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Abstract

Background: Harnessing vast amounts of genomic data in phylogenetic context stemming from massive
sequencing of multiple closely related genomes requires new tools and approaches. We present a tool for the
genome-wide analysis of frequencies and patterns of amino acid substitutions in multiple alignments of genes’
coding regions, and a database of amino acid substitutions in the phylogeny of 12 Drosophila genomes. We
illustrate the use of these resources to address three types of evolutionary genomics questions: about fluxes in
amino acid composition in proteins, about asymmetries in amino acid substitutions and about patterns of
molecular evolution in duplicated genes.

Results: We demonstrate that amino acid composition of Drosophila proteins underwent a significant shift over
the last 70 million years encompassed by the studied phylogeny, with less common amino acids (Cys, Met, His)
increasing in frequency and more common ones (Ala, Leu, Glu) becoming less frequent. These fluxes are strongly
correlated with polarity of source and destination amino acids, resulting in overall systematic decrease of mean
polarity of amino acids found in Drosophila proteins. Frequency and radicality of amino acid substitutions are
higher in paralogs than in orthologous single-copy genes and are higher in gene families with paralogs than in
gene families without surviving duplications. Rate and radicality of substitutions, as expected, are negatively
correlated with overall level and uniformity of gene expression. However, these correlations are not observed for
substitutions occurring in duplicated genes, indicating a different selective constraint on the evolution of
paralogous sequences. Clades resulting from duplications show a marked asymmetry in rate and radicality of
amino acid substitutions, possibly a signal of widespread neofunctionalization. These patterns differ among protein
families of different functionality, with genes coding for RNA-binding proteins differing from most other functional
groups in terms of amino acid substitution patterns in duplicated and single-copy genes.

Conclusions: We demonstrate that deep phylogenetic analysis of amino acid substitutions can reveal interesting
genome-wide patterns. Amino acid composition of drosophilid proteins is shaped by fluxes similar to those
previously observed in prokaryotic, yeast and mammalian genomes, indicating globally present patterns. Increased
frequency and radicality of amino acid substitutions in duplicated genes and the presence of asymmetry of these
parameters between paralogous clades indicate widespread neofunctionalization among paralogs as the
mechanism of duplication retention.
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Background
Until recently, evolutionary genomics questions, includ-
ing questions about amino acid composition of proteins,
patterns of stabilising and positive selection and
mechanisms of retention of duplicated genes and new
function evolution, were typically answered either by
analyzing phylogenies of select gene families [1,2] or by
full-genome analysis of triplets of genomes with two
ingroup genomes compared to measure evolutionary
rates, while the third, outgroup, genome used to polarize
the observed changes [3]. As the strategy of genome
sequencing shifts from broad taxonomic coverage to
sequencing multiple closely related genomes [4], a need
arises in a set of tools to accomplish a phylogenetic ana-
lysis of amino acid substitutions in coding portions of a
large number of protein families simultaneously and to
address the question of generality of patterns observed
in limited and possibly biased set of select gene families.
Questions that can be asked using such approach
include, but certainly are not limited to enquiries about
long-term changes in amino acid compositions of pro-
teins, about selective constrains and pressures across the
genome and evolution of novel gene functions by reten-
tion and modification of duplicated genes. Here we pre-
sent a tool to accomplish phylogenetic analysis of amino
acids substitutions on the whole-genome scale using
multiple amino acid alignments of over 11,000 gene
families from twelve completely sequenced Drosophila
genomes and illustrate its utility by the analysis of the
resulting database of amino acid substitutions spanning
70 million years of drosophilid proteins evolution.
Global patterns of amino acid compositions of proteins

is thought to not be at a detailed balance, but rather
appears to be gradually evolving by consistently adding
rare to and removing common amino acids from the
amino acid repertoire of protein sequences [3,5]. There is
an on-going debate on whether is pattern reflects the
order in which amino acids have been added to the
genetic code [3,6] or is caused by biases in mutability of
particular codons [7-9]. As pointed out by [8], one way to
address this controversy is to analyze the observed trends
in a range of genomes of increasing degree of divergence:
if the observed patterns are caused by the effect of amino
acid polymorphism reflecting mutation-selection biases
they are expected to become less pronounced as diver-
gence between genomes increases. Furthermore, there
may be substantial differences in selection pressures on
reciprocal amino acid substitutions [10]: changes from
polar to non-polar amino acids in human proteins are
more permissive than vice-versa. Such asymmetry and
the degree to which is can contribute to the large-scale
changes in amino acid composition has not yet been
measured on the scale of several genomes.

