
BMC Genomics

Research
Modeling neutral evolution of Alu elements using
a branching process
Marek Kimmel*1,2 and Matthias Mathaes1

Addresses: 1Department of Statistics, Rice University, Houston, TX 77005, USA and 2Systems Engineering Group, Silesian University of
Technology, 44-100 Gliwice, Poland

E-mail: Marek Kimmel* - kimmel@rice.edu; Matthias Mathaes - matze@rice.edu
*Corresponding author

from International Workshop on Computational Systems Biology Approaches to Analysis of Genome Complexity and Regulatory Gene Networks
Singapore 20-25 November 2008

Published: 10 February 2010

BMC Genomics 2010, 11(Suppl 1):S11 doi: 10.1186/1471-2164-11-S1-S11

This article is available from: http://www.biomedcentral.com/1471-2164/11/S1/S11

Publication of this supplement was made possible with help from the Bioinformatics Agency for Science, Technology and Research of Singapore and the
Institute for Mathematical Sciences at the National University of Singapore.
© 2010 Kimmel and Mathaes; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Alu elements occupy about eleven percent of the human genome and are still
growing in copy numbers. Since Alu elements substantially impact the shape of our genome, there
is a need for modeling the amplification, mutation and selection forces of these elements.

Methods: Our proposed theoretical neutral model follows a discrete-time branching process
described by Griffiths and Pakes. From this model, we derive a limit frequency spectrum of the Alu
element distribution, which serves as the theoretical, neutral frequency to which real Alu insertion
data can be compared through statistical goodness of fit tests. Departures from the neutral
frequency spectrum may indicate selection.

Results: A comparison of the Alu sequence data, obtained by courtesy of Dr. Jerzy Jurka, with
our model shows that the distributions of Alu sequences in the AluY family systematically deviate
from the expected distribution derived from the branching process.

Conclusions: This observation suggests that Alu sequences do not evolve neutrally and might be
under selection.

Introduction and background
Human genome is a result of 109 years of evolution. It is
very complex and in some respects it is still evolving.
This contribution concerns evolution of the so-called
Alu elements, which are movable sequences of DNA,
very abundant in the human genome. We present a
mathematical random process, the Griffiths-Pakes

discrete-time branching process with infinite-allele
mutations, which is almost ideally suited for modeling
of Alu elements proliferation. For the biologically
important special case of the linear-fractional offspring
distribution we derive semi-explicit expressions for the
expected frequency spectra of classes of alleles existing in
a given number of copies (an analogue of the Ewens
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sampling formula). We compare the outcome with Alu-
element statistics data.

Alu repeat sequences
Background on Alus
Alu elements belong to the group of transposable or
mobile elements, which occupy nearly 45% of the
human genome [1]. Within this group of transposable
and also highly repetitive elements, LINEs (Long INter-
spersed Elements) and SINEs (Short INterspersed Ele-
ments) form the two largest groups. They occupy 21%
and 13% of the human genome respectively [2]. Whereas
the LINEs are dominated by L1 elements, the largest and
hence most studied group of the SINEs is comprised of
the Alu elements. While many transposable elements are
present in all eukaryotic genomes, Alu elements appear
only in mammals. A typical full-length Alu sequence is
approximately 300 bp long. Alu sequences amplify by
retrotransposition, also known as “the copy and paste”
mechanism. At present it is estimated that more than one
million copies of Alu elements occupy about eleven
percent of the human genome, and the number of
elements seems to be growing [1].

Alu elements are non-autonomous and seem to have to
use the L1 elements’ tools for retrotransposition. It has
been hypothesized that L1 endonuclease causes a nick at
the TTAAAA consensus site, after which Alu anneals
directly to the site of integration [3]; then a second nick
on the other strand completes the insertion. These two
staggered nicks introduce an identifiable characteristic of
Alu elements. The newly inserted Alu element is
surrounded by an identical set of direct repeats, which
are also called target site duplications (TSDs). These
direct repeats range from 10 to 15 bp and are considered
the prevalent feature of retrotranspositional insertion
[4]. This process of integration, also known as target-
primed reverse transcription (TPRT) [5,6], is responsible
for the successful amplification of Alu elements. At
present it is estimated that more than one million copies
of Alu elements occupy about eleven percent of the
human genome, and the number of elements seems to
be growing [1].

