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Abstract

We identified a set of genes with an unexpected bimodal distribution among breast cancer patients
in multiple studies. The property of bimodality seems to be common, as these genes were found on
multiple microarray platforms and in studies with different end-points and patient cohorts. Bimodal
genes tend to cluster into small groups of four to six genes with synchronised expression within the
group (but not between the groups), which makes them good candidates for robust conditional
descriptors. The groups tend to form concise network modules underlying their function in
cancerogenesis of breast neoplasms.

Background
Whole-genome gene expression studies primarily aim to
identify conditional descriptors, i.e. subsets of genes or
functional groups whose expression profiles distinguish
between different biological states. Different biological
conditions might include: disease state vs. normal state,
good prognosis vs. bad, drug treated vs. untreated tissues,
etc. Differential expression descriptors can be calculated in
two ways. The traditional method consists of selecting a set
of descriptor genes (gene signatures) using a variety of
statistical methods [1-5]. Using this approach, a number of
gene signatures were deduced for breast cancer phenotypes,
including an “intrinsic” set for clustering of breast cancers

[6], an “Amsterdam” signature consisting of 70 genes [7], a
76-gene “Rotterdam” signature [8] for metastasis, and a set
of 21 genes associated with disease outcomes for ER+
tumors [9]. Some of these sets are commercialized as
multivariant diagnostics by Genomic Health http://www.
genomichealth.com and Agendia http://www.agendia.com.
Although important, gene signatures have many issues as
descriptors - for instance, loss of specificity in validation
studies with an increased number of samples [10], generally
poor cross-platform compatibility (Amsterdam and Rotter-
dam signatures virtually do not overlap in gene content),
lack of mechanistic (functional) correlation with pheno-
type, etc.
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The second, more recent, approach deals with so-called
“functional descriptors,” such as pathways, signaling
networks, enrichment distribution in ontologies, etc.,
which are differentially perturbed in the conditions
being compared [11-14]. In good accordance with the
original concept of “modularity” of biological functions
systems [15], functional entities seem to be more
robust descriptors than gene lists [16,17]. In addition,
functional descriptors provide strong mechanistic lin-
kages with clinical phenotypes and, in the case of
cancer, may explain important aspects of cancero-
genesis.

However, in both cases, the genes composing gene
signatures or functional categories are selected regardless
of their individual patterns of expression among the
samples in the study. In general, gene expression
distribution in a population is assumed to be normal,
as for any quantitative trait [18]. However, it is not. As
we have recently shown, distributions of expression
signals of certain genes feature two distinct peaks among
the samples in breast cancer [19]. The phenomenon of
expression “bimodality” was reported for other cancers
as well [20-22], where «bimodality» was calculated by
selection of hypervariable (HV) genes using F-statistics
[20] and a combination of mixture modelling and
kurtosis [21,22].

Here we report a meta-analysis of bimodally expressed
genes from five previously published independent breast
cancer studies. We show that “bimodality” is a general
phenomenon (at least for breast cancer), independent of
a microarray platform and clinical phenotype (patient
cohort). Bimodality is intrinsically associated with
physiological states of the system, such as cancer vs.
normal. Moreover, bimodally-expressed genes tend to
cluster into groups with synchronised expression within
a group. Consequently, bimodal group expression can be
effectively used as an efficient and robust conditional
descriptor, applicable for a variety of studies.

We also demonstrate the platform-independence of
bimodality in three different microarrays used in the
studies. Although compatibility between arrays can be
high for certain end-points in limited size studies, as
shown in the MAQCII project [23], in general, gene

signatures are not robust and cannot be directly
compared across platforms. There are several statistical
methods of meta-analysis which enable direct compar-
ison between gene expression levels in multiple experi-
ments and allow for identification of genes with
consistent signal values across the studies [20-27].
Here, we offer an approach to normalization of
expression signal values into a binary mode correspond-
ing to different conditions, which makes expression
profiles on different arrays directly compatible.