Differences in patterns of selective pressure have also
been predicted between evolutionary retained duplicated
genes and single-copy genes [11-14]. Duplicated genes
can persist in genomes either because one of the copies
has acquired a new function (neofunctionalization
[15-17]), or because both copies are now needed to per-
form the function or functions previously accomplished
by a single copy (subfunctionalization). Subfunctionaliza-
ton can occur either by means of partitioning of the
ancestral functions between the two copies (for example
by loss of one of alternative promoters in each copy), or
by means of balanced degradation, i.e., fixation of hypo-
morphic alleles in each copy [18,19]. Each of these
mechanisms implies relaxation of stabilizing selection,
resulting in faster evolution in paralogs than in single-
copy genes. Specifically, pure neofunctionalization
occurs by accumulation of mutations in one of the
copies, while the other remains under stabilizing selec-
tion [13,14,16,17]. Subfunctionalization occurring
through balanced degradation, on the other hand, is
accompanied by accumulation of deleterious mutations
in both paralogs. Finally, subfunctionalization occurring
by tissue- or developmental stage-specialization of gene
expression without a change in functionality would result
in retention of stabilizing selection action in both para-
logs. It is much harder to make predictions about other
types of subfunctionalization, such as subdivision of pre-
existing multiple substrate specificity between duplicated
genes, because the two functions may depend on differ-
ent parts of coding portion of the gene and, therefore,
retaining one but not the other may relax selective con-
straints acting on at least part of the sequence. Previous
studies of duplicated genes in Drosophila genomes (e.g.,
[19]) detected elevated signal of positive selection in a
subset of gene families with duplications using Ka/Ks

approach. Here we report a genome-wide analysis of dif-
ferences between duplicated and single copy genes in fre-
quency and spectrum of amino acid substitutions.

Results
Application of AcidMiner to Drosophila data: a database
of amino acid substitutions in 12 genomes
The main purpose of AcidMiner is to extract amino
acid substitutions data from multiple alignments and to
expand them in the form of relational tables so then
standard SQL can be used to perform queries by any
combination of criteria and to calculate aggregates.
AcidMiner takes raw data in the form of multiple align-
ments and Newick protein and species trees, processes
it to produce derivative data such as parsimony-based
polarization of substitutions and stores the result in a
relational database structure. The raw data for the ana-
lysis reported here was a set of multiple amino acids
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alignments from 12 completely sequenced Drosophila
genomes ([4,19]; see Methods). A set of SQL queries
that can be run against this database to produce custom
datasets with given restrictions and/or calculate any
aggregates including statistical parameters on different
datasets. In addition, for tasks not easily expressible in
SQL, data already in the database to produce further
derivative data. Examples of such tasks are: defining
clades for each duplication, calculating number of sub-
stitutions in each clade (including cases when we can
not unambiguously determine exactly which substitu-
tions has occurred), calculating protein lengths in clades,
calculating ages (timing data) of substitutions and
duplications.
The resulting database in its current form includes

3,697,627 amino acid substitutions occurring in 12 dro-
sophilid genomes spanning 11258 gene families. It con-
sists of 14 tables defining the base data model. Two
additional tables contain preloaded data for gene ontol-
ogy and amino acid substitution properties, such as
pair-wise change in polarity. Main tables include
Families table, Tree Structure tables for protein and spe-
cies trees with a separate record for each tree node and
a branch terminating in this node, a Substitutions table
with a record for each unambiguous and ambiguous
substitution including a reference to branch where it
occurred (or might have occurred for ambiguous substi-
tutions) and a Duplications table, which includes phylo-
genetic information about each duplication and the two
clades generated it. The database is available for down-
load from AcidMiner website [20] in the form of a vir-
tual machine. Any standard SQL tool can be used;
queries for most of the queries we used for this study
are also available in the AcidMiner repository, along
with the source code and a detailed description of the
database structure.

Fluxes and asymmetries in amino acid substitutions
Figure 1 shows the results of amino acid fluxes analysis
(data available in Additional file 1). As has been pre-
viously shown [3], frequent amino acids, in particular
alanine, glutamic acid, leucine and proline, tend to be
lost more often than created in protein sequences, while
rare amino acids (in particular cysteine, histidine and
methionine) are created more often than lost (Fig. 1 A,
B). There is a strong rank correlation between relative
gain of amino acids in this study and in Ref [3], based
on a variety of genome triplets, mostly prokaryotic (Fig.
1C). The general pattern of relative gain-loss is the same
in the entire 12-genome phylogeny (Fig. 1A, red bars)
and in pairs of sister species of different divergence
depth (Fig. 1A, blue bars), however, there are excep-
tions. For example, phenylalanine and asparagines,
which are moderate gainers in the entire phylogeny,

show a net loss in the shallowest branch (D. persimu-
lans/D. pseudoobscura), while arginine, a weak loser in
the whole phylogeny shows a strong net gain in the
shallow branches.
Contrary to the prediction based on the effect of

intraspecific polymorphism [7,9], the observed gain-loss
pattern does not become less pronounced as the diver-
gence between genomes increases (Fig 1 D, E ; Addi-
tional file 2). Rank correlation with the global gain-loss
pattern from Ref [3] slightly increases with branch
depth, while mean pair-wise asymmetry (|D| calculated
for each amino acid pair) and correlation with amino
acid frequency remains flat. There is a slight tendency
towards decrease of mean asymmetry (|D|) with the
depth of phylogeny (Fig. 1 E), but neither of the pair-
wise comparison of shallow vs. deeper branches is
significant.
Pair-wise asymmetry of amino acid gains and losses

had a clear manifestation in terms of average change in
amino acid polarity. Amino acid pairs with the largest
polarity gain had the highest asymmetry towards net
gain of the less polar amino acid (Fig. 2A). The degree
of polarity asymmetry differed among genes of different
functionality (Fig. 2B): nucleic acid- and nucleotide-
binding proteins had the strongest asymmetry towards
net gain of non-polar amino acids, while in receptor and
transporter proteins such asymmetry was not observed.
Likewise, net loss of polarity was the highest in proteins
with intracellular localization, intermediate in proteins
with extracellular localization and the lowest in mem-
brane proteins, indicating the role of hydrophobicity of
the protein’s cellular environment on relative gain and
loss rate of polar and non-polar amino acids.