Based on diagnostic mutations, Alu elements are divided
into subfamilies. The three major families of Alu
sequences are J, S and Y. The letters are chosen in
alphabetical order to convey the different ages of each
family. Alu sequences in the J family are the oldest, while
Alu sequences in the Y family are the youngest. The most
interesting family in the current research of Alu elements
is the Y family, which contains the youngest and most
active Alu elements [7]. Due to their recent integration,
25 percent of their loci are still polymorphic [1]. An Alu

locus is defined to be polymorphic if some individuals
have an Alu element at that particular location while
others do not. These polymorphic loci can be used as
genetic markers for disease association studies.

Unlike Single-Nucleotide Polymorphisms (SNPs) Alu
markers are small in numbers, but they are identical by
descent and essentially homoplasy-free markers and
their ancestral state, which is defined by their absence
from a specific locus, is always known. Polymorphic Alu
loci have been used in genetic diversity studies, forensic
studies and disease association studies [8,9]. Alu inser-
tions have influenced the architecture of human genome
by duplication, deletion, inversion, transduction and
translocation [10]. Alu elements frequently appear in
introns, 3’ untranslated regions of genes, and intergenic
genomic regions [11]. Alu insertions act as insertional
mutagens and are responsible for 0.5 percent of human
genetic disorders [12]. Almost all these diseases are
caused by Alu elements from the youngest subfamilies
[6]. For a comprehensive list of AluY disease loci and
their associated diseases, one can also consult [6]. Their
summary of Alu insertion induced diseases includes
neurofibromatosis, hemophilia A and B, Huntington
disease and Apert syndrome. Deiniger and Batzer [12]
attribute diseases such as insulin-resistant diabetes type
II, Lesch-Nyhan syndrome, Tay-Sachs disease, familial
hypercholesterolaemia and -thalassaemia to Alu-
mediated recombination. Additionally, several types of
cancer, including Ewing sarcoma, breast cancer and
leukemia are shown to be caused by Alu elements [1,12].

Alu sequence data used in this study
Dr. Jerzy Jurka of the Genetic Information Research
Institute (GIRI) kindly provided Alu sequence data for
our analysis. All Alu subfamilies were extracted from the
March 2006 assembly of the USCS Human Genome
database. Only recognizable full-length Alu sequences
were retained for analysis. Overall, Alu sequences for
nine different Alu subfamilies were extracted from the
USCS reference genome: AluYa1, AluYa4, AluYa5,
AluYa8, AluYb8, AluYc1, AluYd2, AluYe2, and AluYe5.

The goal was to extract Alu sequences that belonged to
relatively large subfamilies (more than 1000 sequences),
such as AluYa1, AluYa4, AluYb8, AluYc1, and AluYe2.
For each subfamily, a consensus or reference Alu
sequence was used to screen the entire human genome
for matching sequences. A match occurred when
stretches of nucleotides that include the main diagnostic
mutations agreed with the Alu subfamily consensus
sequences. Since the insertion mechanism of an Alu
element introduces large differences in their poly-A tails,
these need to be deleted from analysis. Dr. Jurka
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provided the Alu sequence data with poly-A tails already
deleted.

Alu sequences contain the middle A-stretch, another
highly variable region similar to the poly-A tail, which
lies between the two monomers that constitute an Alu
sequence, and can be considered the A-tail of the first
monomer. To accurately delete the middle-A stretch, it is
necessary to align the Alu sequences for each subfamily.
A consensus sequence for each subfamily was obtained
from Repbase [13], a database of repetitive elements,
which is maintained by GIRI. In each subfamily, pairwise
alignment of each Alu sequence in the subfamily with
the Repbase consensus sequences, was performed using
ClustalW [14]. MEGA4 software [15] was used to display
the alignments including the middle-A stretch. After
deleting the middle-A stretch, the average length of an
Alu sequence is about 260 base pairs.

