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Abstract

Background: Algorithms designed to predict protein disorder play an important role in
structural and functional genomics, as disordered regions have been reported to participate in
important cellular processes. Consequently, several methods with different underlying principles
for disorder prediction have been independently developed by various groups. For assessing their
usability in automated workflows, we are interested in identifying parameter settings and threshold
selections, under which the performance of these predictors becomes directly comparable.

Results: First, we derived a new benchmark set that accounts for different flavours of disorder
complemented with a similar amount of order annotation derived for the same protein set. We
show that, using the recommended default parameters, the programs tested are producing a wide
range of predictions at different levels of specificity and sensitivity. We identify settings, in which
the different predictors have the same false positive rate. We assess conditions when sets of
predictors can be run together to derive consensus or complementary predictions. This is useful in
the framework of proteome-wide applications where high specificity is required such as in our in-
house sequence analysis pipeline and the ANNIE webserver.

Conclusions: This work identifies parameter settings and thresholds for a selection of disorder
predictors to produce comparable results at a desired level of specificity over a newly derived
benchmark dataset that accounts equally for ordered and disordered regions of different lengths.
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Background
Definition of disorder
Over the last decades, the field of structural biology has
gained awareness of the importance of disordered
regions or even fully unstructured proteins that partici-
pate in biological processes [1-3], culminating in a boom
of protein disorder predictor development during the
last few years [4]. But even with the growing evidence of
the importance of protein disorder in biological events,
the precise definition of disorder remains unclear,
mainly due to methodological limitations in its detec-
tion [5]. Often, disordered segments are called low
complexity regions, due to their high propensity for
certain amino acid types. Although polar low complexity
regions are typically associated with being disordered,
the reciprocal is not true. Segments of proteins can be
detected as disordered (unstructured), without necessa-
rily having the characteristics of a low complexity region
[6,7].

Currently, there is a diverse nomenclature to express
similar observations of disorder, such as intrinsically
disordered proteins (IDPs), also known as natively
disordered, natively unfolded or intrinsically unstruc-
tured proteins (IUPs) [5], just to name a few. Whether
these terms are used to describe full-length sequences is
another issue, as frequently, due to technical limitations,
structural evidence is available only for individual
domains. Typically, only particular regions of proteins
are associated with disorder. Some of these regions may
participate in processes where transitions between
different conformational states occur, as described in
the trinity [8] or quartet models [9].

Consequently, large multi-domain proteins are rarely
described structurally as a whole. One well characterized
example is the human DNA-repair protein hHR23A
[UniProt:P54725], which contains 4 defined structural
domains (Ubiquitin-like, UBA1, XPC-binding and
UBA2) interconnected through highly flexible (disor-
dered) linker regions [10]. Identification of such flexible
linkers is of special importance for eukaryotic proteins
that are often built up of multiple domains.

Disorder vs. low complexity in protein function prediction
The correct identification of protein function in proteo-
mics studies is often a long and tedious effort that
requires the usage of several algorithms and predictors
on a single sequence in order to converge to a putative
function [11]. For example in the ANNIE [12,13] semi-
automated pipeline for protein sequence annotation, as
a first step, sequences are filtered out for low complexity
regions, as they tend to produce a higher number of false
positive hits in sequence similarity searches. These

compositionally biased regions, often enriched in
specific amino acid types, are regularly associated with
disorder, and consequently receive less attention, as
globular domains are quite well established, easier to
characterize and promptly become the centre of atten-
tion for function determination.

However, in recent years, disorder has gained the
awareness of the protein community as a necessary
state for certain groups of proteins to correctly
function [4]. In this way, it is not surprising that
proteins previously described as denatured are gaining
importance among functional proteins, as their dis-
ordered nature starts to be associated with biological
processes. From the view point of function, disordered
regions play a role as mechanical linkers, as flexible
segments for entering binding clefts of globular
domains, as translocation signals and as regions
carrying sites for posttranslational modifications
[14,15]. Moreover, several recent papers discuss a
wide range of additional functional roles of disordered
regions [4,5,16-18].

An ideal benchmark set
Every newly developed predictor is assessed through
either cross-validation tests, or direct comparison to
other available predictors in benchmarking studies. In
either case, having a good and well annotated dataset is a
must that is independent of the evaluation means.
Misleading annotations can bias the final outcome and,
consequently, the judgment of which predictor performs
better than another.

To avoid that the evaluation of the predictors could be
biased by fully relying on a few available datasets created
by the author's predictors, we merged and extended the
existing disorder information compiled in the DisProt
database [19,20], into one general benchmark dataset,
named SL, to include short and long disorder, as well as
order information. The SL dataset is, so far, the most
complete dataset that accounts for disordered regions of
different lengths, as well as regions of missing coordi-
nates annotated as Remark 465 in PDB [21] structures.
The addition of order annotation in the SL dataset, based
on the availability of structural domains in the PDB, has
more than doubled the number of annotated residues
from 61837 to 141895. In this way, the SL dataset can be
used as a good reference when benchmarking any
disorder predictor. For comparison purposes, we also
generated a dataset where disorder annotation is based
solely on the information of missing coordinates in the
PDB annotated as Remark 465. These residues can
additionally be annotated as Remark 465 for a few
other reasons not limited to their disorder condition,
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including system-dependent proteolysis, damage of
residues through X-ray incidence and incomplete Fourier
series. However, these scenarios are expected to be rare
and we additionally avoid most of the above biases by
requiring a minimum length of 5 for our Remark 465
disorder annotation.