Results
The phenomenon of bimodality of gene expression
Originally, we identified a set of bimodally expressed
genes within the previously published dataset of 295 early
breast cancer samples run on two custom cDNA array
platforms [19,28]. In the validation study, we confirmed
the phenomenon of bimodality and the ability of
bimodal genes to form co-expressed clusters using four
datasets carried out on standard Affymetrix and Agilent
array platforms: GSE1456 [29], GSE7390 [30], GSE4922
[31], and an Agilent data set (Table 1). The Agilent dataset
was formed as a non-redundant set of 193 samples from
four studies: GSE1992 [32], GSE2740 [33], GSE2741
[34], and GSE6130 [35]. The robustness of the original
bimodal clusters was tested both across-platform and
across-study (same array type) (see additional file 1).

First, we compared the distribution of expression values
throughout the set of 295 primary tumor samples of
invasive breast cancers [28] for each gene and noticed
that certain genes tended to have two different levels of
expression, or modes, among the samples. In other
words, the expression function seemed to feature two
distinct peaks, rather than to be a continuous function
with close to normal distribution, as is expected for any
quantitative trait [18] (Figure 1A).

In order to calculate a “bimodality” function for each gene
in the 295 patients’ set, we introduced a t-test like statistic τ,
which is a partition function that describes the relative
difference between average of signals between each peak. In
brief, the larger the t, the larger the difference between the
two peaks (i.e. modes) in the distribution of a certain gene
signal profile within the cohort. (Calculations and assump-
tions are described in “Methods.”) For a normal distribution

Table 1: Gene expression datasets used for identification of genes with bimodal expression patterns. In all five datasets, bimodality was
defined by τ = 2.64 and standard deviation over 25th percentile of the distribution

Sorlie295 GSE1456 GSE7390 GSE4922 Agilent set

Platform cDNA Affymetrix Affymetrix Affymetrix Agilent
Bimodal genes 2476 (10604a) 5075 (12017a) 5440 (12017a) 4874 (12017a) 4983 (13379a)

a Recognized genes for each platform.
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of normalized expression signals for a certain gene, τ ≈ 2.64.
We assume that the wider (potentially bi-nomal or “multi-
nomal”) distribution is characterized by τ > 2.64. At this
step, we applied τ statistics to “filter” the profiles of all genes
to identify the most likely candidates for bimodal distribu-
tion and selected the genes with the furthest possible
difference between the peaks. Thus, a typical bimodal gene
GRB7 has τ = 4.81 and a distribution between samples
shown in Figure 2A. In total, we identified 2476 bimodal
genes out of the array of 10604 genes [28]. Using these
parameters, we calculated sets of bimodal genes using the
validation datasets of 5075, 5440, 4872, and 4983 genes
from the independent datasets GSE1456, GSE7390,
GSE4922, and the Agilent data set respectively (Table 1).

Binary intersections of the pairs of bimodal genes from
different datasets are large and statistically significant (Table
2). The largest intersection was for the datasets GSE7390
and GSE1456 at 3587 common bimodal genes - 66% of all
bimodal genes for GSE7390 and 70% of all bimodal genes
for GSE1456. The datasets Sorlie295 and GSE4922 had the
smallest intersection of 1121 commonbimodal genes - 45%
of all bimodal genes for Sorlie295 and 23% of all bimodal
genes for GSE4922. In total, we considered 866 genes as
«commonly bimodal» in all platforms and studies (see
additional file 1). We considered a gene as “commonly”
bimodal if its expression pattern was bimodal at at least
three independent datasets

Therefore, we conclude that bimodality of gene expres-
sion is a phenomenon not limited to a specific
microarray platform, a study/endpoint or a dataset/

patient cohort. Bimodality of individual genes is
confirmed for at least three different studies, and in
some cases in four or five studies.

“Bimodality” is conditional (disease-related)
We believe that “bimodality” is a conditional expression
property of a gene and each «mode» corresponds to a
certain physiological condition, for example, a normal
and a disease state. It is also possible that the two modes
could correspond to different disease subtypes.

