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Abstract

Background: Short interfering RNAs (siRNAs) can be used to knockdown gene expression in functional genomics.
For a target gene of interest, many siRNA molecules may be designed, whereas their efficiency of expression
inhibition often varies.

Results: To facilitate gene functional studies, we have developed a new machine learning method to predict
siRNA potency based on random forests and support vector machines. Since there were many potential sequence
features, random forests were used to select the most relevant features affecting gene expression inhibition.
Support vector machine classifiers were then constructed using the selected sequence features for predicting
siRNA potency. Interestingly, gene expression inhibition is significantly affected by nucleotide dimer and trimer
compositions of siRNA sequence.

Conclusions: The findings in this study should help design potent siRNAs for functional genomics, and might also
provide further insights into the molecular mechanism of RNA interference.

Background
RNA interference (RNAi) is a post-transcriptional gene
regulatory mechanism by which a double-stranded RNA
(dsRNA) induces sequence-specific gene silencing [1]. The
RNAi pathway consists of multiple steps, including the
cleavage of the dsRNA by Dicer to form a 19-nucleotide
short interfering RNA (siRNA) with 3’ overhangs, the
incorporation of the siRNA molecule into the RNA-
induced silencing complex (RISC), and the recognition of
the target gene transcript(s) by the RISC-siRNA complex
to induce mRNA degradation or translational repression.
In mammals and many other organisms, chemically
synthesized siRNA molecules can be introduced into cells
to knockdown the expression of a specific gene. Because
of the simplicity and low cost, siRNA-based gene silencing
has quickly become an important technique in functional
genomics [2].

Since not all siRNAs are equally effective, siRNA
design is one of the critical steps in gene silencing stu-
dies. Earlier experimental data have suggested several
sets of empirical rules for designing potent siRNAs. For
example, Ui-Tei et al. [3] proposed several criteria for
potent siRNAs, including the presence of AU-rich 5’
terminal region and G/C at the 3’ end of the antisense
strand, and the absence of long GC stretches (>9 base
pairs). The thermodynamic properties of siRNA
duplexes were shown to affect target mRNA degradation
[4,5]. In addition, secondary structure in siRNAs could
reduce the efficacy of gene silencing [6]. Although these
findings provided important insight into RNA interfer-
ence, the empirical rules were often derived from rela-
tively small datasets, and thus might not cover all the
relevant features affecting siRNA potency.
With the accumulation of siRNA data, machine learn-

ing methods have been developed for both classification
and regression analysis of siRNA potency. Strom [7]
reported a genetic programming (GP) method with
boosting algorithms for the binary classification of
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effective and ineffective siRNAs. It was shown that the
boosted GP classifier outperformed support vector
machines (SVMs) trained on the same dataset. Ladunga
[8] trained SVMs for siRNA classification based on bio-
physical signatures of free energy, target site accessibility
and dinucleotide characteristics. Wang et al. [9] also
constructed an SVM classifier to identify hyperfunc-
tional siRNAs by using simple sequence and structural
features such as base composition at each position, GC
content, and secondary structure. Artificial neural net-
works (ANNs) have been trained for regression analysis
of siRNA efficacy. Huesken et al. [10] developed the
BIOPREDsi model with nucleotide sequence information
to predict the inhibitory activity of siRNAs, and used the
ANN model to design a human siRNA library. Shabalina
et al. [11] performed thermodynamic and correlation
analyses on a set of siRNAs, and constructed an ANN
model with three parameters characterizing siRNA
sequences. In addition, Vert et al. [12] constructed the
simple linear model DSIR using the LASSO procedure
for siRNA efficacy prediction with basic sequence
features.
The above-mentioned previous studies suggest that

many siRNA features of sequence composition, thermo-
dynamic stability and secondary structure are related to
the effectiveness of gene silencing. However, few
advanced methods have been used to select the most
relevant features for predicting siRNA potency. Most of
the previous studies selected some siRNA features based
on empirical knowledge or simple statistical analysis
(e.g., correlation analysis).
More recently, Klingelhoefer et al. [13] used a stochas-

tic logistic regression-based algorithm to identify rele-
vant features associated with siRNA potency. The
feature selection method revealed several sequence
motifs such as UCU in potent siRNAs.
In this study, random forests (RFs) were constructed

to select important sequence features for predicting
siRNA potency. RF-based variable importance measures
were previously used in microarray expression data ana-
lyses to select a relatively small set of informative genes
for disease/sample classification [14,15]. However, it
remained to be demonstrated whether the RF methodol-
ogy could be applied to sequence feature selection for
siRNA classification. The selected sequence features
were used to construct SVM models for predicting
siRNA potency. Our results suggest that siRNA potency
is significantly affected by its nucleotide dimer and tri-
mer compositions. Some nucleotide motifs such as UCC
appear to be positively correlated with siRNA efficacy,
whereas other motifs such as GAG may have a negative
effect on gene expression inhibition. The findings will
likely be useful for rational siRNA design in large-scale
functional genomics projects.