Frequently, varying definitions of disorder are adopted
by different groups upon development of a new
predictor. DisEMBL [22] is an example of a method
that includes three predictors trained to detect three
definitions of disorder. Choosing one definition over
another constitutes a compromise when analyzing such
disordered sequences. Many predictors have been devel-
oped as small variations of general methodologies, such
as neural networks [22], or sequence profile scoring
functions encoding mostly local amino acid composi-
tion-based descriptors [23]. In this study, we limited
ourselves to evaluating a selection of locally down-
loadable predictors [22-26] based on distinct methodol-
ogies summarized in Table 1. By using the SL dataset, we
were able to obtain parameters to compare different
methods at the same level of specificity, regardless of an
a priori disorder definition and evaluate how the
methods perform when combined together. These
parameter sets are now implemented in our in-house
sequence annotation pipeline ANNOTATOR and its
public WWW server version ANNIE [11-13,27].

Results and discussion
Comparing the two benchmark datasets
Having a good quality gold standard benchmark dataset
is essential when evaluating any predictor. By far, the
most complete database of disordered protein segments
is provided by DisProt [19,20], the release 4.5 of which
was available at the start of this work. At the same time,
DisProt should not be directly used as a benchmarking
set, since the amount of residues annotated as ordered
(1.2%) is by an order of magnitude lower than the
number of residues (24.7%) with disorder annotation
(missing negative dataset).

Therefore, we generated two new datasets, named
Remark 465 and SL, which stands for short and long
disorder, as described in the method section. The
percentage of residues in each dataset is displayed in
Table 2. As a service for the community, both datasets
can be downloaded from http://mendel.bii.a-star.edu.sg/
SEQUENCES/disorder/ and as electronic supplement of
this paper (Additional files 1 and 2). In brief, we tried to
match the protein sequences in DisProt r4.5 with
sequences of known structures and found 364 entries
in DisProt r4.5 that match at least one entry in the
Protein Structure Database [21]. Our Remark 465 dataset
comprises these 364 sequences where the residues
matched by the known protein structures are classified
as ordered and the residues covered by Remark 465
annotations in these structures are assigned to the
disorder class.

As a result, 53.7% of its residues are annotated as ordered
against 7.2% as disordered. This number is comparable to
the 6% of disordered residues from the 96 targets used in
the disorder prediction benchmark of CASP7 [28]. The
assessment of disorder prediction has been successfully
introduced during the 5th Critical Assessment of Techni-
ques for Protein Structure Prediction (CASP5) [29] and
established since then during the following CASP experi-
ments [28,30]. However, datasets based exclusively on
Remark 465 are often restricted to shorter disordered
regions, do not easily account for longer ones and do not
include information when disorder plays a functional
role, as considered in DisProt.

The SL dataset is the unification of DisProt r4.5 and our
Remark 465 datasets. In conflicting cases of annotations,
the disordered description was maintained in SL and the
information about order was discarded. We considered
it important to maintain the disorder annotation also
for regions that fold into structures under specific
conditions, such as binding with another globular
domain or in a crystal context. The SL dataset contains
more short disordered regions than the Remark 465

Table 1: Summary of the different predictors and their characteristic differences among the methods

low sequence
complexity

disorder in
3D structures

fully database
independent

trained on part of
disorder dataset

considers alignment of
related sequences

SEG [26,42] + - + - -
CAST [23] + - ~# - -
IUPred [25] - + - - -
DisEMBL [22] - + - + -
DISOPRED2 [24] - + - + +§

# scores with BLOSUM62
§ through PSI-BLAST
Different concepts of disorder applied during the development of the respective predictors are indicated by markers: “+” indicates that this concept
is very relevant for this predictor, “-” indicates that this concept has not been applied and “~” indicates that this concept is indirectly implied.
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dataset (see Figure 1 for the distribution of the
disordered regions according to their length). This
comes from the fact that the SL dataset has additional
disorder annotation that is not limited to the missing
coordinates in the PDB. Further, it comprises very long
disordered regions, or completely disordered proteins,
classified as Intrinsically Disordered Proteins (IDPs).
One such example is the Bcl2 antagonist of cell death
[UniProt:Q61337] that contains the BH3 motif. This
protein, of approximately 200 residues, is annotated as
having an a-helical region comprising 27 structural
residues [PDB:2BZW, chain B] in the Remark 465 dataset
with no disorder information, while in the SL dataset,
the complete sequence is annotated as disordered, given
that the BH3 motif is known to form its helical structure
upon interaction with other anti-apoptotic members of
the Bcl-2 family [31].

For comparing the length of disordered regions relative
to the amount of disordered residues in each of the
datasets, we calculated the cumulative percentage dis-
tributions shown in Figure 2. We see that, in the SL
dataset, 50% of disordered regions are shorter than 19
residues (see Figure 2a). However, this number accounts
for only 8% of the total number of disordered residues in
the dataset. In fact, 50% of disordered residues are found
in regions up to 166 residues in length, which covers
92% of disordered regions. The remaining 50% of
disordered residues are found in very few, but even
longer stretches of sequences.

Comparatively, in the Remark 465 dataset, 50% of
disordered regions are shorter than 13 residues long (see
Figure 2b). Therefore, half of the disordered regions in
each SL and Remark 465 datasets are comparable to each
other relative to the length of short disordered regions.
However, in the Remark 465 dataset, these short regions
account for 18% of disordered residues compared to 8%
in the SL dataset, confirming that the SL has longer
disordered regions annotated. If we now consider 50%
of disordered residues in Remark 465, we find that they

are all in regions of up to 33 residues in length. There
were only 3 disordered regions of length 166 and longer
in the Remark 465 dataset, against 91 in the SL one.
These were the precursor of fibrinogen alpha chain from
chicken (P14448), the precursor of human epidermal
growth factor receptor (P00533) and the transcription
initiation factor IIA large subunit from Baker's yeast
(P32773). While the dataset of CASP7 has only 2 regions
of length >40 residues, our Remark 465 dataset has 65
regions >40 residues. This was achieved by considering a
much larger number of structural domains in compar-
ison to CASP7. The SL dataset has 335 such regions.