The bimodal genes are relevant for disease development;
in the case of breast cancer, functional analysis of
bimodal genes in the data mining platform MetaCore
(GeneGo, Inc.) reveals a role in cancerogenesis processes
and pathways. First, 207 of 866 common bimodal genes
have been described in literature as associated with
breast cancer (Fisher test p-value = 1.499e-112 for the
intersection) (see additional file 1). In total, there are
1393 breast cancer associated genes in MetaCore, within
a total background of 40599 human genes (Entrez Gene
statistics, http://www.ncbi.nlm.nih.gov/gene). These
genes belong to many cancerogenesis processes and
pathway maps including “Proteolysis: ECM remodeling,”
“Proteolysis: Connective tissue degradation,” “Develop-
ment: Blood vessel morphogenesis,” “Proliferation:
Negative regulation of cell proliferation,” “Cytoskeleton:
Spindle microtubules,” “Inflammation: Amphoterin
signaling,” “Cell adhesion: Cell-matrix interactions,”
“Cell cycle: Core,” “Cell cycle: G1-S Growth factor
regulation,” “Signal transduction: ESR1-nuclear path-
way” (Figure 3). Four processes - “Proteolysis: ECM

Figure 1
Signal distribution of normal and “bimodal” genes in patient cohort. (A) Theoretical normal gene signal distribution
for quantitative traits [18]. (B) Theoretical bimodal gene signal distribution
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remodeling,” “Development: Blood vessel morphogen-
esis,” “Proteolysis: Connective tissue degradation,” and
“Cell adhesion: Cell-matrix interactions” - are prevalent
in the later stages of invasive cancerogenesis when the
tumor is large in size. By late stages, the tumor has a
limited supply of oxygen and nutrients accompanied by
acidosis by CO2 and accumulation of un-processed
metabolites. These events trigger angiogenesis, lympho-
genesis, cell matrix remodeling, and chemotaxis, often
followed by metastasis. The process “Proliferation:
Negative regulation of cell proliferation” is directly
linked with these events, as the organism tries to regulate
cell proliferation in the tumor. The process “Cell
adhesion: Platelet-endothelium-leucocyte interactions”
is associated with the tumor's capacity to metastasize.
The activated processes “Cell cycle: Core,” “Cytoskeleton:
Spindle microtubules,” and “Cell cycle: G1-S Growth
factor regulation” reflect different aspects of the normal
cell cycle in which perturbations can lead to cancer. The
process “Reproduction: Progesterone signaling” is a

breast cancer-specific process. Moreover, the set of
bimodal genes is enriched with drug targets - 69 targets
among 866 genes (Fisher test p-value = 1.169e-29 for the
intersection, as there are 609 human protein drug targets
(MetaBase statistics, http://www.genego.com), back-
ground list - 40599 human genes (Entrez Gene statistics,
http://www.ncbi.nlm.nih.gov/gene) (see additional file
1). Therefore, we summarize that the set of 866 bimodal
genes is cancer-specific and comprised of good putative
markers for breast cancer.

Normalization of expression for bimodal genes
In order to clearly separate the patient samples by
bimodal gene expression, we normalized the signals, so
the signals could be presented in a binary manner, with
one peak designated as -1 and another as 1. The original
expression signals varied significantly between the genes
in the same sample, and individual bimodal genes could
be both over- and under-expressed in different samples.
Therefore, the step of normalization was neccessary for

Figure 2
Bimodal genes. (A) Distribution of GRB7 expression among 295 patients (Sorlie295 dataset). The green line marks the
threshold which separates the average of signals below threshold TGRB7≈0.0015. Red lines mark lGRB7≈1.74 and
uGRB7≈1.77. (B) Distribution of GRB7 expression among 295 patients after normalization. The green line marks the threshold
which separates the average of signals below threshold TGRB7 = 0. Red lines mark lGRB7≈-1 and uGRB7 = 1.

Table 2: Pair-wise intersections of the sets of bimodal genes in five studies. Fisher exact tests were used to estimate p-values.

