was
selected from 421 nirS sequences. Another sample set
that contains 50 pmoA sequences having 85% of average
identity was picked from 490 pmoA sequences.

Oligo selection
A set of all possible oligos is created based on the oligo
size from the sequences. The next step is to find all
counterparts for each oligo. Since finding counterparts
from all sequences is time-consuming, the possible
counterparts are obtained by FASTA [21] which is a
slow but very sensitive local alignment tool. The oligo
and its counterpart are aligned using CLUSTALW [22].
The identity and continuous match are calculated from
the alignment. Finally, the free energy is obtained using
OligoArrayAux [23]. According to the guideline for oligo
design described below, all target positions are classified
as a hybridizable one or not. This step produces a set of
all possible oligos and their hybridizable counterparts.

Oligo design criteria
The oligo design criteria are related to a bio-chemical
process, hybridization. The first study of the hybridiza-
tion criteria [24] suggested two measures for 50 bp oligo:
sequence identity and continuous match length. Recent
study [25] added a free energy threshold: over 85%
identity, over 15 bp continuous matches, and lower -30
kcal/mol in free energy. In our study, the free energy
threshold is set to be -40 kcal/mol by using OligoAr-
rayAux, the program based on Zuker’s free energy model
[26] instead of He’s model.

According to our simulation, the free energy threshold
provided by He’s model is inferior to -40 kcal/mol
threshold with Zuker’s model. The oligo and target
position hybridize each other when at least one of three
criteria is over its threshold.

Seeds for assessment
Five seeding algorithms which have been proposed for
local alignment are examined.

Continuous seed
it uses a hashing approach to find all matching k-tuples.
A 11-bp-length seed (“11111111111”) is used at BLAST,
and a 28-bp-length seed is used at MegaBlast [27].

Spaced seed
PatternHunter [4] uses k non-consecutive letters as a
seed. Due to the relative positions of the k letters, it is
called a spaced seed model (or simply, a spaced seed).
A 18-bp-length seed containing 11-bp matches
(“101101100111001011”) is used at PatternHunter.

Transition-constrained seed
A transition-constrained seed [14] consists of the ternary
alphabet 1, @, 0, where @ stands for a match or a
transition mismatch (A ↔ G, C ↔ T). This seed is a
variation of the spaced seed including transition related
states (“1110@10010@1010111”).

Blat seed
BLAT is a continuous seed allowing one or two
mismatches at any positions of the seed.

Vector seed
A Vector seed is a generalized seed by combining the idea
of BLAT seed and spaced seed. Since each position of the
seed has a position-specific weight, the seed looks like a
sequence of numbers. Thus, it is called as a ‘Vector’ seed
(For instance, “12022012000012”).

Availability and requirements
Project name: SeedChooser

Project home page: http://ml.knu.ac.kr/~whchung/seed-
chooser.html

Operating system(s): Windows XP and above, Linux

Programming languages: Python

Other requirements: Python version 2.3 or above,
CLUSTALW (available at http://www.ebi.ac.uk/Tools/
clustalw/index.html) and UNAFOLD (available at
http://dinamelt.bioinfo.rpi.edu/download.php) for Oli-
goGenerator.

License: The SeedChooser software is provided “as is”
with no guarantee or warranty of any kind. SeedChooser
is freely redistributable in binary format for all non-
commercial use. Source code is available to non-
commercial users by request of the primary author.
Any other use of the software requires special permission
from the primary author.

Any restrictions to use by non-academics: None.

BMC Genomics 2009, 10(Suppl 3):S3 http://www.biomedcentral.com/1471-2164/10/S3/S3

Page 9 of 10
(page number not for citation purposes)

http://ml.knu.ac.kr/~whchung/seedchooser.html
http://ml.knu.ac.kr/~whchung/seedchooser.html
http://www.ebi.ac.uk/Tools/clustalw/index.html
http://www.ebi.ac.uk/Tools/clustalw/index.html
http://dinamelt.bioinfo.rpi.edu/download.php


Competing interests
The authors declare that they have no competing
interests.

Authors’ contributions
Chung conceived the new idea and carried out model
building and empirical analysis. Park initiated, super-
vised and coordinated the project. All authors wrote the
manuscript and approved the final version.