Clearly, if either DisProt r4.5 or Remark 465 is
independently considered as a benchmark dataset
while evaluating disorder predictors, the results might
be affected by the skew in the distribution between order
and disorder information (Table 2). In this regard, ROC
curves provide a good solution when assessing the
predictors, as they are insensitive to changes in the ratio
between the numbers of order and disorder examples
[32]. However, several other measurements such as
accuracy, probability excess (PE) [33] or the Matthews
Correlation Coefficient (MCC) [34] (see Figure 3 and
Methods section) are altered upon shifts of this ratio
[32]. To overcome this issue and to have a more
complete dataset where both order and disorder infor-
mation is considered, we created the SL dataset. Here, we
have 26.3% of residues annotated as disorder against
33% in the ordered state (Table 2).

Evaluating the predictors with the two benchmark
datasets
We evaluated the performance of five selected disorder
predictors over a wide range of parameters and the
results are shown as ROC curves in Figure 4. ROC curves
provide a guideline to select a compromise between the
amount of false positive predictions (1 - specificity) and
the level of sensitivity (correct predictions) achieved by
the classifier. If one wants to compare the performance
among different predictors, the same specificity level

Table 2: Percentage of residues in the different datasets

Dataset Number of residues
with disorder annotation (%)

Number of residues
with order annotation (%)

Non-annotated
residues (%)

Total number of
residues in dataset

DisProt r4.5
(Jul 2008)

24.7 1.2 74.1 239120
(in 520 proteins)

Remark 465 7.2 53.7 39.1 164793
(in 364 proteins)

SL 26.3 33.0 40.7 239120
(in 520 proteins)

The SL dataset comprises the DisProt release 4.5 data in addition to residues in the same proteins annotated as having an ordered 3D structure found
by similarity searches among sequences of known tertiary structure. Since some of these structures contain unidentified segments (Remark 465
regions), the number of residues with disorder annotation in SL is slightly larger than in DisProt
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should be taken into consideration. We list the para-
meters for each disorder predictor where the amount of
false positive prediction is the closest to 5% in Tables 3
and 4. Unfortunately, we could not produce a parameter
setting for DisEMBL Remark 465 that corresponds to a
specificity level of 95%. Instead, our tables show values
corresponding to 3-4% false positive predictions for this
method.

Obviously, the data shows that the ranking among the
methods is essentially independent of the performance
measurement used (sensitivity, MCC or PE) both in
Tables 3 (dataset SL) and 4 (dataset Remark 465). Thus,
the ratio between the numbers of ordered and dis-
ordered residues in the datasets has no effect on the
relative ranking of methods. This is possible because the
specificity level has been kept constant among all
methods (see also Additional file 3, Figure 1). To
summarize, keeping constant the specificity or sensitivity
levels is a precondition for a fair comparison among
methods (see Additional file 3, Figure 1).

At approximately 95% specificity (Tables 3 and 4),
DISOPRED2 [24] is the method with the highest
percentage of correct predictions in both datasets
(55.7% and 39.3% in the SL and Remark 465 datasets,

respectively) and it is followed very closely by IUPred
long [25] in the SL dataset and IUPred short [25] in the
Remark 465 dataset. By comparing the two settings of
IUPred (long and short), we see that IUPred long
performs better than IUPred short in the SL dataset,
while the opposite consistently occurs in the Remark 465
dataset (see also Figure 4). As expected by the different
nature of the two available detection settings, IUPred
short was able to better identify Remark 465 disordered
regions than its long segment counterpart. But for
detecting disorder in general, including long disordered
regions, IUPred long should be the preferred setting.
DisEMBL Remark 465 also performs quite well and it is
among the top 3 methods for the identification of short
disordered regions (see Figure 4b and Table 4). However,
this is not surprising, given that DisEMBL Remark 465
was trained to detect this definition of disorder.

Another picture emerges when the default settings are
used (see Tables 5 and 6). Because of the different levels
of specificity obtained under the default settings of each
predictor, the simple ranking according to any measure-
ment is compromised and different rankings are
produced by following various performance indicators.
For instance, if we were to rank the methods by highest
sensitivity, DisEMBL Coils could be placed on the top

Figure 1
Length distribution of disordered regions. The distribution of disordered regions according to their length is shown for
each dataset: SL and Remark 465.
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Figure 2
Cumulative percentage of disorder as a function of region length. The cumulative distributions of the number of
disordered residues and the number of disordered regions for the two differently annotated datasets are shown. (a) SL dataset
and (b) Remark 465.
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row of Table 6. This, however, would come at the cost of
accepting a very high false positive prediction rate
(54.3%). One should note here that DisEMBL Coils is
trained to detect loops/coils that can be but are not
necessarily required to be disordered. Hence, this
predictor alone is considered to be promiscuous [22].

It is notable that the ranking of methods in accordance
with various performance indicators is different for the

two datasets SL (Table 5) and Remark 465 (Table 6). This
is a result of differing ratios of numbers of ordered and
disordered residues in the two datasets (about 1:1 in SL
and about 7:1 in Remark 465).

We also explored the parameter settings where the
Matthews Correlation Coefficient (MCC) is maximized
for each method. As the MCC approaches zero, the
predictions are likely to be random, but as its value gets

Figure 3
Contingency table and common performance measurements. The abbreviations are for the number of true positive
(TP), false positive (FP), false negative (FN) and true negative (TN) predictions. The False Positive Rate (FPR) was calculated as
FP/(FP+TN) and the True Positive Rate (TPR) as TP/(TP+FN). The Matthews Correlation Coefficient (MCC) is shown in
equation (i) and the probability excess (PE) in equation (ii).