Methods
Data
As described in the previous study [7], a non-redundant
set of experimentally evaluated siRNAs were collected
from several published studies. For each siRNA, the
relative level of target gene mRNA was the ratio of
the remaining mRNA level after siRNA treatment to the
wild-type control level. The relative mRNA level
(ranging from 0 to 1) was used to determine the effec-
tiveness of mRNA knockdown. Effective siRNAs gave
rise to lower levels of remaining gene expression. The
cut-off level of 0.5 was used to define positive instances
(potent siRNAs with the relative mRNA level ≤ 0.5) and
negative instances (non-potent siRNAs with the relative
mRNA level > 0.5). The dataset used in this study con-
sisted of 165 positive instances and 115 negative
instances. Each siRNA instance was a sequence of 19
nucleotides (from 5’ to 3’ end) representing the anti-
sense strand of the target gene mRNA transcript. The
two-nucleotide overhang at the 3’ end of a siRNA was
not included in the data instance. Although more
siRNA data have recently become available and will be
used in the future study, our approach was first tested
on this relatively small dataset so that our findings
could be compared with the previously published
results.

Sequence features
Of many potential features, only a few may be relevant
for siRNA classification. This study examined 120
sequence features belonging to six groups (Table 1).
The first group has 19 features, each of which is the
nucleotide identity (A, U, G or C) of a sequence posi-
tion in a siRNA. In this study, real numeric values are
used to represent the nucleotide identity: 0.1 for A, 0.2
for U, 0.3 for G, and 0.4 for C. The second feature
group indicates the base composition of a siRNA (the
frequency of A, U, G or C). The third group has 16 fea-
tures representing the frequencies of all possible dinu-
cleotides (e.g., AG, UC, etc). The fourth feature group
consists of 64 frequencies of all possible trinucleotides
(e.g., CAG, UCC, etc). The fifth feature group indicates
the global and local G/C contents in a siRNA. There are
16 features, one for the overall G/C content and 15 for

Table 1 Potential sequence features for siRNA classification

Feature group Number of features

siRNA nucleotide sequence 19

Single-nucleotide frequencies 4

Dinucleotide frequencies 16

Trinucleotide frequencies 64

Global and local G/C contents 16

Secondary structure stability 1
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local G/C contents. With a sliding window size of five
nucleotides, local G/C contents are calculated for all the
possible windows along a 19-nucleotide siRNA
sequence. The sixth group has the feature of siRNA sec-
ondary structure stability. The free energy of secondary
structure was calculated by using the RNAfold program
in the Vienna RNA package [16].

Random forests for feature selection
In this study, important sequence features for siRNA
classification were identified by using the random forest
(RF) algorithm implemented in the software package
available at http://www.stat.berkeley.edu/~breiman/Ran-
domForests/. The RF algorithm uses a combination of
independent decision trees to model data and measure
variable importance [17]. Each decision tree in a forest
is constructed using a bootstrap sample from the data,
and about one-third of the data instances are not used
to grow the tree. These instances are called the out-of-
bag (oob) data for the tree. At each node of the tree, m
variables out of all the n input variables (m « n) are ran-
domly selected, and the tree node is split using the
selected m variables. The random selection of features
at each node decreases the correlation between the trees
in the forest. Thus, the RF algorithm can handle many
redundant features and avoid model overfitting. It has
been shown that RFs outperform AdaBoost ensembles
on noisy datasets, and can perform well on data with
many weak input variables [17].
To evaluate the importance of variable x, its values in

the oob instances associated with each tree in the forest
are permuted randomly. The permuted oob instances as
well as the original oob instances are then classified
using the tree. The number of correct classifications on
the original oob instances is subtracted by the number
of predictions for the correct class on the permuted oob
instances to calculate a raw score based on the tree. The
importance score of variable x is defined as the average
of raw scores over all the trees in the forest. For a fixed
number of trees in the forest, the larger importance
score a variable has, the more important it is for classifi-
cation. In addition, a z-score can be obtained by divid-
ing the variable importance score by its standard error,
and a statistical significance level may be assigned to the
z-score assuming normality [17].