SetA SetB All genes
intersection

Bimodal genes
intersection

Bimodal genes
for set Aa

Bimodal genes
for set Ba

p-value

Agilent Sorlie295 9433 1237 3661 2219 8.81E-77
Agilent GSE1456 10301 1830 3961 4307 5.86E-13
Agilent GSE4922 10301 1799 3961 4099 2.14E-20
Agilent GSE7390 10301 1839 3961 4551 0.000154
Sorlie295 GSE1456 9367 1173 2223 3851 3.49E-37
Sorlie295 GSE4922 9367 1121 2223 3720 5.53E-32
Sorlie295 GSE7390 9367 1237 2223 4048 1.13E-41
GSE1456 GSE4922 12017 3501 5076 4876 0
GSE1456 GSE7390 12017 3587 5076 5440 0
GSE4922 GSE7390 12017 3431 4876 5440 0
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minimizing the difference in amplitude of the expression
of the genes in order to profile separate experiments in a
uniform way. There can be two cases: 1. one gene from
different experiments in which the intensities of its
expression are different, and 2. different genes have
similar intensity within one experiment. In the former
case, normalization makes comparable the profiles of
genes with different original intensities of expression. In
the latter case, it allows one to identify truly similar
genes within one set, with synchronised expression
profiles for a physiological condition. The process of
normalization is described in detail in “Methods,” and
an example of normalization of GRB7 expression from
the Sorlie295 dataset is shown in Figure 2B.

Importantly, some bimodal genes were observed to be
expressed synchronously among samples in different
studies when the normalized (not the original) signals
were compared. An example for two genes - FOXA1 and
GATA3 - is shown in Figure 4A. Prior to normalization,
these genes had similar expression profiles, but had
differences in intensity amplitude. After normalization,
their gene expression profiles look identical (Figure 4B).
Therefore, normalization helped to separate a subset of
bimodal genes with synchronised expression in accor-
dance with physiological conditions.

Signal normalization also helped to reduce the platform-
dependency of expression signals. The normalized
expression of the same two genes, FOXA1 and GATA3,
was compared between experiments run on two array
platforms: cDNA array, Sorlie 295 [28] and Affymetrix
(Affymetrix Human Genome U133A Array) GSE1456
[29]. The original expression profiles of the two genes
had different intensity intervals (Figure 4A), while the
normalized expression values ranged between -1 and 1.

(Figure 4B). We generated expression profiles for all
bimodal genes (Table 3) in five datasets using original
signal values (see additional file 2, additional file 3) and
normalized values (see additional file 4, additional file
5). Unlike the original signals, the normalized values
were not dependent on the array platform.

“Close neighbors” - groups of synchronously-expressed
bimodal genes
Following the theory of modularity of biological
processes [15], we attempted to identify co-expressed
modules (functional modules), assuming that the gene
members of the module should be co-expressed among
all samples in the cohort. We took as «baits» five
bimodal genes reported as important breast cancer
genetic markers - ERBB2, ESR1, PLAUR, FN1, and
STAT1, and calculated the “close neighbor” gene groups
that were synchronously expressed with each of them in
the Sorlie295 set. Normalized expression profiles were
considered as the measure of «closeness». In order to
identify a group of synchronously expressed genes for a
given gene, we calculated the cosine distance between
the “query” gene with all other genes on a given array
with proper expression values. The outliers to “0” were
added to the list of candidate genes. This method
allowed us to identify groups of genes with similar
normalized expression profiles within the group that
were also sufficiently different from other genes. In total,
we identified 5 groups with 23 synchronously-expressed
genes (Table 3). Importantly, all 23 genes happened to
be bimodal, and 15 out of 23 were reported to be
genetically associated with breast cancer (breast cancer
“causal” genes) (Table 3). Expression profiles for the
genes from the ERBB2 group are shown in Figure 5B. The
fact that normalized expression of all 23 genes was
synchronised within a group (but not between the

Figure 3
Ontology enrichment for the set of 866 bimodal genes.
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groups) for all 5 groups with no exception, regardless of
the set, clinical end-point and array platform is remark-
able, as expression experiments are notoriously known
as poorly comparable between studies and platforms,
and breast cancers are extremely heterogenous. Thus,
without normalization, we have not been able to
identify a single gene commonly expressed in breast
cancer samples among the studies using standard
statistical procedures (t-test for DEGs, FDR, ANOVA).