Frequencies and radicality of amino acid substitutions in
duplicated genes
Duplicated genes appeared to accumulate more amino acid
changes since duplication (per unit of time measured in
units of synonymous substitutions per 4-fold degenerative
site) than single copy genes (Fig. 3). Although the difference
was statistically significant, it was not drastic: among 1701
gene families with duplications and with at least 1 substitu-
tion in both duplicated and unduplicated parts of the phy-
logeny paralogs accumulated more substitutions per unit of
branch lengths than single copy genes in 988 families (58%;
sign test P<0.00001). This relationship also varied across
functional groups of genes, being the strongest in non-TF
DNA-binding proteins, weaker in enzymes and protein-
binding proteins and undetectable or reversed in other
functional groups of proteins. Overall the rate of substitu-
tions was the greatest in paralogs and the lowest in undu-
plicated sections of phylogenies of gene families with
duplications, both when all substitutions and unambiguous
substitutions only were considered (Fig. 3 inset).
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Paralogs also evolved by more radical substitutions.
Across functional groups of proteins (with the exception
of transporter proteins) duplicated portions of phyloge-
nies accumulated amino acid substitutions with greater
average absolute change in polarity (Fig. 4A), while sin-
gle copy genes typically did not differ significantly from
gene families without duplications. Likewise, both over-
all and in every single functional category, paralogs dif-
fered by amino acid pairs with lower Exchangeability
[21] (Fig. 4B). Again, single copy genes in families with
duplications were intermediate between genes with no
duplications and paralogs overall and typically did not
differ from genes with no duplications within each func-
tional category.
As expected, substitution rates and radicalilty

decreased with mean expression rate in the whole fly
and increased with the coefficient of variance of expres-
sion rate across larval and adult tissues [22] (Fig. 5), cor-
roborating previously observed patterns of stronger
selective constraints in highly expressed genes and in

household genes [23-25]. However, both effects were
much less pronounced in paralogs than in single-copy
genes; neither regression over mean expression level was
significant (Fig. 5 A, B) and, while relative rate of substi-
tutions increased with CV of expression rates across tis-
sues, difference in polarity showed no correlation in
paralogs. To summarize this pattern, the rate and radi-
cality of duplicated genes evolution appeared to be uni-
formly high independently from gene expression rate
and ubiquity. Data on rates and radicality of amino acid
substitutions organized by gene family are available in
Additional file 3.

Clade asymmetries in duplicated genes
Table 1 summarizes the extent of asymmetry among
clades resulting from duplication events. Substitution
counts show a significant clade asymmetry in a large
number of duplications. Asymmetry in radicality mea-
sures (|DPolarity| and Exchangeability) survives multiple
tests correction in a lower number of tests. Total

Figure 1 Fluxes of amino acids in 12 Drosophila genomes. A: Loser and gainer amino acids in the whole phylogeny (red bars) and terminal
branches of different depth leading to sister species (blue bars; colour darkness increases with the depth of terminal branches). D_pseper –
substitutions in D. pseudoobscura and D. persimulans branches; D_simsec – in D. simulans and D. sechelia branches; D_yakere – in D. yakuba and
D. erecta branches; D_virmoj – in D. virilis and D. mojavensis branches. Relative amino acid gain D = (Gain-Loss)/(Gain+Loss) [3]. B: Relationship
between relative amino acid gain (D) and frequency of each amino acid in 12 Drosophila genomes. Red circles – all 12 genomes, blue circles –
only substitutions in the most shallow branches (in D. pseudoobscura and D. persimulans). C. Relationship between relative amino acid gain (D)
and gain-loss rank in Ref [3]. Symbols as on Fig 1B. D. Rank (Spearman) correlation between relative amino acid gain (D) in branches of different
depths in this study and in Ref [3] (r; black circles); Pearson coefficient of correlation between D and amino acid frequency in 12 Drosophila
genomes (r, green diamonds). E. Mean pair-wise asymmetry of reciprocal substitutions (|D|, red squares). Branch depth (Ks) on parts D and E is in
synonymous substitutions per 4-fold degenerative site [4].
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number of tests is different, because asymmetry was
tested for all duplications, while other parameters –
only for duplications, in which both clades had at least
2 unambiguous substitutions. Excluding terminal
branches of the phylogeny, potentially contaminated by
substitutions in pseudogenes and therefore biased
towards clade asymmetry, does not change the result.
Clade asymmetries by molecular function categories

are presented on Fig. 6. Protein- and RNA-binding pro-
teins were characterized by the highest asymmetry of
substitutions rates, while nucleotide-binding proteins
and transcription factors had the lowest (although only
enzymes vs. protein-binding proteins comparison is

significant by Tukey-Kramer test). Nucleotide-binding
proteins, on the other hand, demonstrated the highest
asymmetry in both absolute polarity change and exchan-
geability of substitutions in the two clades, along with
transcription factors, enzymes and structural proteins.
The lowest radicality clade asymmetry was seen in
RNA-binding and transporter proteins. Data on rates
and radicality of amino acid substitutions organized by
duplications are available in Additional file 4.