Support vector machine classifiers
Support vector machines (SVMs) were trained with the
selected sequence features to predict siRNA potency.
The SVMlight software package (available at http://
svmlight.joachims.org/) was used to construct SVM clas-
sifiers. The SVM learning algorithm has been applied to
a variety of biological problems for pattern classification,
and may have superior generalization power with the

ability to avoid overfitting [18]. For a given set of bin-
ary-labelled training examples, the SVM algorithm maps
the input space into a higher-dimensional space, and
seeks a hyperplane to separate the positive data
instances from the negative ones [19]. The optimal
hyperplane maximizes the separation margin between
the two classes of training data, and is defined by a frac-
tion of the input data instances (called support vectors)
close to the hyperplane. The distance measurement
between the data points in the high-dimensional space
is defined by the kernel function. In this study, we used
the radial basis function (RBF) kernel:

K x y x y( , ) exp( )     = − − 2 (1)

where x and

y are two data vectors, and g is a training

parameter. A smaller g value makes the decision bound-
ary smoother. Another parameter for SVM training is
the regularization factor C, which controls the trade-off
between low training error and large margin [19]. Dif-
ferent values for the g and C parameters have been
tested in this study to optimize the classifier
performance.

Classifier performance evaluation
We used a fivefold cross-validation approach to evaluate
the performance of SVM classifiers.Positive and negative
instances were distributed randomly into five folds. In
each of the five iterative steps, four of the five folds
were used to train a classifier, and then the classifier
was evaluated using the holdout fold (test data). The
predictions made for the test instances in all the five
iterations were combined and used to compute the fol-
lowing performance measures:

Accuracy=
TP TN

TP TN FP FN

+
+ + +

(2)

Sensitivity=
TP

TP FN+
(3)

Specificity =
+

TN

TN FP
(4)

MCC
( )( )( )( )

= × − ×
+ + + +

TP TN FP FN

TP FP TP FN TN FP TN FN
(5)

where TP is the number of true positives; TN is the
number of true negatives; FP is the number of false
positives; and FN is the number of false negatives. In
addition to overall accuracy, sensitivity and specificity,
Matthews correlation coefficient (MCC) is also com-
monly used as a measure of the quality of binary
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classifications [20]. MCC measures the correlation
between predictions and the actual class labels.
The Receiver Operating Characteristic (ROC) curve is

probably the most robust approach for classifier evalua-
tion and comparison [21]. The ROC curve is drawn by
plotting the true positive rate (i.e., sensitivity) against
the false positive rate, which equals to (1 – specificity).
In this work, the ROC curve has been generated by
varying the output threshold of a classifier and plotting
the true positive rate against false positive rate for each
threshold value. The area under the ROC curve (AUC)
can be used as a reliable measure of classifier perfor-
mance [22]. Since the ROC plot is a unit square, the
maximum value of AUC is 1, which is achieved by a
perfect classifier. Weak classifiers have AUC values close
to 0.5.

Results and discussion
Random forest-based selection of important features
There are many potential features for siRNA classifica-
tion. To select the important features, siRNA sequences
were coded with the 120 features shown in Table 1, and
then used to construct random forests (RFs) with differ-
ent settings of the m parameter (the number of variables
randomly selected to split each node in a tree). As sug-
gested by the RF software [17], the ceiling of the square
root of the total number of input variables might be
used as the default value of m (i.e., m = 11). In this
study, 10 RFs were constructed by varying the m para-
meter setting from 2 to 20 (m = 2, 3, 5, 7, 9, 11, 13, 15,
17, or 20). Each RF with 1000 trees selected the top 20
features based on the z-score of variable importance.
Some of the common features selected by the RFs were
then identified for siRNA classification. The use of mul-
tiple RFs might increase the reliability for identifying
relevant features.
Table 2 shows the important features that were

selected by at least 5 out of the 10 RFs. The average
values of raw scores and z-scores of variable importance
are shown together with the feature’s correlation with
siRNA efficacy (inhibition of target gene expression).
Interestingly, the efficacy of gene silencing appears to be
significantly affected by nucleotide dimer and trimer
compositions of siRNA sequence. For instance, the most
important feature is the frequency of UCC on the anti-
sense strand (UCC% in Table 2). This feature was
selected by all the 10 RFs with an average z-score of
14.909 (statistical significance level p = 0). Moreover,
the frequency of UCC was found to be positively corre-
lated with siRNA efficacy (Pearson’s correlation coeffi-
cient r = 0.294). The frequency of UC was also selected
as an important feature by the RFs (z-score = 11.255,
and r = 0.281). The other composition features posi-
tively correlated with siRNA efficacy include CG%, AAG

