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Abstract

Background: MicroRNAs (miRNAs) are single-stranded non-coding RNAs shown to plays important regulatory roles
in a wide range of biological processes and diseases. The functions and regulatory mechanisms of most of miRNAs
are still poorly understood in part because of the difficulty in identifying the miRNA regulatory targets. To this end,
computational methods have evolved as important tools for genome-wide target screening. Although considerable
work in the past few years has produced many target prediction algorithms, most of them are solely based on
sequence, and the accuracy is still poor. In contrast, gene expression profiling from miRNA transfection
experiments can provide additional information about miRNA targets. However, most of existing research assumes
down-regulated mRNAs as targets. Given the fact that the primary function of miRNA is protein inhibition, this
assumption is neither sufficient nor necessary.

Results: A novel Bayesian approach is proposed in this paper that integrates sequence level prediction with
expression profiling of miRNA transfection. This approach does not restrict the target to be down-expressed and
thus improve the performance of existing target prediction algorithm. The proposed algorithm was tested on
simulated data, proteomics data, and IP pull-down data and shown to achieve better performance than existing
approaches for target prediction. All the related materials including source code are available at http://
compgenomics.utsa.edu/expmicro.html.

Conclusions: The proposed Bayesian algorithm integrates properly the sequence paring data and mRNA
expression profiles for miRNA target prediction. This algorithm is shown to have better prediction performance
than existing algorithms.

Background
MicroRNAs (miRNAs) are single-stranded non-coding
RNAs with about 19 to 25 nucleotides in length.
MiRNA is known to inhibit target translation or cleave
target mRNA by binding to the complementary sites in
the 3’ untranslated region (UTR) of targets. The impor-
tance of miRNA regulation lies in the fact that a
miRNA is estimated to regulate hundreds of targets [1].

As a result, miRNAs have been shown and are specu-
lated to play many important post-transcriptional regu-
latory roles in a wide range of biological processes and
diseases including development, stress responses, viral
infection, and cancer [2-5]. Despite rapid advance in
miRNA research, the detailed functions and regulatory
mechanisms of most of miRNAs are still poorly under-
stood. To gain better understanding, an important task
is to identify miRNAs’ regulatory targets. However, the
current knowledge about the known targets is dispro-
portional to that of the known miRNAs. In the miRNA
registry miRBase, 969 human miRNAs are annotated; in
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contrast, only 815 targets of 121 human miRNAs are
recorded in the most up-to-date target database miRe-
cords. Given that the number of targets of each miRNA
could be in hundreds [1], the reported number of veri-
fied targets accounts for only a very small fraction of
the potential human targets. This fact greatly under-
scores the urgent need of effective target identification
methods, and, for genome-wide target discovery, com-
putational prediction proceeding experimental testing is
a preferable, efficient strategy. Considerable advances
have been made in computational target prediction [6]
and many prediction algorithms have been proposed,
mainly based on various important features of miRNA:
target nucleotide sequence interaction. Although differ-
ent algorithms utilize different sets of features, a few
important features including “seed region complemen-
tary”, “binding free energy”, and “sequence conservation”
are among the most common ones. Depending on how
these features are derived, the algorithms using
sequence binding data can be further categorized into
the rule based and the data driven. In the rule-based
algorithms, features are determined from the prior
knowledge of miRNA binding and these algorithms
include TargetScan [7], miRanda [8], PITA [9], DIANA-
microT [10], RNAhybrid [11], microInspector [12],
MovingTargets [13], and Nucleus [14]. In contrast, for
the data driven algorithms, the features are partially or
entirely determined by the algorithm itself from the
training data, or the existing sequence binding data of
verified positive and negative miRNA:target pairs. The
data driven algorithms include MirTarget [15,16], PicTar
[17], miTarget [18], rna22 [19], NBmiRTar [20], Target-
ing [21] and SVMicrO [22]. Given sufficient training
data, the data driven algorithms hold the promise to
outperform the rule based algorithms, since they have
the ability to uncover important features from data that
cannot be easily observed otherwise.
Despite these effort, the existing algorithms using