Discussion
Several caveats in the data and analysis require atten-
tion. Firstly, alignments we used may contain pairs of

Figure 2 Amino acid polarity and asymmetry of net gains and losses. A. Correlation between relative net gain (D) and difference in polarity
(Destination-Source) for 190 pair of amino acids. B. Net decrease of mean amino acid polarity due to substitutions in proteins of different
molecular functions. C. Net decrease of mean amino acid polarity due to substitutions in proteins of different cellular localization.

Yampolsky and Bouzinier BMC Genomics 2010, 11(Suppl 4):S10
http://www.biomedcentral.com/1471-2164/11/S4/S10

Page 5 of 12



paralogs, in which one of the copies is undergoing pseu-
dogenization and is nor longer expressed, but has not
yet acquired a frameshift, which would allow it to be
recognized as a pseudogene. Indeed, there is a signifi-
cant excess of nonsense mutations (per missense) pre-
sent in the terminal branches of phylogeny (data not
presented), indicating presence of pseudogenes in the
alignments. Pairs of paralogs, in which one gene copy is
undergoing pseudogenization, will demonstrate clade
asymmetry, mimicking the signature of neofunctionali-
zation. However, such paralogs are almost certainly pre-
sent only in the most terminal branches of Drosophila
phylogeny spanning over 70 mln years, because the half-
life of duplications, in which one of the copies under-
goes pseudogenization, is 2-4 mln years (12; 26).
Terminal branches include a minority of duplications in
our database and excluding such branches from the ana-
lysis does not alter the results (Table 1). This indicates
that the observed clade asymmetry is not an artefact of
pseudogenes. A direct comparison of clade asymmetries
in terminal vs. non-terminal duplications is not possible
for two reasons. Firstly, there are much fewer substitu-
tions in the terminal branches, so there is an intrinsic
difference in statistical power. Secondly, clade asymme-
try analysis is based on unambiguous substitutions and
the frequency of unambiguous substitutions increases
with the depths of the phylogeny, possibly biasing such
comparison.
On the other hand, some true functional paralogs may

be missing from the alignments, particularly those

resulting from ancient duplications, due to homology
below the threshold used by the reciprocal BLAST algo-
rithm (see Methods). This creates a bias towards less
divergent paralogs, reducing our ability to detect ele-
vated rates of evolution in duplicated genes. Relative
magnitude of these opposing biases remains unknown.
Further, results presented in Table 1 do not necessa-

rily indicate that clade asymmetries are more likely to
manifest themselves in substitution rates than in substi-
tution radicality. The number of test surviving multiple
test correction probably reflects differences in statistical
power rather than a true biological phenomenon.
Systematic loss/gain asymmetry in amino acid compo-

sition in 12 Drosophila genomes corroborates patterns
previously observed in a variety of taxonomically diverse
triplets of genomes [3]. This pattern does not become
less pronounced as more and more distant genomes are
included into consideration, indicating that it is not
caused by the effect of polymorphisms reflecting
mutation-selection balance influenced by mutational
asymmetries [7,9].
We also demonstrate that this net loss/gain asymme-

try is strongly correlated with source and destination
amino acid polarities: substitutions of polar amino acids
by non-polar ones have a higher net rate than the reci-
procal substitutions. In the past we have demonstrated a
similar polarity-related asymmetry in selection coeffi-
cients against amino acid substitutions in human pro-
teins [10]; however this asymmetry was largely limited
to strong selection (i.e., selection against clinically

Figure 3 Relative frequency of amino acid substitutions in single copy and duplicated genes. Ka = Number of amino acid substitutions
per amino acid site; Ks = cumulative number of synonymous substitutions per 4-fold degenerative site [4], i.e. cumulative length of branches
leading to either single copy or duplicated genes. Ka / Ks for single copy and duplicated branches calculated for each gene family separately and
averaged by molecular function without weighing. Standard errors shown reflect variance among gene families. Red bars: single copy genes in
gene families without duplications; orange bars: single copy genes in gene families with duplication; green bars – duplicated genes. Inset: All
substitutions and unambiguous substitutions for all gene families combined.
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important phenotypes) and was not seen in evolutionary
substitution rates.
One may hypothesise that replacing polar amino acids