Following preparatory steps described above, we
obtained the counts of Alu sequences that had n
identical copies in the sample, for n = 1, 2, 3,.... To
obtain these counts for each Alu subfamily, a program
was written in R-language. These counts or correspond-
ing percentages represent final data, which were tested
against the theoretical distribution based on the branch-
ing process model.

Results and discussion
Maximum-likelihood fits
To fit the branching process model to the Alu sequence
data, we use the maximum likelihood method. The
highest value of the likelihood determines the estimates
for our parameters. Since the log-likelihood of the sample
does not exist in a closed form, we evaluate it numerically.
For these runs we set the value of the probability of
mutation at μ = 10-6. Sensitivity of the outcome to
variation in parameter μ is very slight as long as this
parameter is small (such as 10-5 - 10-9 per division).

Figures 1, 2, 3, 4 depict the maximum-likelihood fits of the
model to the data from AluYa1, AluYa5, AluYb8 and
AluYc1 subfamilies, respectively. They are presented in the
semi-logarithmic scale, to amplify the tail probabilities.
The graphical comparison demonstrates that the data fit
relatively well for allele classes 1 and 3 - 7. Notably, the
allele class 2 shows the worst fit among the first seven allele
classes. These seven classes account for at least 0.99
cumulative class frequency observed in the data.

Simulation-based test
Testing for significance of the differences between the
theoretical and observed frequencies of allele classes is in
our case made difficult by the dominance of class 1

Figure 1
AluYa1 data-based class frequencies against the
theoretical {Ψk} in log scale. Fitted by Griffiths-Pakes
process with linear-fractional distribution, with b = 0.016,
p = 0.983.

Figure 2
AluYa5 data-based class frequencies against the
theoretical {Ψk} in log scale. Fitted by Griffiths-Pakes
process with linear-fractional distribution, with b = 0.139,
p = 0.861.
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frequency. This causes that, with finite sample sizes,
counts of alleles in the further classes are quite low (see
Table 1). Therefore the usual restrictions for minimum
number of observations and minimum number of
classes in the c2 test (as well as in other usual tests for
distribution comparisons) are met only in two data sets.
For this reason, we resort to a simulation-based
approach.

In this approach we use the c2 statistic as our test
statistic. We start with randomly drawing a sample of
size n from the uniform distribution U(0, 1), where n is
equal to the number of Alu sequences in each subfamily.
Based on the distribution {Ψj} produced by our fitted
model we obtain the probabilities of Alu sequences with
j = 1, 2, 3,... copies. These probabilities determine the bin
a random draw from the uniform distribution will be
placed in. Repeating this n times results in a distribution
of counts per bin. From this simulated distribution of
counts we compute the c2 statistic by using the expected
counts under our fitted model and the counts from the
simulated (observed) approach. For each Alu subfamily,
this process was repeated 100, 000 times. The c2 values
were sorted and then plotted to display their distribu-
tion. When comparing the c2statistic from the actual
data to the simulated c2 statistics for each subfamily
(Table 2), it becomes apparent that the data produce a

Figure 3
AluYb8 data-based class frequencies against the
theoretical {Ψk} in log scale. Fitted by Griffiths-Pakes
process with linear-fractional distribution, with b = 0.143,
p = 0.856.

Figure 4
AluYc1 data-based class frequencies against the
theoretical {Ψk} in log scale. Fitted by Griffiths-Pakes
process with linear-fractional distribution, with b = 0.035,
p = 0.965.

Table 1: Frequencies of alleles (mutant types) with j copies (class j alleles). Classes with j > 20 have been omitted.