Table 3: Performance benchmark with the SL dataset under parameters at comparable high specificity level (~0.950)

Method threshold sensitivity specificity MCC PE

DISOPRED2 0.08 0.557 0.947 0.559 0.504
IUPred long 0.54 0.544 0.948 0.550 0.492
IUPred short 0.51 0.491 0.948 0.507 0.440
CAST 40 0.448 0.951 0.474 0.399
DisEMBL Rem465 1 0.348 0.969 0.418 0.317
SEG45 3.30;3.60 0.368 0.950 0.402 0.318
SEG25 2.94;3.24 0.335 0.946 0.364 0.281
SEG12 2.29;2.59 0.268 0.950 0.305 0.218
DisEMBL Hotloops 2.7 0.259 0.949 0.295 0.208
DisEMBL Coils 1.94 0.251 0.948 0.286 0.200

Predictors were run with parameters tuned to achieve a comparable specificity level close to 0.950, which corresponds to ~5% of false positive
predictions. For DisEMBL Remark 465 (in italic), parameter tuning only allowed a specificity of 0.969 as closest value to our criterion. Ranking is
based on the Matthews Correlation Coefficient (MCC) but remains essentially unchanged for other performance measures such as probability excess
(PE).
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closer to 1, the higher the correlation between the
predictions and the annotation in the benchmark
dataset. In this case, by selecting the threshold value
producing the highest MCC in ROC space, we are not
focusing on which parameter to use to compare the
different methods with each other at the same specificity
level (or error rate), as described previously, but rather
which settings to apply if one wants to extract the best
general predictor performance as judged by MCC. In this
study, the highest MCC ranges from 0.30 to 0.57 and
0.17 to 0.39 when considering the ten different
predictors benchmarked with the SL and Remark 465
datasets, respectively (see Tables 7 and 8). These
discrepancies in correlation coefficients between the 2
datasets clearly indicate that the results of a benchmark
in a biased dataset such as the Remark 465 should only
be taken into account in particular scenarios such as the
identification of short disordered regions prior to
structural elucidation. Because of the different class
distributions between the two datasets, the MCC should
not be used to compare performance across the bench-
mark datasets. If the aim is to determine the general
disposition of a protein to be disordered, which includes
short and long regions, the results of a benchmark with a
dataset such as the SL should be considered.

From the analysis of ROC curves in Figure 4, we see that
the predictions occur at different levels of specificity and
sensitivity under default parameters (filled circles). These
default parameters did not always produce the best
possible performance as judged by MCC (empty
squares). The only exception is DISOPRED2 if applied
over the SL dataset. At the same time, DISOPRED2
exhibited the highest MCC among all other methods
(0.567), followed very closely by IUPred long (0.564)
(see Table 7). The performance of IUPred long under
default parameters was sufficiently close to the one of
highest MCC. Basically, DISOPRED2 and IUPred long
have comparable performances if both short and long
disordered regions are taken into consideration, as in the

SL dataset (Figure 4a). Additionally, DISOPRED2 per-
formed better than other methods for short disorder
predictions (Figure 4b). Here, only IUPred short had its
default performance close to the one judged by the
highest MCC (Figure 4b).

The fact that DISOPRED2 and IUPred long have a
comparable performance in the SL dataset provides an
argument to select IUPred long over DISOPRED2, when
speed in calculation is an issue. This helped in the
selection of IUPred long over DISOPRED2 in the
implementation of algorithms in the ANNIE webserver
[12,13], given that DISOPRED2 considers sequentially
similar sequences through PSI-BLAST generated align-
ments, augmenting considerably the amount of compu-
tational time (~40 seconds per protein just for the
PSI-BLAST step).

Finally, evaluating the predictors with two datasets gives
a general overview and provides a desirable framework
to obtain settings at comparable levels of specificity.
These settings can be finally applied in semi-automated
pipelines, such as in our in-house ANNOTATOR/ANNIE
platform, to improve sequence function predictions in
large-scale studies. The next step is to evaluate how
combinations of such methods compare to individual
performance, as addressed in the following section.

Predicting long disorder
In the functional annotation process of uncharacterized
protein sequences coming from full genome sequencing
projects, the determination of long disordered regions is far
more important than the detection of short disordered
segments. The assumption is that long disordered regions
are disordered because of the absence of a proper
hydrophobic core that would force them into a stable
globular structure. These long disordered regions rival
globular domains in length and it is questionable whether
they are suitable for distant homology searches. We tested
the predictors for the detection of long disordered regions

Table 4: Performance benchmark with the Remark 465 dataset under parameters at comparable high specificity level

Method threshold sensitivity specificity MCC PE

DISOPRED2 0.11 0.393 0.950 0.388 0.344
DisEMBL Rem465 1 0.316 0.958 0.338 0.274
IUPred short 0.55 0.328 0.947 0.318 0.275
IUPred long 0.59 0.285 0.948 0.277 0.233
DisEMBL Hotloops 3 0.204 0.950 0.196 0.153
SEG25 2.91;3.21 0.197 0.951 0.194 0.149
SEG12 2.29;2.59 0.188 0.943 0.162 0.130
SEG45 3.27;3.62 0.175 0.949 0.162 0.124
DisEMBL Coils 1.96 0.167 0.950 0.155 0.117
CAST 48 0.154 0.949 0.136 0.103

Predictors were run and ranked as described in Table 3 but over the Remark 465 dataset which puts more emphasis on short disorder inside or
flanking globular structures. For DisEMBL Remark 465 (in italic), parameter tuning only allowed a specificity of 0.958 as closest value to our criterion.
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Figure 4
ROC curves for ten different predictors. (a) Benchmark against SL dataset. (b) Benchmark against Remark 465 dataset.
Filled circles are the points at default threshold and empty squares at highest Matthews Correlation Coefficient. Dotted lines
are the straight continuation of the last measurable data point for DisEMBL predictors to point (1,1) in ROC space. FPR and
TPR are false positive rate and true positive rate, respectively.
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bymodifying our SL dataset to annotate as disorder only the
regions of length 40 and above. This subset is called LD40.
As we modify the annotation in the positive set only, the
settings by which we obtain the desired specificity level of
~95% is the same as in Table 3. The ranking is displayed in
Table 9. We find that the IUPred long method obtained the
highest ranking in this task followed by DISOPRED2. All
other methods performed clearly worse. As expected, SEG,

which is commonly used for low complexity filtering in
sequence similarity searches, ranks better with longer
averaging window. The three DisEMBL variants are not
useful for the detection of long disorder regions.