by any is less disruptive for the protein function because
polar amino acids have a lower tendency to be located
internally in the tertiary protein structure [21]. If so, we
would expect the decrease of polarity due to amino acid
substitutions to be the lowest in membrane proteins, in
which polar amino acids in within-membrane domains
tend to be internally located. Indeed, the decrease of
polarity due to substitutions is the weakest in receptor
and transporter proteins, many of which have mem-
brane-embedded hydrophobic regions (Fig. 2 B) and in
proteins with membrane localization (Fig. 2 C).
A question remains how is it possible that asymmetry

in amino acid gains and losses systematically removed

polar amino acids more often than non-polar ones
(Fig.2A) over 70 mln years of drosophilid evolution (and
actually over much longer period of evolution of pro-
teins of much broader taxonomic spectrum [3])? There
is no evidence that the relationship shown on Fig. 2A
has a tendency to weaken in the most recent branches
of the phylogeny (data not reported), which would have
indicated an approach to an equilibrium. Rather, the fre-
quencies of amino acids in proteins appear to be far
from an equilibrium and we observe a constant turnover
of polar amino acids due to more relaxed selective con-
straint acting on the amino acid of external location.
One may further speculate that perhaps such systematic
loss of surface polar amino acids would gradually
change protein folding as external sites become
occupied by more hydrophobic amino acid residuals.

Figure 4 Radicality of amino acid substitutions in single copy and duplicated genes. A: mean absolute change of polarity between
destination and source amino acids in gene families with different molecular function. B: mean exchangeability [21]. Colours as on Fig. 3. Insets:
comparison of ambiguous and unambiguous substitutions.
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This process may be a potentially important mechanism
of acquiring new functions by duplicated genes.
We have demonstrated that, in a genome-wide assess-

ment, duplicated genes evolve both faster (higher Ka/Ks)
and through more radical amino acid substitutions
(higher |DPolarity|, lower exchangeability) than single
copy genes (Figs 3 and 4). Likewise, single copy genes in
families with extant duplications tend to evolve faster

and more radically than single copy genes in families
without extant duplications, indicating that duplications
are more likely to be retained in gene families with
weaker selective constraints.
Just like with the signed polarity change, the absolute

change of polarity is not significantly different between
duplicated and single copy genes among genes coding
for transporter proteins, corroborating the hypothesis of

Figure 5 Rates and radicality of amino acid substitution vs. expression level and ubiquity. Relationship between relative substitution rate
(Ka/Ka; A, C) and mean absolute change of polarity (|ΔP|; B, D) and log mean gene expression rate in whole fly (A, B) and coefficient of variation
of expression rate across larval and adult tissues (C, D). Expression data from [22]. Solid lines: regressions significant at P<0.0001; dashed lines:
regression without significant terms (shown for a comparison). Second-degree polynomial regression lines are shown when the quadratic term is
significant, otherwise a linear regression is used.

Table 1 Summary of clade asymmetries: the number of tests withstanding false discovery rate and Bonferroni
adjustments for multiple tests. Tests: number of substitutions – c2 test for heterogeneity; |DPolarity| and
Exchangeability – t-test

All duplications Terminal duplications excluded

Asymmetry parameter Number of duplications
tested

FDR = 0.01 Bonferroni adjusted
P = 0.01

Number of duplications
tested

FDR = 0.01 Bonferroni adjusted
P = 0.01

Total substitutions 4646 908 805 3118 804 741

Unambiguous
substitutions

4646 721 621 3118 613 543

|DPolarity| 2964 66 39 2351 62 30

Exchangeability 2964 62 38 2351 58 30
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the importance of relaxed selective constraint on surface
sites of water-soluble proteins (Fig. 4 A). (This differ-
ence is, however, significant for receptor proteins.) The
exchangeability index, on the other hand, is significantly
lower in duplicated transporter proteins, suggesting that
paralogs in these genes families do evolve through more
radical substitutions, just without systematic net loss of
polar residuals.
Data on the asymmetry of clades resulting from duplica-

tions supports the hypothesis of widespread neofunctiona-
lization accompanying retention of duplicated genes: over

1/3 of all duplications show a significant asymmetry in
amino acid substitution rates with false discovery rate 0.05
and almost 1/5 of all substitution show asymmetry, which
stands Bonferroni correction (Table 1). Much fewer dupli-
cations show a significant asymmetry in radicality of sub-
stitutions, although about 6% have a significant asymmetry
in absolute polarity change (with false discovery rate 0.05).
Gene families of different functionality differ from each
other in the degree of clade asymmetry with a hint of a
negative correlation between asymmetry in rates (Fig. 6,
top) and asymmetry in radicality (Fig. 6, middle and

Figure 6 Clade asymmetries in families with duplications. Clade asymmetry (A) in relative substitution rate (top), absolute change in polarity
(middle) and exchangeability (bottom) by molecular function. Molecular function category means were calculated by unweighted averaging
over families. One-way ANOVA, respectively: F = 3.91, P < 0.00001; F = 7.63, P < 0.00001; F = 2.99, P < 0.001. Different letters signify categories
different by Tukey-Kramer test, P = 0.05.
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bottom). No molecular function category stands out in
terms of tendency to display signatures of neofunctionali-
zation, although RNA-binding proteins have the lowest
(non significant) difference in rates and radicality of substi-
tutions between duplicated and single copy genes (Fig. 3
and 4) and the lowest clade asymmetry of substitution
radicality in paralogs (Fig. 6), indicating that, perhaps, in
these proteins neofunctionalization is less common. Inter-
estingly, transcription factors appear to show low neofunc-
tionalization signal in terms of substitution rates (no
difference between duplicated and single-copy genes, Fig.
3; low asymmetry between paralogs, Fig 6, top), but a
strong neofunctionalization signal in terms of substitution
radicality (Fig 4; Fig. 6 middle and bottom). One may
hypothesize that positive selection for a novel functionality
can operate either by increased rate of substitutions, or by
favouring more radical changes without the increase of
rates.

