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Abstract

Background: The UPP (ubiquitin proteasome pathway) is the major proteolytic system in the cytosol and nucleus of all
eukaryotic cells which regulates cellular events, including mitotis, differentiation, signal transduction, apoptosis, and
inflammation. UPP controls activation of the transcriptional factor NF-�B (nuclear factor �B), which is a regulatory
protein playing central role in a variety of cellular processes including immune and inflammatory responses, apoptosis,
and cellular proliferation. Since the primary interaction of proteasomes occurs with endogenous proteins, the signalling
action of transcription factor NF-�B can be blocked by inhibition of proteasomes. A great variety of natural and
synthetic chemical compounds classified as peptide aldehydes, peptide boronates, nonpeptide inhibitors, peptide vinyl
sulfones and epoxyketones are now widely used as research tools for probing their potential to inhibit proteolytic
activities of different proteasomes and to investigate the underlying inhibition mechanisms. The present work reports a
bio-computational study carried out with the aim of exploring the proteasome inhibition capability of WA (withaferin
A), a steroidal lactone, by understanding the binding mode of WA as a ligand into the mammalian proteasomes (X-ray
crystal structure of Bos taurus 20S proteasome and multiple template homology modelled structure of 20S proteasome
of Homo sapiens) using molecular docking and molecular dynamics simulation studies.

Results: One possible mode of action which is proposed here for WA to act as a proteasome inhibitor is by
suppression of the proteolytic activity which depends on the N-terminal threonine (Thr1) residue hydroxyl group.
Docking studies carried out with herbal ligand WA into the structures of bovine and human proteasomes
substantiate that WA has the ability to inhibit activity of mammalian 20S proteasomes by blocking the nucleophilic
function of N-terminal Thr1. Results from molecular dynamics simulations in water show that the trajectories of
both the native human 20S proteasome and the proteasome complexed with WA are stable over a considerably
long time period of 4 ns suggesting the dynamic structural stability of human 20S proteasome/WA complex.

Conclusions: Inhibition of proteasomal activity are promising ways to retard or block degradation of specific proteins
to correct diverse pathologies. Though quite a number of selective and efficient proteasomal inhibitors exist nowadays,
their toxic side effects limit their potential in possible disease treatment. Thus there is an indispensable need for
exploration of novel natural products as antitumor drug candidates. The present work supports the mammalian
proteasomes inhibiting activity of WA along with elucidation of its possible mode of action. Since WA is a small herbal
molecule, it is expected to provide one of the modest modes of inhibition along with added favours of ease in oral
administration and decreased immunogenicity. The molecular docking results suggest that WA can inhibit the
mammalian proteasomes irreversibly and with a high rate through acylation of the N-terminal Thr1 of the b-5 subunit.
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Background
Ubiquitin is a small 76 amino acid protein conserved in
all eukaryotic cells with a molecular weight of 8.6 kDa.
When polyubiquitin is attached to target proteins,
tagged proteins are selected for destruction by cytoplas-
mic organelles called proteasomes [1]. The mammalian
20S proteasome is characterized by a cylindrical shaped
quaternary structure consisting of four heptameric
stacked rings, a7b7b7a7, with 7 distinct a-type and 7
distinct b -type subunits, and with C2 symmetry similar
to those of the yeast [2]. Within this multienzymatic
proteasome system, a proteolytic multifunctional com-
plex 26S proteasome is involved, which consists of a 19S
regulatory particle and a 20S core particle [3,4]. The two
outer a rings complex with the two 19S regulatory par-
ticles, forming a narrow channel through which only
denatured proteins can pass [5]. The catalytic chamber
is formed by the two inner rings, each of which contains
three well-characterized proteolytic activities. In particu-
lar, three active subunits b1, b2, and b5 are responsible
for the three major peptidase activities: the peptidylglu-
tamil-hydrolase like, trypsin-like and chymotrypsin-like
(ChT-L) activities respectively, as investigated by muta-
tional and crystallographic studies [6,7]. The core parti-
cle is responsible for degradation of the proteins in a
progressive manner, generating peptides of 3-25 amino
acids in length [8].
The enzymatic activity of b-subunits is associated with