While this manuscript was in preparation, a new
predictor specialized in long disorder regions, named
IUPforest-L, became available [35]. As this predictor

Table 5: Performance benchmark with the SL dataset under parameters at default values

Method threshold sensitivity specificity MCC PE

DISOPRED2 0.05 0.645 0.897 0.567 0.541
IUPred long 0.5 0.596 0.924 0.560 0.520
IUPred short 0.5 0.513 0.942 0.515 0.454
CAST 40 0.448 0.951 0.474 0.399
SEG45 3.40;3.75 0.527 0.880 0.441 0.407
DisEMBL Rem465 1.2 0.314 0.979 0.407 0.293
SEG25 3.00;3.30 0.396 0.917 0.374 0.313
SEG12 2.20;2.50 0.213 0.972 0.293 0.184
DisEMBL Hotloops 1.4 0.456 0.801 0.275 0.257
DisEMBL Coils 1.2 0.750 0.464 0.220 0.214

All predictors were run over the SL set using their respective default settings and ranked by the MCC. These settings produce results of varying levels
of specificity which makes their ranking more dependent on the used overall performance measure (e.g. MCC or PE).

Table 6: Performance benchmark with the Remark 465 dataset under parameters at default values

Method threshold sensitivity specificity MCC PE

DISOPRED2 0.05 0.566 0.874 0.373 0.441
DisEMBL Rem465 1.2 0.273 0.969 0.330 0.242
IUPred short 0.5 0.406 0.920 0.327 0.326
IUPred long 0.5 0.394 0.899 0.276 0.293
SEG25 3.00;3.30 0.269 0.908 0.182 0.177
SEG12 2.20;2.50 0.136 0.967 0.160 0.103
DisEMBL Hotloops 1.4 0.432 0.780 0.159 0.211
CAST 40 0.179 0.940 0.146 0.119
SEG45 3.40;3.75 0.293 0.865 0.141 0.157
DisEMBL Coils 1.2 0.733 0.457 0.124 0.190

Predictors were run and ranked as described in Table 5 but over the Remark 465 dataset (short disorder). As in Table 5, rankings differ if based on
MCC or PE.

Table 7: Performance benchmark with the SL dataset under parameters that produced the highest Matthews Correlation Coefficient
(MCC)

Method threshold sensitivity specificity MCC PE

DISOPRED2 0.05 0.645 0.897 0.567 0.541
IUPred long 0.48 0.627 0.907 0.564 0.534
IUPred short 0.41 0.649 0.877 0.546 0.526
CAST 24 0.578 0.908 0.522 0.485
SEG45 3.45;3.75 0.582 0.841 0.442 0.423
DisEMBL Rem465 1 0.348 0.969 0.418 0.317
SEG25 3.05;3.35 0.460 0.885 0.387 0.345
DisEMBL Coils 1.8 0.515 0.835 0.373 0.350
SEG12 2.35;2.65 0.282 0.943 0.308 0.225
DisEMBL Hotloops 2.3 0.306 0.928 0.304 0.233

Predictors were run under parameters that produced the highest MCC over the SL dataset to benchmark their maximally possible performance.
Rankings by MCC and PE differ only slightly. Interestingly, the identified optimal parameters (in regard to MCC performance over our dataset) often
differed from the default parameters of the respective programs, except for DISOPRED2.
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could only be accessed through a webserver, we were
forced to limit ourselves to obtain only a few data points
displayed in the ROC graph of Figure 2 in Additional file
3. Although the results ultimately appear to be the best
ones for the detection of long disorder, this outcome
should be considered carefully. When looking at
individual proteins, small globular domains tend to be
predicted as disordered under the default settings of
IUPforest-L. Examples of such wrong predictions include
multi-domain proteins such as the human DNA-repair
protein hHR23A and protein G.

Low complexity and disorder: combining pairs of methods
One might think that the combination of disordered
predictors leads to improved performance since they are
based on different definitions of disordered regions. Such
an approach has already been suggested in the literature
[36-38]. For example, SEG [26] is a very common and
widely used method to filter out low complexity regions
in sequence homology searches. This has enormously
facilitated the identification of new globular regions in
proteins [11]. However, not all disordered regions in
proteins are low complexity regions [7]. Therefore, SEG

does not perform very well in this study (Figure 4). We see
that the bigger the window size parameter in SEG, the
better its performance in the SL dataset (Figure 4a, Tables
3 and 5). Can SEG successfully complement, for example,
disorder predictors derived from 3D structures or
sequence similarity information [6]?

If the predictors identified different regions of disorder due
to their different methodological approaches, the combina-
tion of two methods together should outperform any
individual method. It is not unusual that a more recently
developed predictor is claimed to identify new disordered
regions that were previously missed by more established
methods in the literature such as DISOPRED2 and that, in a
combination, they should be beneficial for improved
prediction performance [37].