The genes within the groups were closely functionally
connected. Every group forms a compact network with
physical protein interactions connecting most group
members in one or two steps. The network for the ERBB2

group is shown in Figure 5C. In addition, the genes
TCAP, PSMD3, GRB7, and ERBB2 from the ERBB2 group
are derived from the same well known breast cancer
amplicon [36]. Transcription of MX1, CXCL10, PLSCR1
and ISG15 from the STAT1 group is directly regulated by
STAT1 [37,38]. Similarly, the genes from ESR1 group are
united by a common regulation system (Figure 6).

“Close neighbors” expression groups as potential
descriptors for breast cancer end-points
As every gene in the group is bimodal, and the
expression profiles of genes in each group are synchro-
nised, each group can be used as an effective descriptor
dividing patients into two clusters corresponding to the

Figure 4
Signal normalization for bimodal genes. (A) Expression profiles for genes FOXA1 and GATA3 in Sorlie295 and GSE1456
data sets before normalization. (B) Expression profiles for genes FOXA1 and GATA3 in Sorlie295 and GSE1456 data sets
before normalization and after normalization.
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two expression modes. An average expression value for
all genes in the group was used as the measure of the
group's expression. For instance, ERBB2 group expres-
sion is downregulated in some patients and up-regulated
in another part of the cohort (Figure 5C). It was shown
that the expression group profiles are more robust
descriptors than individual genes [39].

The expression of the “ñlose neighbors” groups is a
remarkably robust descriptor between microarray plat-
forms. “Robustness” can be defined as retained perfor-
mance on larger validation datasets and «across
platforms», i.e. the descriptor genes have to be synchro-
nously expressed on different types of arrays. It is
particularly important in the cases when the descriptors
are deduced using a training set on one array platform
and validation sets on a different platform, and
especially when descriptor genes are present on the
training array but are missing on the validation array
[40-44,23]. Using groups of genes (instead of individual
genes in «gene signatures») and their summarized
«group» expression instead of individual gene expression
allows one to reduce or eliminate this problem. Thus, the
gene TMIM158 from the PLAUR group is missing on
Agilent arrays, but the group itself can still be used
effectively as the descriptor with one gene missing. The
average or summarized expression of the remaining
genes in the group can be used as the group expression
metric in this case.

Importantly, the pattern of group expression (i.e. an
average of gene expression within a group) is remarkably
stable between different studies and unique for the
group, group expression profiles are essentially different
and among the samples in all studies, i.e. the groups are
expressed independently from each other. Therefore, the
groups can be applied as robust descriptors for dividing
samples (patients in the cohort) into sub-clusters (see
additional file 6). The group descriptors can be applied
consequently: Group 1 divided patients into two
clusters, then Group 2 sub-categorizes each part into
two and so on. Eventulally, every sample will be
“barcoded” with 5 numbers reflecting the Group's

expression mode as “1” or “2”, for instance 1-1-2-1-2
(see additional file 6), and samples can be grouped
together based on the matching “barcodes”.

Discussion
Here we described a fundamental property of certain
genes to be expressed in two «modes» or expression
levels depending on physiological condition/disease
state. We studied this phenomenon in invasive breast
cancer in five different studies using different array
platforms, including cDNA arrays, Affymetrix and
Agilent [28-35]. We have shown that bimodal genes
are present on all arrays, and that the sets of bimodal
genes statistically significantly overlap among the plat-
forms. Therefore, we assume that bimodality is a
common property of gene expression, dependent on
physiological or disease states and independent of the
end-points of the study or the microarray platform. In
total, we identfied 866 bimodal genes shared among all
platforms.