sequence data alone are still of poor prediction specifi-
city and sensitivity [23,24]. The first reason of the defi-
cient performance is due to the poor understanding of
the precise mechanisms underlying miRNA:target inter-
action [25-27] and, as a result, the adopted features of
the rules are not yet as specific and sensitive as needed.
Secondly, verified positive and negative training data
essential for good performance of data driven algo-
rithms are particularly lacking and the limited verified
data can hardly include important features for different
aspects of the miRNA:target interactions, thus hamper-
ing the ability of date driven algorithms to select discri-
minative features [28]. These facts motivated us to
incorporate data other than sequence pairing to further
improve the prediction performance of existing
algorithms.

Microarray profiling of differential gene expression
after miRNA transfection is a widely adopted approach
to investigate the impact of the miRNA regulation. Such
gene expression profiles have been used in a variety of
studies for predicting miRNA targets. However, the
majority of existing research relies on the assumption
that miRNA targets are down-expressed in microarray
and thus search within the intersection of sequence
level prediction and down-regulated genes in microarray
for potential targets [29,30]. Given that the primary
function of miRNA is translation inhibition with target
mRNA degradation being the secondary mode of regula-
tion, the down-expression of mRNA is neither the suffi-
cient nor the necessary condition for miRNA regulation.
Therefore, the outcome of this practice is unlikely to
greatly reduce the high false positive rate; on the con-
trary, it deteriorates more the prediction sensitivity.
To address the problem with the current practice in

combining sequence prediction with microarray data, we
present a novel Bayesian algorithm with the scheme
shown in Figure 1. In particular, a Bayesian Gaussian
Mixture Model (GMM) is applied to model the expres-
sion profile of positive and negative targets. This model
allows not only the positive targets to be not differen-
tially expressed but also the negative targets to be
down-expressed. In particular, to properly model the
mixture component for positive targets, the prior distri-
bution constructed based on the existing expression
profile of real targets is introduced. Consequently, this
model can describe the realistic distribution of positive
and negative miRNA target expression. Finally, the
probability of an mRNA as a target given the mRNA
expression and the prediction score of its corresponding
sequence binding are integrated by a Naïve Bayes
model. The algorithm is applied to predict targets of
hsa-miR-1 and hsa-miR-124, and the prediction perfor-
mance is evaluated by the IP pull-down and mass spec-
trometry experiments. The results show the improved
performance of the proposed algorithm for miRNA tar-
get prediction.

Methods
Problem Statement
For convenience of composition, the mathematical defi-
nition of the problem is first given. For a given mRNA g
and a given miRNA m, let t Î {0, 1} denote whether g is
a target of m. Let S indicate the sequence paring infor-
mation of g and m. Let e represent the differential
expression (log fold change) of g due to transfection of
miRNA m. The goal of target prediction is to select
most possible value of t base on the expression e and
sequence paring S. According to a Naïve Bayes formula-
tion, the desired a posteriori probability (APP) can be
calculated as shown in formula (1)
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where the second equality is arrived based on the
assumption that e and S are independent, and a(e)
and b(S) are the APPs of t given e and S, respec-
tively. Although e and S are not independent in rea-
lity, this assumption reduces the complexity of
modeling and the subsequent computation. Addition-
ally, the Naïve Bayes formulation has been shown to
be able to achieve satisfactory performance even
when the data are correlated. We will discuss next
the models and approaches for calculating a(e) and
b(S), respectively.

Mapping of Sequence Level Prediction Scores to b(S)
There exist several target prediction algorithms using
sequence data. We adopt our own SVMicrO algorithm
in the work since it has been shown to outperform
other popular algorithms. Like most of target prediction
algorithm, SVMicrO produces a score s for each
miRNA:mRNA sequence pairing to indicate the confi-
dence of the mRNA to be a target. To obtain b(S) from
SVMicrO score s, SVMicrO score s is assumed to con-
tain all the information of the sequence S and b(S) can
be therefore calculated as p(t = 1|s) instead of p(t =
1|S). The goal is then to map the score into the APP b
(s) = p(t = 1|S). To this end, a logistic model is used as

  ( ) ( | )s p t s
e s= = =

+ +1
1

1 0 1
(2)

where a0 and a1 are the parameters to be trained.