In this work, we explored the combined performance of
any pair of disorder prediction algorithms. In contrast to
previous work [33,36], we used the parameters that
reproduce the same level of specificity for each method
at a false positive rate of 0.05 (Tables 3 and 4). In
addition, we also combined them applying the para-
meters where the highest MCC was obtained (see Tables

Table 8: Performance benchmark with the Remark 465 dataset under parameters that produced the highest Matthews Correlation
Coefficient (MCC)

Method threshold sensitivity specificity MCC PE

DISOPRED2 0.09 0.433 0.937 0.388 0.370
DisEMBL Rem465 1 0.316 0.958 0.338 0.274
IUPred short 0.49 0.421 0.914 0.328 0.335
IUPred long 0.53 0.355 0.921 0.284 0.276
CAST 24 0.349 0.887 0.218 0.235
DisEMBL Coils 1.9 0.290 0.907 0.200 0.198
DisEMBL Hotloops 2.9 0.217 0.944 0.198 0.161
SEG25 2.95;3.25 0.229 0.935 0.191 0.164
SEG12 1.95;2.25 0.065 0.994 0.170 0.059
SEG45 3.30;3.60 0.192 0.942 0.166 0.134

Predictors were run and ranked as described in Table 7 but over the Remark 465 dataset including parameter optimization for this dataset with focus
on short disorder.

Table 9: Performance benchmark with the LD40 dataset under parameters at comparable high specificity level

Method threshold sensitivity specificity MCC PE

IUPred long 0.54 0.597 0.948 0.602 0.545
DISOPRED2 0.08 0.587 0.947 0.591 0.534
IUPred short 0.51 0.521 0.948 0.539 0.469
CAST 40 0.510 0.951 0.535 0.462
SEG45 3.30;3.60 0.419 0.950 0.454 0.369
DisEMBL Rem465 1 0.359 0.969 0.437 0.328
SEG25 2.94;3.24 0.373 0.946 0.406 0.319
SEG12 2.29;2.59 0.291 0.950 0.333 0.240
DisEMBL Coils 1.94 0.263 0.948 0.302 0.211
DisEMBL Hotloops 2.7 0.262 0.949 0.301 0.210

Predictors were run and ranked as in Tables 3 and 4 with parameters tuned to produce comparable high specificity of ~0.950 (~5% of false positive
predictions) but over the LD40 dataset which only includes long disordered regions (length of 40 residues and above). For DisEMBL Remark 465 (in
italic), parameter tuning only allowed a specificity of 0.969 as closest value to our criterion.
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7 and 8). The results of this investigation are summar-
ized in Figure 5. As a trend, the combination of two
methods either through consensus or complementary
predictions results in a slight improvement of perfor-
mance compared to single methods. We find that
DISOPRED2, which has ranked quite well in the
individual comparison to other methods, can only be
slightly improved through combination with almost any
method but, if at all, the best effect is achieved with
IUPred long, CAST [23] or DisEMBL Remark 465. On the
other hand, only the combination of IUPred long with
either CAST (for the SL dataset) or DisEMBL Remark 465
(for the Remark 465 dataset) reaches the single method
performance of DISOPRED2. This is of interest due to
the long computation time required for DISOPRED2
compared to other methods.

As expected, the result of combining the methods
through consensus predictions is seen as a shift towards
less false positive predictions in ROC space, contrary to
the complementary one, that is shifted towards more
false positive predictions (Figure 5). Still, neither
consensus nor complementary predictions resulted in
outstanding performances.

Disorder in complete proteomes: the need of
experimental validation to improve future predictions
Undoubtedly, there is a strong necessity of more reliable
annotation of disordered regions in protein sequences.
So far, the DisProt database is the most complete
compilation of disorder annotation in proteins, given
the current experimental limitations in disorder detec-
tion and its curated nature. Its latest release contains 523
sequences with about 37% of them coming from
humans. However, if we now consider the latest estimate
of the human proteome in the IPI [39] and calculate the
percentage of human sequences that have been anno-
tated as disordered in DisProt, we obtain the extremely
low fraction of only ~0.25%. In previous work using
DISOPRED2, the approximate fraction of residues
predicted as disordered in humans was 21% [24]. We
used IUPred long to predict disorder in a non-redundant
set of 56915 sequences of the IPI human database and
obtained a comparable percentage of disordered residues
(23% at an expected rate of 5% false positive predic-
tions) as in the previous work with DISOPRED2 [24]
(see Table 10). The list of actual predictions is available
from the website that is associated with this paper http://
mendel.bii.a-star.edu.sg/SEQUENCES/disorder/.

Clearly, identification through experimental validation
of all these disorder predictions could increase quite
considerably the number of proteins annotated as
disordered and the understanding of their role in

biological processes, so far mainly found to participate
in signalling, recognition and regulation [4,5]. At the
same time that predictors are developed to automate the
detection and annotation of protein disorder, there is a
general saturation and little improvement with newer
disorder predictors [28]. Apparently, more experimen-
tally supported disorder annotation appears necessary,
despite the big effort in attempting to identify functional
classes associated to disorder by using theoretical
arguments [40].

Comparison to other benchmark studies
The largest database of disorder to date, DisProt, should
not be taken directly as a benchmark set due to the lack
of coverage of the order annotation. On the other hand,
previously used benchmark sets are based on disorder
annotated as Remark 465 in the PDB, which provides
very good quality order annotation. However, such sets
typically only cover short disordered regions in close
vicinity to or inside otherwise globular structures, which
is only one of the many flavours of disorder in proteins
[41]. To provide a compromise between the best sources
for disorder (DisProt) and order (PDB), we comple-
mented the DisProt annotation with known ordered
regions if respective atom coordinates of DisProt
proteins were recorded in the PDB.

Furthermore, disordered regions of minimum length 5
annotated in PDB as Remark 465 that map to unan-
notated regions in DisProt proteins were added as well.
This procedure of extending the annotation of DisProt
proteins has the additional advantage that both ordered
and disordered regions are taken from the same protein
set which means that any compositional bias resulting
from different taxonomic distributions or subcellular
localization sampling (e.g. the amino acid composition
might differ slightly between nuclear, cytosolic and
extracellular proteins) is avoided in our benchmark set.