Conclusions
We have designed a tool, which allows a detailed phylo-
genetic analysis of amino acid substitutions in a large
number of multiple alignments with or without dupli-
cated genes present. The algorithm is capable to polarize
and establish phylogenetic position of all substitutions
for which it is possible (unambiguous) and to list all
possible alternatives for other, ambiguous substitutions.
It results in a database, which can be used to answer
questions about patterns of amino acids substitutions
genome-wide or in particular categories of genes such
as molecular functions or duplication status.
The analysis of such database of substitutions in 12 Dro-

sophila genomes confirmed previously observed non-equi-
librium patterns of net losses and gains of individual
amino acids, demonstrated that these patterns do not
weaken with the depth of phylogeny and revealed a strong
correlation between polarity of amino acid and propensity
to display a net loss. We hypothesize that this effect can
be explained by relaxed selective constraints on externally
located amino acid sites occupied by polar residuals. Evo-
lution of duplicated genes is characterized by both higher
relative rate of substitution and more radical nature of
these substitutions, as compared to single copy genes. The
rate and radicality in paralogs displays a weaker relation
with mean expression rate and variance of expression
rates across tissues than in single copy genes. This pattern,
along with the strong asymmetry between clades resulting
from duplication events, indicates widespread neofunctio-
nalization of retained duplications.

Methods
Algorithm, data provenance and phylogenetic analysis
A new a phylogenetic analysis tool AcidMiner [20] is
used to convert raw data in the form of protein

alignments and Newick protein and species trees into a
relational database of amino acid substitutions search-
able by standard SQL queries and containing a number
of preset queries. Additionally, it allows further deriva-
tive data to be produced for tasks not easily expressible
in SQL. Code for such purposes can be written either in
Java or as stored procedures in the DBMS proprietary
language, which in some cases results in faster proces-
sing. AcidMiner Java code, custom DBMS procedures
and most of the complex SQL queries used in this study
are also available [20].
Protein alignments and corresponding phylogenies were

acquired from Dfam database at Indiana University
[19,27]. These alignments have been obtained by means of
modified reciprocal BLAST method [4,19]. Briefly (see
[19] for details), the results of an all-by-all comparison
between the 12 genomes using BLASTP are filtered to
retain as homologs all hits with E-values within two orders
of magnitude of the highest hit. Gene families (clusters of
homologs) are then deterimined by finding the maximally
connected clusters that are disjoint from one another
while discarding nonreciprocal relationships [19].
NOTUNG phylogenies reconciling topological incon-

gruence between species trees and proteins trees [28]
were used to map duplications and substitutions. We
considered 11258 gene families (with at least 6 species
represented), which contained 8,766,256 amino acid
sites. Areas of alignments with >1 indels in a row in one
or more species were excluded from the analysis. Of the
amino acid sites retained for the analysis 2,131,864 sites
had at least one substitution in at least one clade. These
sites contained a total of 3,697,627 substitutions. A sub-
stitution was called unambiguous if it could be unequi-
vocally polarized and placed on the phylogeny by the
genotype of the outgroup clade; there were 2,004,536
such substitutions. Substitutions without a single most
parsimonious placement were called ambiguous; such
substitutions were included into the rates calculated, but
excluded from the analysis of radicality of substitutions.
Substitution data arranged by amino acids, by gene
families and by duplications are available in supplemen-
tal materials or by request.
Paralogs were identified as homologs present in the

same genome and substitutions were considered to have
been acquired by duplicated genes if their most parsi-
monious placement on the phylogeny is more terminal
than the placement of the duplication event. Conversely,
substitutions occurring in branches basal to the most
ancient surviving duplication in a clade were considered
to have occurred in a single-copy gene.

Fluxes, asymmetries, radicality and substitutions rates
Net relative gain (or loss) of amino acids through substi-
tutions (flux) was characterized by the parameter D =
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(C-R)/(C+R), where C is the number of times each
amino acids was created and R – the number of times
the same amino acid has been removed by substitutions
[3]. The parameter D was be calculated separately for
each amino acid pair, or for each amino acid as a mar-
ginal value. Change of amino acid polarity due to substi-
tutions was calculated as mean difference between
source and destination amino acid polarities (Polarity
values taken from AAIndex, Ref. [29]). The absolute
value of this difference, |DPolarity|, was used as a mea-
sure of radicality of each amino acid substitution; an
alternative, inverse measure of radicality used was the
Exchangeability index [21].
Each gene family was characterized by a Ka/Ks value,

obtained in the following manner. Ka was estimated as
the ratio of the number of substitutions (in either the
whole tree, or separately for duplicated and undupli-
cated portions of the tree) to the number of amino acid
sites in the alignment. Ks was calculated as the sum of
branch lengths of the corresponding section of the tree
expressed as the frequency of synonymous substitutions
per 4-fold degenerative site [4].