Figure 1 Algorithm Block Diagram. The proposed algorithm consists of a sequence-based prediction module and a expression profile
inference module. A Naïve Bayes model integrates the outputs of these two modules to generate final prediction score.
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Training b(s)
The training data used for training SVMicrO were
adopted here to train b(S). In brief, the training data
set is composed of 509 experimental validated miRNA:
Target pairs recorded in miRecords [1] and 2426 high
confidence negative miRNA:Target pairs derived from
microarray data sets of 20 different miRNA transfec-
tion experiments (See Table 1). SVMicrO was then
trained by a 5-fold cross validation; the average pre-
dicted scores of each gene in the training data were

obtained. These scores together with their associated
target attributes were used as training data for estimat-
ing the parameters of the logistic function b(s). The
curve of trained b(s) is shown in Figure 2. It can be
noticed from Figure 2 that the probability of a mRNA
to be a target is only around 50% even if the predicted
score is 1. This demonstrates the inability of sequence-
based approach to achieve satisfactory precision; this
problem is partially due to the huge imbalance
between positive and negative data.

Table 1 Microarray Data Source of Negative Samples

miRNA GEO accecsion miRNA GEO accecsion

hsa-let-7c GSM156557[33],GSM156558[33] hsa-miR-128 GSM210902[7],GSM210903[7]

hsa-miR-15a GSM156545[33],GSM156549[33] hsa-miR-132 GSM210904[7],GSM210905[7]

hsa-miR-16 GSM156546[33],GSM156550[33] hsa-miR-133a GSM210906[7],GSM210907[7]

hsa-miR-17 GSM156553[33],GSM156555[33] hsa-miR-142-3p GSM210908[7],GSM210909[7]

hsa-miR-192 GSM156547[33],GSM156551[33] hsa-miR-148b GSM210910[7],GSM210911[7]

hsa-miR-20a GSM156554[33],GSM156556[33] hsa-miR-7 GSM210896[7],GSM210897[7]

hsa-miR-215 GSM156548[33],GSM156552[33] hsa-miR-9 GSM210898[7],GSM210899[7]

hsa-miR-192 GSM328290[34],GSM328287[34] hsa-miR-34a GSM187633[35],GSM187634[35]

GSM187631[35],GSM187632[35]

hsa-miR-215 GSM328291[34],GSM328288[34] hsa-miR-34b GSM190765[36],GSM190757[36]

hsa-miR-122 GSM210900[7],GSM210901[7] hsa-miR-34c-5p GSM190758[36],GSM190766[36]

Figure 2 Curve of b(S) modeled by the Logistic Regression Function.
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Gaussian Mixture Models of Expression Profile
The gene expression profile of miRNA transfection
experiment contains both the expressions of the positive
as well as negative targets, both of which needs to be
properly modeled. To this end, the empirical distribu-
tions of expression was first examined. To obtain the
expression of verified targets, the verified targets of
human miRNAs recorded in miRecords [1], a depository
for experimentally verified miRNAs targets, were
obtained first. The expression fold change of each
recorded target was retrieved whenever the correspond-
ing miRNA transfection experiment is registered in
GEO. Finally, fold change value of 209 verified targets
were obtained and the histogram of the their expression
fold change is depicted in Figure 3-(a). For computa-
tional convenience, expression data for both positive
and negative data are assumed to be the Gaussian distri-
butions. Therefore, the genome-wide expression data is
modeled as a mixture Gaussian distribution
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where μ., s2 are the mean and variance of the
respective Gaussian mixtures, the subscripts + and —
denote the positive (t = 1) and negative (t = 0) targets,
π+ + π = 1, and θ represents the collection of the
model parameters. Given model (3), the goal is to
uncover mixture components from the expression
data, which is equivalent to estimate the parameters
from the expression data. Note that since the number
of positive targets is only in hundreds, π+ is very small,
which means that the component of the positive target
is much weaker compared with the negative target and
likely to be completely buried in the mixture. This can
be illustrated by Figure 3-(a), where the histogram of
genom-wide expression of 11988 human mRNAs for
transfection of hsa-miR-124 [31] is plotted. Since the
true targets of a miRNA counts for only very small
portion of the entire genome, the histogram of the
genome-wide expression for transfection of hsa-miR-
124 appears more like a single Gaussian instead of a
mixture of two. Unless additional information about
the expression of positive data is available, the estima-
tion of the positive component from the mixture is
under-determined and there could be a large number
of suboptimal solutions. Fortunately, the expression
data of experimentally validated targets are available.
These expression levels, although limited in quantity,
can be used to aid the estimation of the positive com-
ponent. which Supposedly,