the N-terminal threonine residues, which act as nucleo-
philes in the hydrolysis reaction catalyzing the cleavage
of peptides through nucleophilic attack. Thus these pro-
teasomes are classified as members of the Ntn (N-term-
inal nucleophilic) hydrolases group [1,9]. In the
eukaryotic proteasome, out of the seven different b-sub-
unit precursors which are processed during particle
maturation by autolysis, only b1, b2 and b5 subunits
can be activated by the autolytic process, with the
release of the amino-terminal Thr1 functioning as the
nucleophile [10-12].
UPP is the major proteolytic system in the cytosol and

nucleus of all eukaryotic cells [13,14] which regulates
cellular events including mitotis, differentiation, signal
transduction, apoptosis, and inflammation [15]. UPP
controls activation of the transcriptional factor NF-�B
(nuclear factor �B), which is a regulatory protein playing
central role in a variety of cellular processes, including
immune and inflammatory responses, apoptosis, and
cellular proliferation. Since the primary interaction of
proteasomes occurs with endogenous proteins, the sig-
nalling action of transcription factor NF-�B can be
blocked by inhibition of proteasomes, thus inhibiting the
completion of the cell cycle and mitotic proliferation of
cancerous cells and ultimately leading to cell death. It

has been suggested that proteasomal activity is essential
for tumour cell proliferation and development of drug
resistance. Therefore, the development of specific inhibi-
tors of proteasome mediated degradation pathway is
now of considerable interest in the drug discovery
research for cancer therapy and prevention [16]. A great
variety of natural and synthetic chemical compounds
classified as peptide aldehydes, peptide boronates, non-
peptide inhibitors, peptide vinyl sulfones, and epoxyke-
tones are now widely used as research tools for studying
their ability to inhibit proteolytic activity of various pro-
teasomes from diverse origins.
Currently two proteasome inhibitors, bortezomib and

NPI-0052, have been stated in clinical trials [17,18].
However, undesirable side effects such as fatigue, nau-
sea, vomiting, peripheral neuropathy, anaemia, diar-
rhoea, and constipation have also been reported for
these drugs [19]. Therefore, there has been an intensive
drive to develop new proteasome inhibitors especially
those of natural origin having little or no side effects.
Naturally occurring inhibitors fall mainly in three

groups being a’b’-epoxyketones, b-lactones and TMC-
95s. WA, a principle constituent of the plant Withania
somnifera, has received much attention in recent years
owing to its various pharmacological properties like
anti-inflammatory [20], antitumor [21], antibacterial
[22], antioxidant [23], anticonvulsive [24,25] and immu-
nosuppressive properties [26]. Most recently, it was
shown to potentiate apoptosis of tumor cells by suppres-
sion of NF-�B activation [27-29]. Targeting of UPP has
been identified as one of the mechanisms of WA activity
exerting two distinct pharmacological activities; anti-
tumor and anti-inflammatory [30]. Since proteasomes
are required for nuclear translocation of p65/NF-�B
which in turn results in activation of NF-�B, it is worth
substantial to consider proteasomes as the target of
WA. WA belongs to a family of steroidal lactones hav-
ing withanolide skeleton as their basic structure (Figure
1A). It has been reported that C1 and C24 of WA are
highly susceptible towards a nucleophilic attack [31]. As
is evident from the structure of WA (Figure 1B) that it
contains a lactone ring enclosed ester group, two conju-
gated ketone bonds and a three membered epoxy ring,
all of which are quite susceptible to a nucleophilic
attack. It has been hypothesized that WA can be a
potent proteasome inhibitor and the mode of its action
can be irreversible covalent modification. There is an
evidence rationalising the proteasome inhibitory action
of WA in which WA is shown to inhibit chymotrypsin
like activity of a purified rabbit 20S proteasome
(IC50=4.5µM) and 26S proteasome in human prostrate
cancer cultures (at 5-10µM) and in xenografts (4-8 mg/
Kg/day) [31]. Herein we report the ability of naturally
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occurring drug candidate WA and its mode of action for
binding to mammalian 20S proteasomes as macromole-
cular receptors using computational approaches by ana-
lyzing the interactions between WA and the
proteasomes.