%, AUC%, GCG%, AAC%, UUU%, ACA%, UUC%, and
CAA% (Table 2).
Some trinucleotide or dinucleotide features show

negative correlation with siRNA efficacy. For example,
the frequencies of CAG and GAG on the antisense
strand have average z-scores of 11.849 and 11.674,
respectively, and are negatively correlated with siRNA
efficacy (Table 2). The Pearson’s correlation coefficients
are -0.289 for CAG% and -0.305 for GAG%. The other
composition features with negative effects on siRNA
efficacy include GCA%, AUA%, CUG%, AG%, GG%,
GGA%, and GGC% (Table 2). These nucleotide motifs
should be avoided in designing potent siRNAs.
Several features of base composition and G/C content

were also selected by the RFs. As shown in Table 2, the
frequency of G on the antisense strand (G%) is nega-
tively correlated with siRNA efficacy (r = -0.266),
whereas U% shows a positive correlation with gene
expression inhibition (r = 0.127). Both the global G/C
content and the G/C content in the first 5 bases (anti-
sense strand) are negatively correlated with siRNA effi-
cacy (r = -0.147 and -0.256, respectively). In addition,
the nucleotide identity at the third position (NT3, from
the 5’ end) of the antisense strand may be an important

Table 2 Important features selected by random forests

Feature #RFs Raw score Z-score Correlation

UCC% 10 2.461 14.909 0.294

CAG% 10 1.514 11.849 -0.289

GAG% 10 1.652 11.674 -0.305

UC% 10 1.988 11.255 0.281

GCA% 10 1.140 11.191 -0.265

G% 10 1.672 9.483 -0.266

CG% 10 1.235 8.460 0.133

AUA% 10 0.524 8.148 -0.166

AAG% 9 0.848 7.851 0.102

CUG% 10 0.918 7.240 -0.173

U% 9 1.201 7.170 0.127

G/C% (first 5 bases) 10 1.075 7.116 -0.256

AUC% 8 0.632 6.565 0.201

AG% 8 0.910 6.557 -0.277

GG% 9 0.831 6.478 -0.190

GCG% 6 0.554 6.422 0.059

G/C% (overall) 5 0.959 6.414 -0.147

GGA% 7 0.717 6.326 -0.218

AAC% 10 0.409 6.326 0.162

UUU% 9 0.714 6.317 0.108

GGC% 9 0.595 6.304 -0.134

NT3 (C) 5 0.901 6.258 -0.199

ACA% 8 0.473 6.218 0.092

UUC% 7 0.542 5.897 0.125

CC% 7 0.704 5.807 0.004

CAA% 6 0.432 5.602 0.129
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feature for siRNA classification. A nucleotide C at the
third position has a negative effect on siRNA efficacy
(r = -0.199). However, the nucleotide identities at the
other positions as well as siRNA secondary structure
stability were not selected by most of the RFs.
Some of the important features in Table 2 were pre-

viously shown to be related to the efficacy of gene silen-
cing. Very high G/C contents were found to have a
negative effect on siRNA efficacy [9,13]. The presence of
AU-rich 5’ terminal region of the antisense strand was
proposed to be one of the criteria for designing potent
siRNAs [3]. Consistent with the previous findings, both
the overall G/C% and the 5’ terminal G/C% (first 5 bases)
of the antisense strand were selected by the RFs in this
study. It was previously shown that the frequency of U,
but not G or GG, was positively correlated with siRNA
efficacy [8]. This observation has also been confirmed in
the present study. Nevertheless, many of the other fea-
tures in Table 2, including the top three features (UCC%,
CAG%, and GAG%), have not been well documented in
the literature. Thus, the findings in this study provide
new insights into the rational design of potent siRNAs.