Figure 3 Histograms of Gene Expression Profiles. (a) Histogram
of the expression fold change of 209 verified targets in different
miRNAs transfection experiments. Notice that a portion of the true
targets were not down-regulated. (b) Histogram of genome-wide
expression of hsa-miR-124 transfection The genome-wide expression
profile consists of those for both positive targets and negative
targets. Since positive targets for a small portion of the genome, the
distribution of genome expression looks like the distribution of the
negative targets.
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Bayesian Estimation of the Gaussian Mixture
Under the Bayesian framework, the goal of estimating
model parameters θ is to obtain the posterior
distribution

p(θ|e) ∞ p(e|θ)p(θ) (4)

where p(θ|e) is the likelihood defined in (3) and p(θ) is
the parameter prior distribution. Here, the conjugate
priors are adopted and a combination of informative
and noninformative priors are defined as
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where NIG and Dir are the Normal-Inverse-Gamma
and Dirichlet distributions, respectively and epdenotes
the expression profile of the validated targets. It should
be clear that an informative prior is applied for the posi-
tive component, whereas the noninformative prior is
imposed to the negative component. We discuss next
the details of these priors. First, the informative NIG

prior of p p( , | ) + +
2 e can be obtained from ep using

the standard Bayesian linear Gaussian model by applying
a Gaussian likelihood and another noninformative NIG

prior. Specifically, given the prior of μ+ and +
2 follows

the noninformative NIG distribution

p NIG( , ) ( , / ; , )      + + +=2
0

2
0 0 0 (6)

the informative can be shown to be

p NIGp N N N N( , | ) ( , / ; , )      + + +=2 2e (7)

where

 

 

 

 


 




N N
n
N

N

N

N
N
N

e

N

N

N s e

= +

= +

= +

= + − + −

+ +

+

0

0 0

0

0

0

0

0
1
2

0
21( ) ( 0

2)

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

(8)

N = 209 in our case, ēp and s2 are the sample mean
and variance of ep, and all other parameters with sub-
script 0 are the same as those in (5), which define the
noninformative prior. Next, for the noninformative
priors in (5) and (6), the parameters are chosen as:

μ_ = 0, s_ = 5, μ0 = 0, �0 = 0.2, a0 = 0.2, b0 = 0.2.

Lastly, the parameters of the Dirichlet prior are cho-
sen as g+,0 = 200 and g_,0 = 20000, which reflects the

common belief that a miRNA regulates about 200
targets.
Since the likelihood assumes the mixture model in (3),

the posterior distribution cannot be obtained analyti-
cally. A Variational Bayes Expectation Maximization
(VBEM) algorithm is applied to estimate the desired
distributions.

Variational Bayes Expectation Maximization Algorithm
Since the expression level of each gene is assumed to be
i.i.d. and follows the Gaussian mixture (3), the para-
meters should be estimated from the gene expression
profile of all genes e = {e1, ..., eG}. VBEM algorithm
starts by constructing a lower bound on the marginal
likelihood function as
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where as above the inequality is due to the Jensen’s
inequality,        = { } = { }+ − + − + −, , , , ,2 2 , as well
as q(π) and q(j) are the free distributions introduced to
approximate the unknown posterior distributions p(π|e)
and p(j|e). The distributions q(·) (or their parameters)
are determined to maximize the lower bound (9). Using
the variational derivatives and an iterative coordinate
ascent procedure, the optimization can be achieved in
an iterative fashion, whose j + 1 iteration operates as
follows:
VBE Step:

q
Z

q p e dj j+ = ∫1 1
( ) exp[ ( ) ln ( , | ) ]( )    