Note
Other papers from the meeting have been published as
part of BMC Bioinformatics Volume 10 Supplement 15,
2009: Eighth International Conference on Bioinfor-
matics (InCoB2009): Bioinformatics, available online
at http://www.biomedcentral.com/1471-2105/10?
issue=S15.

Additional material

Additional file 1
List of the seeds used in the experiment: continuous seeds, spaced seeds,
and transition-constrained seeds (19 instances, respectively) BLAT seeds
and Vector seeds (14 instances, respectively).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-S3-S3-S1.pdf]

Additional file 2
Figures for the effect of the weight parameters: Figure S1 - Relation of
precision, recall and discriminability, Figure S2 - Discriminability
according to values of a, and Figure S3 - Efficiency according to values
of b and g.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-S3-S3-S2.pdf]

Acknowledgements
This work was supported in part by KEIT through the IT R&D program
(KEIT-2009-A1100-0901-1639, MARS); by the second stage of the Brain
Korea 21 Project in 2009 and in part by MIC and IITA through IT Leading
R&D Support Project (A1100-0601-0102).

This article has been published as part of BMC Genomics Volume 10
Supplement 3, 2009: Eighth International Conference on Bioinformatics
(InCoB2009): Computational Biology. The full contents of the supplement
are available online at http://www.biomedcentral.com/1471-2164/10?
issue=S3.

References
1. Smith TF and Waterman MS: The identification of common

molecular subsequences. J Mol Biol 1981, 147(14):195–197.
2. Gusfield D: Algorithms on Strings, Trees, and Sequences: Computer

Science and Computational Biology. New York, USA: Cambridge
University Press; 1997.

3. Altschul SF, Gish W, Miller W, Meyers E and Lipman D: Basic local
alignment search tool. J Mol Biol 1990, 215(21):403–410.

4. Ma B, Tromp J and Li M: PatternHunter: faster and more
sensitive homology search. Bioinformatics 2002, 18(3):440–445.

5. Nielsen HB, Wernersson R and Kundsen S: Design of oligonu-
cleotides for microarrays and perspectives for design of
multi-transcriptome arrays. Nucleic Acids Res 2003,
31(13):3491–3496.

6. Rouillard JM, Zuker M and Gulari E: OligoArray 2.0: design of
oligonucleotide probes for DNA microarrays using a
thermodynamic approach. Nuc le i c Ac ids Res 2003,
31(3):3057–3062.

7. Zheng J, Svensson JT, Madishetty K, Close TJ, Jiang T and Lonardi S:
OligoSpawn: a software tool for the design of overgo probes
from large unigene datasets. BMC Bioinformatics 2006, 7:7.

8. Buhler J, Keich U and Sun Y: Designing seeds for similarity
search in genomic DNA. Proc 7th Annu Conf Res Comp Mol Biol.
ACM New York, NY, USA; 2003, 67–75.

9. Choi KP and Zhang L: Sensitivity analysis and efficient method
for identifying optimal spaced seeds. J Comput Syst Sci 2004,
68:22–40.

10. Keich U, Li M, Ma B and Tromp J: On spaced seeds for similarity
search. Discrete Applied Mathematics 2004, 138(3):253–263.

11. Li M, Ma B and Zhang L: Superiority and complexity of the
spaced seeds. Proc 7th Annu ACM-SIAM symposium on Discrete
algorithm ACM New York, NY, USA; 2006, 444–453.

12. Ma B and Li M: On the complexity of the spaced seeds. J Comput
Syst Sci 2007, 73(7):1024–1034.

13. Brejova B, Brown D and Vinar T: Vector seeds: an extension to
spaced seeds allows substantial improvements in sensitivity
and specificity. Proceedings of the 3rd International Workshop in
Algorithms in Bioinformatics 2003, 39–54.

14. Noé L and Kucherov G: YASS: enhancing the sensitivity of
DNA similarity search. Nucleic Acids Res 2005, 33(2):
W540–W543.

15. Feng S and Tillier ER: A fast and flexible approach to
oligonucleotide probe design for genomes and gene
families. Bioinformatics 2007, 23(10):1195–1202.