Support vector machine classifiers of siRNA potency
To validate the important features selected by the RFs,
support vector machines (SVMs) were trained with these
features for siRNA classification. The siRNA instances
were labeled with either ‘potent’ (positive instances show-
ing ≥50% reduction in gene expression) or ‘non-potent’
(negative instances showing <50% reduction in gene
expression). Classifier performance was evaluated using a
fivefold cross-validation approach. Different settings of
SVM training parameters were tested, and the best classi-
fier was constructed with g = 1.2 and C = 1.2. As shown
in Table 3, the SVM classifier, named RF_Features,
achieved 70.71% overall accuracy with 73.94% sensitivity
and 66.08% specificity. The Matthews correlation coeffi-
cient (MCC) was 0.3983, and the area under the ROC
curve (AUC) reached 0.7529. Thus, the features selected
by the RFs can be used to construct relatively accurate
SVM models for predicting siRNA potency.
For performance comparison, SVM classifiers were

also constructed using all the 120 features or only the
19 siRNA sequence features (Table 1). As shown in
Table 3, the classifier RF_Features outperformed these
two classifiers, namely All_Features and Seq_Features.

The All_Features classifier (constructed with all the 120
features) achieved 68.93% overall accuracy with 76.97%
sensitivity and 57.39% specificity, MCC = 0.3499, and
AUC = 0.7372. The results suggest that there may be
some redundant or correlated information in the full
feature set, and the RF-based feature selection can be
used to improve classifier performance. The Seq_Fea-
tures classifier (constructed using the 19 siRNA
sequence features) showed significantly worse perfor-
mance than RF_Features (Table 3), suggesting that the
selected composition features contain some important
information for siRNA classification. In Figure 1, the

Table 3 Performance of support vector machine
classifiers

Classifier Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

MCC AUC

RF_Features 70.71 73.94 66.09 0.3983 0.7529

All_Features 68.93 76.97 57.39 0.3499 0.7372

Seq_Features 65.36 68.48 60.87 0.2912 0.6624

Figure 1 Classifier performance evaluation using ROC curves.

Figure 2 Correlation of SVM output with siRNA efficacy. The
true positive (TP) and true negative (TN) predictions are shown in
red circles, whereas the false positive (FP) and false negative (FN)
predictions are shown in green triangles.
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Receiver Operating Characteristic (ROC) curves of the
three SVM classifiers are compared, and the result is
consistent with the performance measures shown in
Table 3. The classifier RF_Features appears to be slightly
more accurate than All_Features. Both RF_Features and
All_Features are significantly better than Seq_Features.
To further evaluate the classifier RF_Features, we

examined the SVM output used to predict siRNA
potency. The classifier was constructed using siRNA
instances with binary labels (potent or non-potent). The
actual magnitude of gene expression inhibition was not
included in the training data. In Figure 2, the SVM out-
put for each test instance is plotted against the level of
gene expression inhibition. Interestingly, the output
from RF_Features is positively correlated with the level
of gene expression inhibition (Pearson’s correlation coef-
ficient r = 0.4715). The result further suggests that the
classifier RF_Features has learned some important
siRNA patterns related to the efficacy of gene silencing.
The classifier RF_Features compared favorably with

several existing models. In the previous study by S trom
[7], a similar dataset of siRNAs was used to construct
SVM and genetic programming (GP) classifiers. The
most accurate SVM classifier achieved an AUC of 0.70,
MCC = 0.31, 61% sensitivity and 68% specificity. The
boosted GP classifier showed better performance with
AUC = 0.72, MCC = 0.24, 50% sensitivity and 73% spe-
cificity. In this study, the classifier RF_Features achieved
an AUC of 0.7529, MCC = 0.3983, 73.94% sensitivity
and 66.09% specificity. However, it is not straightfor-
ward to compare RF_Features with the other existing
models. In two previous studies [8,9], SVMs were also
trained for siRNA classification, but with different defi-
nitions of positive and negative instances. In several
other studies [10-12], regression models instead of clas-
sifiers were constructed for predicting siRNA efficacy.

Conclusions
We have developed a new machine learning approach
for predicting siRNA potency based on random forests
and support vector machines. Since there were many
potential features for siRNA classification, random for-
ests were used for feature selection based on variable
importance scores. Interestingly, most of the selected
features were nucleotide dimer and trimer compositions
of siRNA sequence. Some nucleotide motifs (e.g., UCC)
showed positive correlation with siRNA efficacy,
whereas other motifs (e.g., GAG) might have a negative
effect on gene silencing. These important features were
used to train support vector machines for predicting
siRNA potency with relatively high accuracy. In the
future, we will apply our approach to a large, integrated
dataset of siRNAs, and develop a software system for
rational siRNA design in functional geneomic studies.
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