(10)

VBM Step:

q
Z

q p e dj j+ += ∫1 11
( ) exp[ ( ) ln ( , | ) ]( )    


(11)

where Z(·)s are the normalizing constants. Since q(π)
and q(j) are assumed to be the Dirichlet and NIG distri-
butions, (10) and (11) can be obtained analytically.
Then, when the algorithm converges, we obtain the
approximations to the distributions p(π|e) and p(j|e) as
q(π) and q(j), respectively. The MAP or MMSE esti-
mates of π and j can be obtained from q(π) and q(j)
accordingly. An example of the estimated mixture distri-
butions weighted by π is shown in Figure 4.

Calculation of a(e)
With the estimated parameters, a(e) can be calculated
as
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where ^ represents the estimate of the corresponding
parameter. Based on the parameters estimated by VBEM
algorithm, a(e) can be fully defined by (12) and its
curve is plotted as Figure 5. The curve is monotone
decreasing in the area of [-4, 0.5], which reflects the
existing knowledge that the more significant that an
mRNA is down-regulated in the miRNA transfection
experiment, the more likely the mRNA is a real target.
However, the curve ramps up (broken line) afterwards
due to the higher tail of the positive Gaussian compo-
nent. This phenomenon does not agree with the fact
that the higher the expression fold change, the unlikely
the mRNA is a target. To resolve this problem, we sim-
ply fix a(e) as the constant for expression fold change
larger than 0.5. This heuristic is simple but works well
in practice. The solid line in Figure 5 visualizes a(e)
with this heuristic.

Results and Discussion
Validation Based on Simulated Data
We first tested the proposed algorithm based on the
simulated data set. Particularly, we generated the
sequence level prediction scores of both positive and
negative data from two Gaussian distribution, whose
means and variances were chosen based on the predic-
tion scores of SVMicrO on the real positive and nega-
tive targets. The expression fold change data were
produced from the Gaussian Mixture Model; the para-
meters of mixture model were chosen also based on
those fitted to the expression fold changes of real posi-
tive and negative targets. To also reflect the imbalance
between the positive and negative targets, 200 positive
data and 19800 negative data were generated with distri-
butions shown in Table 2.
Fitting of function a(e) is the most demanding process

in this algorithm, especially due to the large imbalance
in the two mixture components. As such, the ability of
VBEM to accurately estimate the parameters of the
GMM model is evaluated. The estimated parameters for
the simulated data are shown in Table 3 and the
weighted distributions of positive and negative compo-
nents are shown in Figure 5. From Table 3, it can be
seen that the VBEM algorithm succeeded in correctly
estimating the parameters (see Table 2) used to generate
the testing data.
Next, precision recall curve was plotted to compare

the performance of combined method with algorithms

Figure 4 Weighted Distributions of Positive and Negative
Components with Parameters Estimated from Data The
parameters of both positive and negative are estimated by the
VBEM algorithm.

Figure 5 Curve of a(e) Obtained from the Gaussian Mixture
Model from Real Data The curve of a(e) is monotone decreasing
in the area of [-4, 0.5], which agree with the existing knowledge.
However, the curve unexpectedly ramps up (the broken line)due to
the heavier tail of the positive component. To resolve this problem,
we simply fix the curve to be a constant. This heuristic is simple but
works well in practice. The solid line in Figure 4 visualizes a(e) with
this heuristic.