16. Kent WJ: BLAT - the BLAST-like alignment tool. Genome Res
2002, 12:656–664.

17. Chung WH, Rhee SK, Wan XF, Bae JW, Quan ZX and Park YH:
Design of long oligonucleotide probes for functional gene
detection in a microbial community. Bioinformatics 2005,
21(22):4092–4100.

18. Mardis ER: The impact of next-generation sequencing
technology on genetics. Trends in Genetics 2008, 24(3):133–141.

19. Pop M: Genome assembly reborn: recent computational
challenges. Briefings in Bioinformatics 2009, 10(4):354.

20. Lin H, Zhang Z, Zhang MQ, Ma B and Li M: ZOOM! Zillions of
oligos mapped. Bioinformatics 2008, 24(21):2431.

21. Pearson W: Searching protein sequence libraries: Compar-
ison of the sensitivity and selectivity of the Smith-Water-
man and FASTA algorithms. Genomics 1991, 11:635–650.

22. Thompson JD, Higgins DG and Gibson TJ: CLUSTALW:
improving the sensitivity of progressive multiple sequence
alignment through sequence weighting, position-specific gap
penalties and weight matrix choice. Nucleic Acids Res 1994,
22(2):4673–4680.

23. Markham NR and Zuker M: DINAMelt web server for nucleic
acid melting prediction. Nucleic Acids Res 2005, 33(3):
W577–W581.

24. Kane M, Jakoe T, Stumpf C, Lu J, Thomas J and Madore S:
Assessment of the sensitivity and specificity of oligonucleo-
tide (50 mer) microarrays. Nucleic Acids Res 2000, 28(2):
4552–4557.

25. He Z, Wu L, Li X, Fields M and Zhou J: Empirical establishment
of oligonucleotide probe design criteria. Appl Environ Microbiol
2005, 71(7):3753–3760.

26. Mathews DH, Sabina J, Zuker M and Turner DH: Expanded
sequence dependence of thermodynamic parameters
improves prediction of RNA secondary structure. J Mol Biol
1999, 288(28):911–940.

27. Zhang Z, Schwartz S, Wagner L and Miller W: A greedy algorithm
for aligning DNA sequences. J Comput Biol 2000, 7:203–214.

BMC Genomics 2009, 10(Suppl 3):S3 http://www.biomedcentral.com/1471-2164/10/S3/S3

Page 10 of 10
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/10?issue=S15
http://www.biomedcentral.com/1471-2105/10?issue=S15
http://www.biomedcentral.com/1471-2164/10?issue=S3
http://www.biomedcentral.com/1471-2164/10?issue=S3
http://www.ncbi.nlm.nih.gov/pubmed/7265238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7265238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11934743?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11934743?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12824351?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12824351?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12824351?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12799432?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12799432?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12799432?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16401345?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16401345?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15980530?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15980530?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17392329?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17392329?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17392329?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11932250?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16159916?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16159916?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18262675?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18262675?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19482960?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19482960?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18684737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18684737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1774068?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1774068?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1774068?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7984417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7984417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7984417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7984417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15980540?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15980540?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11071945?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11071945?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16000786?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16000786?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10329189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10329189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10329189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10890397?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10890397?dopt=Abstract

	Abstract
	Background
	Results
	Conclusion

	Background
	Problem definition
	Discriminability
	Efficiency
	Efficient discriminability

	Results
	Discriminability of the five seeding algorithms
	Efficiency of the five seeding algorithms
	Efficient discriminability of the five seeding algorithms
	Seed estimation with the biological data sets
	SeedChooser: seed evaluation and recommendation tools

	Discussion
	Multiple seed selection method is not good at aligo design
	The effect of the weight parameters
	An efficient discriminative seed improves the oligo design performance
	Seed evaluation for next-generation sequencing

	Conclusion
	Methods
	Sequences for assessment
	Simulated data set
	Biological data set

	Oligo selection
	Oligo design criteria
	Seeds for assessment
	Continuous seed
	Spaced seed
	Transition-constrained seed
	Blat seed
	Vector seed


	Availability and requirements
	Competing interests
	Authors’ contributions
	Note
	Additional material
	Acknowledgements
	References