We developed and applied a computationally efficient
algorithm to estimate bimodality of expression intensity
distributions of genes based on maximization of the t-
statistic-like measure τ (see Methods). Gene expression
distribution is often modeled by a mixture of Gaussians
with model parameters fit through expectation max-
imization (see e.g., [21,22]). Bimodality of expression
can then be deduced from testing log-likelihood ratios of
two component mixture distribution versus a single
component normal distribution as in [21], or through
calculation of Bayesian information criterion as in [22].
These approaches are computationally demanding and
do not offer clear advantages over t-statistics. Also,
characterization of a gene's bimodality via excess
kurtosis as in [22] disregards bimodal distributions
with unbalanced sizes of peaks, while a t-statistic still
captures such unbalanced bimodality. A different
approach for characterizing “hypervariable” genes was
applied in [20], where authors searched for genes with
higher variability than in a majority of genes. The F-test
was used to select the genes with variances significantly
higher than the variance of genes in a ‘reference group'.

Table 3: The “close neighbors” groups of synchronously expressed bimodal genes for Sorlie295 data set

Group 1 Group 2 Group 3 Group 4 Group 5

ERBB2 ESR1 PLAUR FN1 STAT1
GRB7a ESR1 COL11A1 FN1 STAT1
ERBB2 GATA3 PLAUR COL5A2 ISG15
PSMD3 FOXA1 GABRP COL1A2 MX1
TCAP AR TMEM158 CXCL10

DNALI1 TGBI PLSCR1
ADM

a Italics - breast cancer-associated genes.
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Conditional bimodality is an unexpected and non-trivial
property of gene expression. The expected distribution of
any quantitative character in biological systems is
expected to be normal [18]. Moreover, most genes in
the studied datasets are not «bimodal» (Table 1).
Distribution with two distinct peaks means that tran-
scriptional regulation of some genes is conditional -
breast cancer-dependent in our case. Alternatively, one
could expect expression of two different conditionally
prevailing splice variants for certain transcripts - a
phenomenon shown for some cancers [45]. However,
observation of this case is not likely, as we see the same
genes on three different platforms, and the array set does
not allow us to separate different splice variants, at least
for the original cDNA array.

Bimodal expression is conditional and, in our case, is
linked to the complex condition known as breast cancer.
The set of 866 common bimodal genes is heavily
enriched in breast cancer-associated genes, participating
in many pathways and processes of cancerogenesis.
Thus, the «group query» genes ERBB2, ESR1, CEACAM5
and AR are well known markers of breast cancer [46-49].

According to the theory of modularity of biological
processes [15], bimodal genes tend to cluster into
synchronously expressed functional groups of «close
neighbors». We described an approach for identification
of such groups based on normalized gene expression,
which makes it platform-independent and comparable
between different arrays. We have selected 23 genes

Figure 5
Identification of “Close neighbours” co-expression groups. (A) Average ERBB2 group expression profile. (B) Average
ERBB2 group expression profile divides cohort of breast cancer patients into two groups. (C) “Close neighbours” expression
group ERBB2 forms a network, functional module.
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divided into 5 groups which were co-expressed within
groups in all five studies on three different platforms
(but the group expression was independent from one to
another). The genes within the groups are functionally
close. Thus, genes in each group form statistically
significant protein interaction networks. Some groups,
such as TCAP, PSMD3, GRB7, and ERBB2, belong to a
well known amplicon [36]. Transcription of MX1,
CXCL10, PLSCR1, and ISG15 from the STAT1 group is
regulated by STAT1 [37,38]. 15 out of 23 bimodal genes
in groups are known in the literature as breast cancer-
associated genes, which suggests breast cancer specificity
of these functional modules.

As gene expression within a group is synchronised
through many studies, «group expression» can be applied
as a «binary» conditional descriptor separating a patient
cohort into sub-groups with «-1» and «1» expression.
Consecutive application of different groups can be appled
for further sub-division of the patient cohort into patient
clusters, with “1s” and “2s” for each group used as a bar-
code for the patent cluster. The advantage of using group
expression instead of individual gene expression is in

high robustness: an average per group expression fluc-
tuates at a lower scale than dispersed expression of
individual genes. The «close neighbors» gene groups can
be used as prognostic descriptors for clinical end-points
such as patient survival, metastases development,
response to therapy, etc. Sub-categorization of cancer
patients is a non-trivial problem due to high hetero-
geneity of expression profiles. Thus, in a well-known sub-
categorisation scheme which divided invasive breast
cancers into five clusters based on expression of certain
“centroid” genes [28], over 1/3 of samples could not be
categorized into any cluster and expression heterogeneity
within clusters was still high, especially in validation
studies withmore samples, despite running the studies on
essentially the same cDNA array [50,51]. Importantly,
when we applied normalized group expression as the
clustering metrics, we saw not a single outlier among over
1000 samples in five studies on three different microarray
platform. The heterogeneity was also much lower within
the clusters (data not shown). Such high robustness
makes the “close neighbors” groups potentially very
promising biomarkers for clinical end-points in breast
cancer and, likely, other types of cancers.