Table 2 Distributions and parameters used to generate
test data

sequence score fold change mixture coefficient

Positive N(0.75, 0.5) N(–0.5, 0.5) 1%

Negative N(–0.75, 0.5) N(0, 0.4) 99%
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only relying on either sequence level score or expression
fold change. Precision represents the odds of a predicted
target to be the true target, while recall denotes the
chance of having predicted the entire true targets. High
precision often concerns biologists more because it is
highly desirable and efficient to allocate the limited
resource to test a set of predictions with high chance to
be the true targets. However, recall is also important to
assure that all the true targets can be uncovered. Over-
all, the larger the area under the PR curve an algorithm
has, the better it is. As can be seen from Figure 6, the
proposed algorithm has both better precision and recall
and it achieves the overall best performance. Therefor,
we can draw the conclusion that the performance of the
combined algorithm improves the algorithm that relies
on either sequence level data or expression fold change.

Evaluation on real data
The proposed algorithm was applied to predict the tar-
gets of hsa-miR-1 and hsa-miR-124. The result was vali-
dated by the mass spectrometry data in [32] and the IP
pull-down data in [31].

Sequence Score and Differential Expression Data Retrieval
3’UTR sequences of human genome were downloaded
from UCSC Genome Browser mySQL database. Predic-
tion of genome-wide targets of hsa-miR-124 and hsa-

miR-1 based on the sequence pairing data were carried
out by SVMicrO. The prediction scores were recorded
for each mRNA, which were then mapped to the APPs
of being targets using the logistic function b(S) defined
in (2). Gene expression profile of transfecting hsa-miR-
124 or hsa-miR-1 was obtained from [31] and the APPs
of targets given expression fold changes were calculated
based on the function a(e) defined in (12) with heuris-
tics. The integrated score was calculated based on (1) as
a product of b(S) and a(e).
Evaluation using Mass Spectrometry Data
To evaluate the performance, we first consulted the pro-
teomics data of [32], which measure the protein level of
differential expression derived from transfecting hsa-
miR-124 or hsa-miR-1. Since protein inhibition is the
primary mode of miRNA silencing, the protein level
down-expression should be correlated more directly to
the targets than mRNA expression level. As a result, it
is of higher confidence to consider the proteins larger
down fold as real targets. The data consist of the fold
change of 1521 proteins. Intuitively, a better prediction
algorithm should have higher down-expressed proteins
among the top of the prediction ranked by the score.
Accordingly, we ranked the prediction according to the
scores calculated by each investigated algorithms and
then examine the cumulative sum of their protein
down-regulation in the ranked predictions. Figure 7
shows the result for the top 50 predictions for hsa-miR-
124, which indirectly reflects the prediction precision.
Particularly, the approach “Expression” uses simply
mRNA expression as a score and ranks the larger down-
expressed gene higher in the list. We note from Figure
7 that the proposed approach (Combined) achieves the
highest amount of protein level down-fold for the top
35 predictions, which indicates higher precision of the
proposed approach. The results of different numbers of
top predictions for several algorithms are further
depicted Figure 8. After top 300, the proposed algorithm
has the largest down fold, which also suggests higher
sensitive of the proposed algorithm. The same test was
implemented for hsa-miR-1, and the similar results are
shown in Figure 9 and Figure 10. We conclude based
on these results that the proposed algorithm outper-
forms the sequence-based prediction and the prediction
based expression data alone.
0.0.1 Precision-Recall (PR) Performance using IP pull-down
data
Since the utility of the evaluation on proteomic data is
limited by the coverage of the SILAC technology and
the potential noise in protein quantification, we further
validated the prediction of hsa-miR-1 and hsa-miR-124
using the Immunoprecipitation (IP) pull-down data
(Hendrickson, et al., 2008), which measures the potential
targets recruited by the ARG-2, an important

Table 3 GMM parameters estimated by VBEM

fold change mixture coefficient

Positive N(–0.4714, 0.5573) 1.8%

Negative N(0.0044, 0.3994) 98.2%

Figure 6 Precision Recall Curve Comparison Based on
Simulated Data. This figure indicated that the performance of
proposed algorithm is better than those using either sequence
information or expression data alone.
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component of the miRNA effector protein complexes. In
this experiment, 59 and 388 genes were determined as
high confidence targets of hsa-miR-1 and hsa-miR-124,
respectively, at a stringent FDR level of 0.01. We then
treated these genes as the true targets and investigated
the PR performance of different algorithms. The

Precision-Recall curve of the proposed algorithm as well
as SVMicrO, expression fold change, PicTar, miRanda,
MirTarget, PITA and Target Scan were plotted as Fig-
ure 11 and Figure 12. The result shows a clear enhance-
ment in both precision and recall of the proposed
approach when comparing other tested algorithms.