Number of copies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 18

Ya1 3761 25 2 4 1 1
Ya4 426 6 2 2 1 1
Ya5 1722 75 15 16 11 10 5 4 2 5 1 1 2 1 2
Ya8 28 3 1
Yb8 1489 71 11 15 8 9 4 4 1 1 1 1 1
Yc1 3162 42 9 4 1 1 1 1
Yd2 401 1
Ye2 1130 3 1
Ye5 853 10 7 2 1
All 12970 237 47 43 23 21 10 8 5 5 2 1 3 3 1 2

Table 2: Sample-based vs. simulation-based c2 statistic for the
Alu subfamilies considered

Alu Sample-based
c2 statistic

Maximum of the simulation-based
c2 statistics

Ya1 1118.072 22.72153
Ya4 99.01778 19.06578
Ya5 338.4337 12.60890
Ya8 15.82118 23.83412
Yb8 274.0389 14.98851
Yc1 908.3557 15.46991
Yd2 224.6298 225.5328
Ye2 421.1556 89.49312
Ye5 169.5426 20.00121

For each subfamily 100, 000 simulations were performed.
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very high c2 value, which is highly unlikely under the
proposed model. The two Alu subfamilies that have c2

values less than the maximum simulated c2 values are
AluYa8 and AluYd2. A closer look, however, reveals that
both of the c2 values for the AluYa8 and AluYd2
subfamilies are among the ten highest values in the
sample of 100, 000 simulated c2 values (crude p-value of
10-4). The large c2 statistic for our data is mostly due to
the difference between the observed and the expected
counts in bin number 2 (Alu sequences with 2 copies)
and in the combined bins of the tail. We notice it as a
systematic departure.

Conclusion
The current study seems to constitute the first applica-
tion of the Griffiths-Pakes process to biological data. The
outcome is interesting in the sense that a generally
plausible fit is obtained to the Alu element frequency
distribution. It is not quite clear, why the fit fails worst at
the frequency class 2. This may be influenced by initial
steps of data preparation. If a region containing a a
relatively frequent variant were removed so that
sequences could be aligned, some unique variants
might migrate to class 2. Another possibility is that the
difference is caused by a departure from neutrality in Alu
evolution.

We should notice that the current model does not
involve genetic drift. In reality, the genomes evolve
within individuals and properly, the branching process
should have been embedded in a population genetic
model of Wright-Fisher or Moran type. However, this
would lead to enormous complications. As an additional
exercise, we attempted to fit the Alu class frequencies by
the classical Ewens sampling formula, using a test
developed by Slatkin [16], but the fit is rather bad.

Methods
Discrete branching process of Griffiths and Pakes with
infinite allele mutations
Branching processes have been widely used in modeling
cell population dynamics. An insertion of an Alu
sequence into a new genomic location can be considered
a proliferation process not dissimilar from cell division.
Therefore proliferation and mutation of Alu sequences
can be described in a mathematical way using a
branching process. The branching process has to account
for the fact that Alu sequences are still growing in
numbers in the human genome. Therefore we focus on
the supercritical branching processes, in which the
expected number of offspring is greater than one (m >
1). One interesting model prediction, which can be
compared to data is how many different Alu sequences

occur in each Alu subfamily or more specifically how
many Alu alleles with frequency j exist in each subfamily.
Based on a discrete-time branching process with infinite
allele mutations, Griffiths and Pakes [17] derived a limit
result for the expected proportion of alleles having
frequencies in j.

Griffiths and Pakes [17] process is a modification of the
standard Bienayme-Galton-Watson branching process to
allow individuals infinitely many possible identifiable
types. In our application, the types are alleles (variants)
of the Alu sequence identified by specific point muta-
tions. From time t = 0, a non-mutant clone of particles is
evolving in time according to a single-type branching
process (Figure 5). With probability μ per time step, a
particle mutates and initates a clone of new previously
nonexistent type, which evolves according to the same
rules as the original non-mutant clone. As a result, a set
of clones of different types emerges, spawning further
clones, some of which may die out. We are interested in
deriving, using Griffiths-Pakes [17] theory, expected
frequencies of allele classes such that allele is in class k
if it exists in k copies, for a specific biologically justifiable
version of the process.

The number of individuals at t = 0 is defined as Z0 = i. LetGn

be the collection of individuals in generation n and let Zn

denote their number. Each generation size depends on the
previous generation size through the branching property

Zn j n

j

Zn

+
=

=∑1

1

ξ , ,

where ξj,n are independent identically distributed (iid)
integer-valued random variables, which represent the
number of offspring born to the jth member of Gn. The
distribution of ξj,n is characterized by its probability
generating function (pgf)

f s p sk
k

k

( ) ,=
=

∞

∑
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where pk = P[ξj,n = k], and it is assumed that p0 + p1 <1, i.
e., the branching process is nontrivial. We have m = f'(1).