There have been many benchmark studies on disorder
predictors over the last ten years, with CASP being a
major reference in the field, despite its limitation due to
a dataset built up in its majority by crystallographic
structures that are generally known to display mainly
short disordered regions. Typically, benchmark studies
are accompanied by the development of a new predictor
and are aimed at showing its performance in contrast to
previously existing methods.

In a recent review [36], a few practical examples were
used to show how the combination of different methods
improves disorder prediction, as the methods are
generally biased towards detecting different definitions
of disorder. Here, we saw that the combination of
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Figure 5
Performance of combined algorithms. Consensus and complementary predictions at highest MCC and false positive rate
at ~0.05. (a) SL dataset. (b) Remark 465 dataset. ROC curves for DISOPRED2 and IUPred long and short were used as
reference. Only the data points closer and above the DISOPRED2 curve are labelled. FPR and TPR are false positive rate and
true positive rate, respectively.
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methods did not result in outstanding performances,
which would be expected if they were detecting different
flavours of disorder upon a benchmark with a general
dataset such as our SL one. Despite their biases in
disorder detection, they were not complementary to each
other to the extent that it would be worth considering a
pair of methods since they just marginally increase the
number of correct predictions.

Most benchmarks also use many different scores to rank
the predictors due to the natural difficulty in defining
what constitutes a good performance in ROC space. We
have already underlined previously that certain perfor-
mance measures such as MCC depend on the composi-
tion of the database, i.e., the ratio of residues with
disordered and ordered annotation. In contrast, the
probability excess is an example that is independent of
this ratio [33]. In the latter study, the authors rank and
compare the performance of the different methods
regardless of a fixed specificity setting. This ultimately
generates misinterpretations of what is judged as best, as
only data points at default parameters are considered,
while the methods should be compared at the same
specificity level. As we have seen previously, the
influence of choice of the performance measure to rank
the methods becomes almost irrelevant, when they are
compared at the same specificity level.

Conclusions
The lack of a precise definition of disorder is a major
problem that directly affects the dataset used for
benchmarking. Consequently, it strongly influences any
measurable outcome, such as accuracy, MCC, probability
excess, including the specificity level of the predictor. In
this work, we have derived a general dataset based on all
currently available data that includes most or all flavours
and lengths of disorder for a thorough evaluation of

disorder predictors. We complemented the curated
disorder annotation in the DisProt database with order
annotation from well defined structures in PDB, as well
as associated short disorder regions. Thereby, we
essentially doubled the number of annotated residues
compared to the original DisProt 4.5 annotation.

Ideally, predictors should not be ranked using a single
performance measurement at their default settings, since
these typically produce results in different areas of the ROC
space. Instead, we suggest to test and identify settings where
the specificity or sensitivity over the same unbiased dataset
is directly comparable. In our in-house sequence analysis
pipeline ANNOTATOR/ANNIE [11-13,27] and proteome-
wide studies, predictions at high specificity are required and
we present threshold and parameter settings for the tested
predictors in this scenario.

In our work, we showed that combining different methods
yields a positive improvement but the results are not
dramatically different, especially if one wants to use the
methods for the identification of disorder in complete
proteomes. So far, DISOPRED2 has been the method that
best unifies all information, but it is limited because of the
time demanding PSI-BLAST step for proteome-wide studies.
Interestingly, the faster IUPred long that uses a totally
different approach was essentially performing similarly well
and, at the same time, it is computationally cheaper.

Although the number of annotated residues in the SL
dataset appears substantial, it has to be assumed that still
only a small fraction of actually disordered regions are
currently covered by these annotations. Besides the large
number of unannotated disordered regions reliably
predicted at thresholds with high specificity, one cannot
exclude the possibility that additional flavours of
disorder exist that are not properly captured by any of
the existing experimental methods.

Methods
Generating the benchmark datasets
We generated two datasets for benchmarking the
disorder predictors, where each residue was assigned as
ordered, disordered or unknown, calling them Remark
465 and short and long (SL) disorder datasets.

The Remark 465 dataset encloses 364 protein sequences,
which represent sequences from the DisProt release 4.5
database [19,20], where we could identify a structural
domain in the PDB [21]. The regions in the amino acid
sequence where the atomic coordinates were solved
experimentally and available in the PDB were classified
as ordered, while parts of the sequence where the atomic
coordinates were not solved, likely due to its disorder

Table 10: Estimated disorder frequencies in the human pro-
teome with IUPred long

IUPred long
threshold

minimum length
to consider
region as
disordered

% of sequences
with disorder

% of
disordered
residues

0.50 0 82.6 26.7
0.50 10 62.0 22.8
0.50 30 38.8 17.5
0.54 0 78.8 23.3
0.54 10 57.3 19.7
0.54 30 34.9 14.9

A subset with 56915 non-redundant sequences (< 98% identity) from
the human IPI v3.54 database was used to estimate frequencies of
disordered residues and sequences with disorder predicted by IUPred
long at different thresholds (0.5 ... default; 0.54 ... estimated 5% false
positive rate)
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condition, with minimum length 5 and annotated in the
PDB as Remark 465, were assigned as disordered. This
dataset is comparable, in its disorder definition, to the
96 targets used in CASP7 to assess protein disorder
prediction [28].

The short and long disorder (SL) dataset includes all 520
protein sequences from the DisProt release 4.5 database
[19,20]. Here, the DisProt disorder annotation prevails
over structural (order) information. In addition,
stretches of sequences with at least five consecutive
residues annotated under Remark 465 in the PDB [21]
were also assigned as disordered in the SL dataset.

The binary class distribution in terms of percentage of
residues classified as ordered or disordered can be seen
in Table 2.