Figure 6
Co-expression of bimodal genes in ESR1 group. Genes from ESR1 group are regulated by an estradiol/testosterone
regulation system
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Functional grouping of genes as descriptors also deals
with an important issue of reduction of dimensionality
in meta-analysis. Meta-analysis can be defined as a cross-
study analysis of different patient cohorts united by a
clinical end-point or any other parameter [24,52]. This
type of analysis is broadly applied, for example, during
comparison of a study of interest with the expression
data accumulated in GEO http://www.ncbi.nlm.nih.gov/
geo/ or other expression databases (ArrayExpress http://
www.ebi.ac.uk/microarray-as/ae/, Stanford Microarray
Database http://smd.stanford.edu/), Yale Microarray
Database http://www.med.yale.edu/microarray/, etc).
Platform compatibility and minimization of «dimen-
sionality» are two major problems in meta-analysis,
where «gene signatures» consisting of individual genes
are notorious for poor reproducibility [40-44,23]. Here,
we offer a general solution for the problem, consisting of
identification of bimodal genes, normalization of their
expression and grouping of the normalized expression
into synchronised clusters of «close neighbors». Normal-
ization consists of transformation of expression signals
into a binary system of «-1» and «1», and it enables
comparison of otherwise incomparable expression data
between platforms and studies [53]. Lack of individual
genes on a certain array platform does not prevent using
the group as the descriptor.

Conclusion
We described the phenomenon of bimodality of gene
expression in breast cancer and grouping of the bimodal
genes into «close neighbor» groups. The sets of bimodal
genes are non-random; they are enriched in disease
markers and targets and tend to form functionally
related groups with synchronised expression. These
groups of «close neighbors» can be used as robust
descriptors for certain sub-groups of patients and
associated with clinically important phenotypes (end-
points). Application of functional descriptors consisting
of bimodal genes is important in the area of meta-
analysis of gene expression experiments across platforms
and across studies.

Methods
Identfication of bimodal genes
In a set of expression experiments (for instance, a patient
cohort), each gene has a distribution of expression
signals across the set. Bimodal genes feature a distribu-
tion with two distinct peaks (maximal signals) (Fig 1B).
For each gene, we can set up a distinguishing expression
value such that the signals lower than this value
correspond to the lower peak in the bimodal distribu-
tion, and the signals higher than this value correspond to

the higher peak. The characteristic value was chosen as
follows: all expression values for a gene were randomly
divided onto two groups, and average and sum of
squared deviations were calculated for each group. The
lower the sum of deviations, the better the partition.

In calculation of bimodality, we assume that distribu-
tion of expression within the cohort for a bimodal gene
is a sum of two normal distributions. Let us consider

si
j - an expression value of i-s gene in the j-s

experiment; Li, Ui - partition of the set of all
experiments onto subsets depending on i-s gene);
#Li, #Ui - the number of experiments in each

subset;
L Ui i

si
j

j Li
Li

si
j

j Ui
Ui

= =∈
∑

∈
∑

# #,
- average signal

for i-s gene in each subset Li, Ui. We need to
find a partition with the minimum g(Li, Ui):

γ L U s L s Ui i i
j

i
j L

i
j

i
j Ui i

,( ) = −( ) + −( )
∈ ∈
∑ ∑

2 2
. We need

to look at only the subsets with ∀ ∈ ∈ ≤j L k U s si i i
j

i
k, : -

the values in subset Li are lower than in subset Ui. The
number of possible partitions with such a property is
larger by 1 than the number of experiments (including
two cases with empty subsets). For the «optimal»
partition, li = 〈Li〉, ui = 〈Ui〉 and gi = g(Li, Ui). In this
case, the characteristic signal Ti will be calculated as
follows:

Ti
li ui= +
2

. In other words, the characteristic signal T is

the border with two optimal divisions, i .e .