Comparison with the Overlap Method
As we mentioned before, most literature considers over-
lapping between sequence level prediction and down-
regulated mRNA for target prediction. The performance

Figure 7 Cumulative Sum of Protein Fold Change of Top 50
Predictions of hsa-miR-124. This figure shows the result for the
top 50 predictions, which indirectly reflects the prediction precision.
Particularly, the approach “Expression” uses simply mRNA expression
as a score and ranks the larger down-expressed gene higher in the
list. We note from Figure 7 that the proposed approach (Combined)
achieves the highest amount of protein level down-fold for the top
35 predictions, which indicates higher precision of the proposed
approach.

Figure 8 Cumulative Sum of Protein Fold Change for Different
Number of Top Ranked Predictions of hsa-miR-124. The
cumulative sum of different numbers of top predictions for several
algorithms are depicted. This figure shows that, after top 50, the
proposed algorithm has the largest down fold, which also suggests
higher sensitive for the proposed algorithm.

Figure 9 Cumulative Sum of Protein Fold Change of Top 150
Predictions of hsa-miR-1. We note similar superior performance of
the proposed approach as in Figure 8.

Figure 10 Cumulative sum of protein fold change for different
number of top ranked predictions of hsa-miR-1. The cumulative
sum of different numbers of top predictions for several algorithms
are depicted. This figure shows that, after top 100, the proposed
algorithm has the largest down fold, which also suggests higher
sensitive for the proposed algorithm.
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of such overlapping scheme was also evaluated. In Figure
11 and Figure 12, the black dotindicates the precision
and recall of the method that considers the intersection
of SVMicrO prediction and down-regulated mRNA as
targets. First, this overlapping method is outperformed
by the proposed combined method. Secondly, it can be
noted that the performance of this is not consistent. Par-
ticularly, for hsa-miR-124, the performance is slightly
improved compared to SVMicro, while for hsa-miR-1 the
performance greatly deteriorates. By investigating the

detailed prediction results, we found that some of the
experimentally validated targets were not down-regulated
but predicted as positive by SVMicrO. Examples include
NM080430, NM001078174, NM144706, NM001040402
and so on for hsa-miR-124 and NM002622 for hsa-miR-
1. These positive predictions by SVMicrO were reverted
to negative by the overlapping approach. This is the very
reason why the precision cannot be increased. Therefore,
a conclusion can be drawn once more that searching
down-regulated mRNAs for targets is not an effective
approach. Our proposed method provides a proper
model for the true distribution of miRNA targets. As a
result, improved performance can be achieved.

Conclusions
In this paper, we presented a novel algorithm for
miRNA target prediction by integrating sequence level
prediction results with microarray expression profiling
of miRNA transfection. A Gaussian mixture model was
designed to model the gene expression profiles of the
positive and negative targets and a Bayesian algorithm is
devised to integrate the data. The validation results on
both proteomics and IP pull-down data demonstrated
the superior performance of proposed algorithm.

Limitations and Future Work
Since our algorithm is proposed for integrating sequence
data with microarray measurement of miRNA transfec-
tion, target prediction can be carried out only for the
miRNAs, for which both types of data are available. Since
microarray measurements of genome-wide miRNA trans-
fection are not yet available, it is still infeasible to con-
duct genome-wide prediction using this algorithm.
However, as miRNA transfection becomes increasingly
popular and indispensible for miRNA target identifica-
tion, the need for integrating the two data types is highly
desirable. In an effort to provide prediction results, we
retrieved around 20 miRNA over-express microarray
data From GEO database. The prediction result can be
found in http://expmicro.cbi.utsa.edu.
The subsequence work of this paper will focus in two

aspects, which are, firstly, continue the predictions for
more miRNAs once the two types of data are accessible
and secondly improve the mathematical model to
further increase the performance.
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