Ontology and expression data and statistical analysis
Gene ontology and gene expression data were merged
with amino acid substitution data by D. melanogaster
genes FlyBase IDs [30]. Therefore, for all analyses invol-
ving molecular functions and gene expression level,
genes families lacking a D. melanogaster gene were
excluded. Conversely, families with duplicated D. mela-
nogaster genes appeared in these types of analysis with
the number of times equal to the number of D. melano-
gaster paralogs they contained. Gene families were sub-
divided into the following molecular function categories
using FlyBase ontology data [30]: structural proteins,
enzymes, transcription factors, other DNA-binding pro-
teins, RNA-binding proteins, ATP- and GTP-binding
proteins, receptors and signal transduction proteins,
transporters, proteins with other functions and proteins
with unknown function. Gene expression data were
obtained from FlyAtlas database [22].

Additional file 1: Data by amino acids (terminal branches)Excel
spreadsheet with pair-wise amino acid substitution frequencies mapped
to terminal branches of the phylogeny, by species.

Additional file 2: Data by amino acids (entire phylogeny; terminal
vs. non-terminal branches)Excel spreadsheet with pair-wise amino acid
substitution frequencies, separately for terminal and non-terminal
branches.

Additional file 3: Data by gene familyExcel spreadsheet with data on
rates and radicalities of substitutions by gene family.

Additional file 4: Data by duplicationsExcel spreadsheet with data on
rates and radicalities of substitutions by duplication with separate
columns for each of the two clades resulting from each duplication
events.

Acknowledgements
We are grateful to M. Hahn for providing alignments and useful discussion
and to A. Kondrashov, Y. Wolf and three anonymous reviewers for helpful
suggestions on improving the analysis and the manuscript. Work was
partially supported by NSF-0525447.
This article has been published as part of BMC Genomics Volume 11
Supplement 4, 2010: Ninth International Conference on Bioinformatics
(InCoB2010): Computational Biology. The full contents of the supplement are
available online at http://www.biomedcentral.com/1471-2164/11?issue=S4.

Author details
1Department of Biological sciences, East Tennessee State University, Johnson
City, TN 37614, USA. 2InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, USA.

Authors’ contributions
LYY proposed the study methodology, accomplished data analysis and
prepared the manuscript. MAB wrote software, generated the dataset and
contributed to the manuscript preparation.

Competing interests
The authors declare that they have no competing interests.

Published: 2 December 2010

References
1. Zhang J: Rates of Conservative and Radical Nonsynonymous Nucleotide

Substitutions in Mammalian Nuclear Genes. J Mol Evol 2000, 50:56-68.
2. Pupko T, Sharan R, Hasegawa M, Shamir R, Graur D: Detecting excess

radical replacements in phylogenetic trees. Gene 2003, 319:127-135.
3. Jordan IK, Kondrashov FA, Adzhubei IA, Wolf YI, Koonin EV, Kondrashov AS,

Sunyaev S: A universal trend of amino acid gain and loss in protein
evolution. Nature 2005, 433:633-638.

4. Drosophila 12 Genomes Consortium: Evolution of genes and genomes
on the Drosophila phylogeny. Nature 2007, 450:203-218.

5. Zuckerkandl E, Derancourt J, Vogel H: Mutational trends and random
processes in the evolution of informational macromolecules. J Mol Biol
1971, 59:473-490.

6. Tekaia F, Yeramian E: Evolution of proteomes: fundamental signatures
and global trends in amino acid compositions. BMC Genomics 2006,
7:307.

7. Hurst LD, Feil EJ, Rocha EPC: Causes of trends in amino acid gain and
loss. Nature 2006, 442:E11-E12.

8. McDonald JH: Apparent trends of amino Acid gain and loss in protein
evolution due to nearly neutral variation. Mol Biol Evol 2006, 23:240-244.

9. Misawa K, Kamatani N, Kikuno RF: The universal trend of amino acid gain–
loss is caused by CpG hypermutability. J Mol Evol 2008, 67:334-342.

10. Yampolsky LY, Kondrashov FA, Kondrashov AS: Distribution of the strength
of selection against amino acid replacements in human proteins. Human
Molecular Genetics 2005, 14:3191-3201.

11. Ohno S: Evolution by gene duplication. Berlin(Germany): Springer- Verlag;
1970.

12. Lynch M, Conery JS: The evolutionary fate and consequences of
duplicate genes. Science 2000, 290:1151-1155.

13. Hahn M: Distinguishing Among Evolutionary Models for the
Maintenance of Gene Duplicates. J. Heredity 2009, 100:605-617.

14. Innan H, Kondrashov F: The evolution of gene duplications: classifying
and distinguishing between models. Nat Rev Genet 2010, 11:97-108.