∀ ∈ ≤ ∀ ∈ ≥j L s T j U s Ti i
j

i i i
j

i: & : (Figure 2A).

We can consider as the level of bimodality a relative
dicrepancy in the values in sub-sets (measure of signal

isolation) τi, which is calculated as τ γi
ui li

i
M

= −
, where M -

is the total number of experiments.

Finding the peaks is carried out by the following
procedure:

1. The list of values for i-s gene is entered into an
algorithm
2. All signals are sorted by value: the number of
signals is n, where j is the number of the signal
3. For all n - 1 possible partitions of the sorted list of
values onto two groups (partition is defined by the
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number of the highest signal in the smaller by value
group), Partition is defined as k ∊ [1, n - 1]):

1. The average for each sub-set is
li
k

si
j

j

k

k= =
∑
1 for the sub-

set with lower signals
ui
k

si
j

j k

n

n k= = +
∑

−
1 - for the sub-set with

higher signals
2. The sum of squares of deviations for each sub-set:

γ i
k

i
j

i
k

j

k

i
j

i
k

j k

n
s l s u= −( ) + −( )

= = +
∑ ∑

2

1

2

1

4. We choose Ki, for which γ i
k is ( γ γi

K

k n
i
ki =

∈ −[ ]
min

,1 1
)

5 . The a l go r i t hm re su l t s i n K i , l li i
K i= ,

u ui i
K

i i
Ki i= =8γ γ .

where Ti
li ui= +
2

divides the signals for the given

partition according to s T si
K

i i
Ki i≤ ≤ +1 . This property

allows us to clearly divide signals for each peak (mode).

Outliers
One of the drawbacks of the method described above is
its sensitivity to outliers. For instance, if in three
experiments out of 100 the expression values are
significantly higher than the others, the three signals
will be assigned to one peak, and the remaining 97 to
another peak. This situation can be avoided if all values

for a group will be considered as outliers if its relative
size is small, for instance, less than 5%.

Bimodal normalization
We consider as normalization a linear transformation of
signals si

j so that:

s
si
j li

ui li
i
j =

−
−

This transformation allows us to reduce all signals li and
ui to -1 and 1, correspondingly (Figure 2B). If the set
contains a certain number of control experiments (for
instance, normal samples among the disease samples),
we can consider the expression values for the group with
normal samples as 1, and the other group as -1. This
allows us to compare expression profiles which are
synchronised among the patients but in different
directions. Also, the genes with control values belonging
to different modes can be excluded.

• The mean for normal patients was calculated

ν i
j N

si
j

N
=

∈
∑ #

, where N - samples from normal patients,

and #N is their number

• In the case of νi <Ti, the gene expression values were

transformed by si
j si

j li
ui li

=
−
−

; otherwise si
j si

j ui
li ui

=
−
−

. There-

fore, ν i ≤ 1
2

always.

Figure 7
Identification of the “close” groups of genes in the space of 295 samples (Sorlie295 data set). (A) No close group
is found for HMGA1 as query gene. OX: relative distances from the query gene to all 10604 array genes. OY: the number of
genes. (B) Clear close group around ERBB2/GRB7 (encircled). OX: relative distances from the query gene to all 10604 array
genes. OY: the number of genes.
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Selection of the groups of synchronously expressed genes
For all the bimodal genes with normalized expression,
we can search for genes expressed in a similar manner.
For each gene, we calculated the cosine distance to all
other genes as:

ρK i

sK
j si

j

j

sK
j

j
si
j

j

, = −

⋅∑

∑ ⋅∑
1

2 2

The outliers to 0 were added to the candidate genes
(Figure 7). This method allows us to identify groups of
genes with similar expression profiles within the group
and sufficiently different from other genes.

The genes with similar signal profiling constitute a group
of «close neighbors»
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