If an individual produces j offspring then the number of
progeny having the parental allele is distributed bino-
mially with parameters j and 1 - μ, hence its pgf is equal
to (μ + (1 - μ)s)j. This implies that any new allele is
followed by a branching process of its like-type
descendants with offspring pgf H(s) = f(μ + (1 - μ)s).
This process is supercritical if its expected progeny count
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M = m(1 - μ) is greater than 1. Within this framework let

us define the symbol q j d H s dsj
r j r j
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,

where H(r)(s) is the rth iterate of pgf H(s), to be equal
to the probability that there are j individuals at time r in
a nonmutant clone started at time 0 by a single individual.
Let us denote Ψj the long-term expected proportion of
alleles with frequency j ≥ 1, which is the formula that we
will use to compute the theoretical distribution of Alu
allele classes for given offspring pgfs. Asymptotically, these
proportions assume the form (based on Griffiths and
Pakes [17], detailed derivation in [18]

Ψ j
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Linear fractional offspring distribution
The process of creation of new Alu repeats by retro-
transposition can be naturally described by the age
dependent Markov branching process {Zt} (i.e., process
with exponentially distributed individuals’ lifelengths)
with binary fission, which leads to a quadratic pgf of
progeny number per individual. The rationale is that any
existing Alu ("individual") from an active family

produces two progeny (i.e., itself and a replica) at a
random time time moment, where “random” means that
the intervals between successive fission events are
independent, identically distributed random variables.
Moreover, the copy may fail to reinsert into the genome.
Therefore, the form of the progeny count pgf will be
as2 + (1 - a)s, where a is the probability of successful
reinsertion. If such process is sampled at constant time
intervals, the resulting discrete-time process {ZkΔt} is a
Galton-Watson branching process with linear fractional
pgf ([19], expression (4.14), also c.f. [20]). A unique
property of the linear fractional case of the Galton-
Watson process, excluding the trivial case f(s) = ps + q, is
that the iterations of the pgf can be computed explicitly
and also are of linear fractional form. Let us start with
the offspring pgf in the linear fractional case:

f s
b
p
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( ) = −
−

+
−

1
1 1

The probability distribution corresponding to this
generating function is:

p p
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Figure 5
Griffiths-Pakes branching process with infinite-allele mutations. A non-mutant clone of particles is evolving in time
according to a single-type branching process (in our case, time dicrete). With probability μ per time step, a particle mutates
and initates a clone of new previously nonexistent type, which evolves according to the same rules as the original non-mutant
clone. As a result, a set of clones of different types emerges, spawning further clones, some of which may die out. Upper panel:
low μ; lower panel: high μ.
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The parameters b and p are subject to certain restrictions,

p b

b p

, ,

.

>
+ ≤

0

1

To ensure that this process is supercritical, i.e., m > 1,
additional constraints on b and p are needed. The mean

of f(s) is m df ds s
b

p
= =↑ −
( / )|

( )
1

1 2 , so supercriticality

yields an additional restriction on parameters b and p,

b > (1- p)2, or equivalently

p b> −1 .

To be more precise, we should satisfy condition m(1 - μ)
> 1, but with μ very close to 0, the distinction is not
important. As demonstrated in [18], for the linear-
fractional case, we obtain the following computable
expression

Ψ j

s
mr j

mr s jr
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− − −
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The infinite sums in the numerator and denominator are
numerically computed. A program was written in R-

language to compute the Ψj. Since Alu sequence data in
Table 1 suggest a high value for Ψ1, we verify that the
theoretical Ψ1 attains such values for any choices of
parameters b, p, and μ. For fixed μ = 10-6, we established
a grid of b and p from 0 to 1 in steps of 0.01. Figure 6
shows that Ψ1 can assume any value between 0 and 1,
and that high values of Ψ1 occur for a combination of
low values of b and high values of p.
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