15. He X, Zhang J: Rapid subfunctionalization accompanied by prolonged
and substantial neofunctionalization in duplicate gene evolution.
Genetics 2005, 169:1157-1164.

16. Byrne KP, Wolfe KH: Consistent patterns of rate asymmetry and gene loss
indicate widespread neofunctionalization of yeast genes after whole-
genome duplication. Genetics 2007, 175:1341-1350.

17. Han MV, Demuth JP, McGrath CL, Casola C, Hahn MW: Adaptive evolution
of young gene duplicates in mammals. Genome Research 2009,
19:859-867.

18. Force A, Lynch M, Pickett FB, Amores A, Yan Y-L, Postlethwait J:
Preservation of duplicate genes by complementary, degenerative
mutations. Genetics 1999, 151:1531-1545.

Yampolsky and Bouzinier BMC Genomics 2010, 11(Suppl 4):S10
http://www.biomedcentral.com/1471-2164/11/S4/S10

Page 11 of 12

http://www.biomedcentral.com/content/supplementary/1471-2164-11-S4-S10-S1.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-11-S4-S10-S2.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-11-S4-S10-S3.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-11-S4-S10-S4.xls
http://www.biomedcentral.com/1471-2164/11?issue=S4.
http://www.ncbi.nlm.nih.gov/pubmed/10654260?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10654260?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14597178?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14597178?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15660107?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15660107?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5571595?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5571595?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17147802?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17147802?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16929253?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16929253?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16195487?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16195487?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18810523?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18810523?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16174645?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16174645?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11073452?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11073452?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20051986?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20051986?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15654095?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15654095?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17194778?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17194778?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17194778?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19411603?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19411603?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10101175?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10101175?dopt=Abstract


19. Hahn M, Han MV, Han SG: Gene Family Evolution across 12 Drosophila
Genomes. PLoS Genetics 2007, 3:2135-2146.

20. AcidMiner. [http://sourceforge.net/projects/acidminer].
21. Yampolsky LY, Stoltzfus A: The exchangeability of amino acids in proteins.

Genetics 2005, 170:1459-1472.
22. Chintapalli VR, Wang J, Dow JA: Using FlyAtlas to identify better

Drosophila melanogaster models of human disease. Nat Genet 2007,
39:715-720.

23. Pál C, Papp B, Hurst LD: Highly expressed genes in yeast evolve slowly.
Genetics 2001, 158:927-931.

24. Drummond DA, Bloom JD, Adami C, Wilke CO, Arnold FH: Why highly
expressed proteins evolve slowly. Proc Natl Acad Sci U S A 2005,
102:14338-14343.

25. Drummond DA, Wilke CO: Mistranslation-induced protein misfolding as a
dominant constraint on coding-sequence evolution. Cell 2008,
134:341-352.

26. Rogers RL, Bedford T, Hartl DL: Formation and longevity of chimeric and
duplicate genes in Drosophila melanogaster. Genetics 2009, 181:313-322.

27. Dfam. [http://www.indiana.edu/~hahnlab/fly/DfamDB/drosophila_frb.html].
28. Durand D, Bjarni V, HalldóRsson Bv, Vernot B: A Hybrid Micro–

Macroevolutionary Approach to Gene Tree Reconstruction. J Comp Biol
2006, 13:320-335.

29. Kawashima S, Kanehisa M: AAindex: amino acid index database. Nucleic
Acids Res 2000, 28:374.

30. Tweedie S, Ashburner M, Falls K, Leyland P, McQuilton P, Marygold S,
Millburn G, Osumi-Sutherland D, Schroeder A, Seal R, Zhang H, The FlyBase
Consortium: FlyBase: enhancing Drosophila Gene Ontology annotations.
Nucleic Acids Research 2009, 37:D555-D559.

doi:10.1186/1471-2164-11-S4-S10
Cite this article as: Yampolsky and Bouzinier: Evolutionary patterns of
amino acid substitutions in 12 Drosophila genomes. BMC Genomics 2010
11(Suppl 4):S10.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Yampolsky and Bouzinier BMC Genomics 2010, 11(Suppl 4):S10
http://www.biomedcentral.com/1471-2164/11/S4/S10

Page 12 of 12

http://sourceforge.net/projects/acidminer
http://www.ncbi.nlm.nih.gov/pubmed/15944362?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17534367?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17534367?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11430355?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16176987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16176987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18662548?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18662548?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19015547?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19015547?dopt=Abstract
http://www.indiana.edu/~hahnlab/fly/DfamDB/drosophila_frb.html
http://www.ncbi.nlm.nih.gov/pubmed/10592278?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18948289?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Application of AcidMiner to Drosophila data: a database of amino acid substitutions in 12 genomes
	Fluxes and asymmetries in amino acid substitutions
	Frequencies and radicality of amino acid substitutions in duplicated genes
	Clade asymmetries in duplicated genes

	Discussion
	Conclusions
	Methods
	Algorithm, data provenance and phylogenetic analysis
	Fluxes, asymmetries, radicality and substitutions rates
	Ontology and expression data and statistical analysis

	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