Selection of predictors for benchmarking
There are currently over 20 different disorder predictors
available, based on variations of general methodologies,
such as machine learning approaches including neural
networks, support vector machines, etc. using feature
descriptors ranging from simple amino acid compositions
over physical properties to structure-derived parameters.

In this work, we aimed at selecting predictors that are
representative of methodological subgroups described in
Table 1 and are implemented in our protein sequence
analysis pipeline ANNOTATOR/ANNIE [11-13,27].
These are CAST [23], DisEMBL [22], DISOPRED2 [24],
IUPred [25] and SEG [26,42]. These predictors were
made available for local installation by the authors.

CAST [23] is a method based on a multi-pass Smith-
Waterman comparison of the query sequence against a
database of 20 degenerate protein sequences (homo-
polymers), by using a threshold value associated to a
scoring function to identify and mask low complexity
regions. Its default threshold has been optimized for
BLAST homology searches.

DisEMBL [22] is based on artificial neural networks
trained for predicting three different definitions of
disorder: coils, hot loops and missing coordinates as in
Remark 465. Each predictor has a default value for the
minimum score that a residue must have to label the
segment as disordered.

DISOPRED2 [24] uses a support vector machine to
analyze sequence profiles generated by PSI-BLAST and
hence utilizes evolutionary information about the
“conservation” of the disorder properties in homolo-
gues. The false positive rate threshold can be set at the

DISOPRED2 server [43] in discrete intervals from 1% to
10%. Its default value is 5%.

IUPred [25] estimates the total pairwise interaction
energy, based on a quadratic form in the amino acid
composition of the protein. In this study, we considered
IUPred long predictions of any length, once the residue
score was above the threshold. IUPred short is suited for
predicting short disordered regions, such as missing
residues in crystallographic structures.

SEG [26] provides a measure of compositional complex-
ity of a segment of sequence and divides sequences into
contrasting segments of low complexity and high
complexity. Here, we used the three recommended
window sizes (12, 25 and 45) when running SEG. We
also applied, as default parameters for the trigger and
extension cutoffs, the “medium” mode defined by
Sonnhammer and Wootton [42].

A summary on the major differences between the
methods benchmarked in this study can be seen in
Table 1. As some methods have more than one predictor
(DisEMBL, IUPred and SEG), the total number of
predictors considered in this study was ten.

Performance evaluation
All the algorithms benchmarked here were used as a
binary classifier for disorder prediction (see Tables 3 to 9
for complete list). In summary, residues were assigned as
either disordered or ordered and benchmarked against
two main datasets (SL and Remark 465) to compute
the four measurements as in the contingency table
of Figure 3. In order to test the performance of the
algorithms at varying levels of specificity, different
thresholds, tuneable according to each method, were
used to define disorder and order classification, as
described in the section above.

Our approach to measure performance per residue
follows the traditional route. Alternatively, one might
look after matches between predicted and annotated
segments. This path faces several challenges: First, the
experimental information does not allow the precise
determination of the segment boundaries as reported in
the database of disordered regions. Second, the evalua-
tion of matches between predicted and annotated
disordered segments requires the introduction of addi-
tional parameters such as minimal segment overlap etc.
depending on the choice of the evaluators and, therefore,
the comparison of methods becomes less objective. And
third, some normalization of the length of segments
could be required since longer segments are naturally
easier to hit by a predictor than shorter ones.
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The coefficient, displayed in Figure 3 and known as
Matthews Correlation Coefficient (MCC) in the field of
secondary structure prediction [34], gives a value
between -1 and +1 for the correlation between observa-
tion and prediction. In the case of independent variables,
a value of 0 is expected for predictions no better than
random. A value of -1 indicates total disagreement
between observation and prediction, while +1 indicates
total agreement. The MCC stores all performance
information being easily calculated from the four values
(TP, FP, TN and FN), promptly obtained from the
contingency table of Figure 3. There are various
measurements that can be obtained from combinations
of all these four values, but the MCC provides a good
performance summary into a single number [44].

The probability excess is an additional measurement that
is directly related to the minimal distance from a point
in ROC space to the diagonal line corresponding to
random predictions (FPR = TPR), that ranges from 0
(random prediction) to 1 (perfect prediction). However,
differently from previous work [45], in our SL dataset,
the amount of residues annotated as order and disorder
is quite comparable (Table 2) and, hence, probability
excess as well as MCC can be used.

Receiver operating characteristics (ROC) curves were
generated for all algorithms using the two different
datasets. These curves are a useful graphing method in
evaluating the algorithms’ performance [32]. For each
algorithm, we evaluated different thresholds and used
them as cut-off values for the binary classification.
Figure 4 shows the receiver operating characteristic
(ROC) curves for ten different classifiers against the
two datasets (SL and Remark 465).

The area under the ROC curve (AUC) was also computed
using the trapezoid rule [46]. This result can be seen as a
Table in Additional file 3.

Combining the predictors
As the predictors use different methodologies and are
trained with diverse datasets, it is not surprising that they
produce slightly different outcomes. In this work, we also
evaluated the performance of pairs of algorithms. For
each pair, we considered consensus and complementary
predictions, each under the selection of two sets of
parameters. The first set of parameters was chosen so that
the individual methods reproduced the same level of
specificity at a false positive rate of 0.05, while for the
second set the individual methods produced the highest
MCC (see Tables 7 and 8). For the consensus prediction,
only those residues simultaneously predicted as disor-
dered by both methods were considered as a prediction,

while in the complementary case, any prediction was
taken into account. In this way, combining ten individual
methods, executed under different parameters, resulted in
162 data points in ROC space (Figure 5).
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MCC: Matthews Correlation Coefficient; PE: probability
excess; SL: short and long disordered regions; LD40: long
disordered regions (length 40 and above); ROC: Receiver
operating characteristics
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