Methods
Comparative protein structure multiple template
homology modelling of Human 20S proteasome
The amino acid sequence of the b-5 subunit of h20S
(human 20S proteasome) (GenBank: AAH57840.1) com-
prising of 263 amino acid residues was retrieved from
NCBI. Since the crystal structure of h20S is not available,

we used Modeller9v7 [32] to perform the homology mod-
elling. The best possible templates were obtained using
the build_profile python script. We built three dimen-
sional structure of h20S using multiple template compara-
tive homology modelling based on the following X-ray
crystal structures obtained from PDB (Protein Data Bank)
[33]: b20S (bovine 20S proteasome) at 2.75 Å resolution
(PDB:1IRU), yeast 20S proteasome at 2.4 Å resolution
(PDB:1RYP) and 20S proteasome from Archaeoglobus ful-
gidus (PDB:1J2Q). These template proteins were chosen
based on a significant sequence similarity of h20S with
these proteins in addition to their satisfactory crystallo-
graphic resolution. The alignment files of the targets and
templates were then prepared using the align2D_mult
python script (Sequence alignment module in MODEL-
LER). These alignment files along with the x-ray crystal
structures of the templates were used to generate the
three dimensional structure models using the model_mult
python script of MODELLER.

Energy minimization
Discovery Studio (Version 1.7, Accelrys Software Inc.)
was then used to execute energy minimization and to
perform stereochemical quality checks to arrive at the
best possible three dimensional structure of the protein.
The force field applied was CHARMm and the energy
minimization algorithm used was Conjugate Gradient
with an RMS gradient of 0.1 using a maximum of 2000
steps. This resulted in model structures with consider-
ably favourable potential energies. Furthermore, the
variability among the models was used to evaluate the
reliability of the modelling. The qualities of these mod-
els were analyzed by PROCHECKv3.4 [34].

Binding pocket analysis
Binding Site analysis module of Discovery Studio was
used to identify the putative binding pockets and protein
ligand binding sites in the energy minimized three-
dimensional structures of b20S and h20S.

Ligand Docking
The energy minimized crystal structure of Bos taurus
b20S (PDB: 1IRU) and the modelled structure of h20S
were used to carry out molecular dockings. For ease in
dockings, the subunits which are not directly interacting
with the b-5 domain of the protein were removed of
b20s crystal structure, and only the domains K, L, M, X
& Y were retained for further analysis. The ligand mole-
cule Withaferin-A [PubChem:265237] was retrieved
from NCBI-PubChem Compound database [35].
AutoDock 4.0 suite was used as molecular-docking

tool in order to carry out the docking simulations
[36]. AutoDock 4.0 was launched in a Cygwin inter-
face in the Windows operating system. Docking logs

Figure 1 Structures of withanolides. (A) WA falls under the family
of compounds known as withanolides which are a group of naturally
occurring C28- steroidal lactones built on an intact or rearranged
ergostane framework, in which C-22 and C- 26 are appropriately
oxidized to form a six-membered lactone ring. The basic skeleton
shown here is designated as the withanolide skeleton defined as a
22-hydroxyergostan-26-oic acid-26,22-lactone. (B) Structure of WA. It
contains two sites which are prone to nucleophilic attack: A six
membered δ-valero lactone ring containing a carbocyclic ester group
and a three membered epoxy ring.
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were analyzed in the graphical user interface of ADT
(Auto dock Tools) [37]. Water molecules were
cleaned off from the protein crystal structure before
docking. H-atoms were added to these target proteins
for correct ionization and tautomeric states of amino
acid residues and the non-polar hydrogens were then
merged up. Kollman united atom charges and solva-
tion parameters were assigned to the proteins. Gastei-
ger charge was assigned to the ligand and then
nonpolar hydrogens were merged. Rigid roots were
also assigned to the ligand and five bonds were made
“active” or rotatable. The modified structures so
obtained: x-ray crystal structure of bovine, modelled
three dimensional structure of human 20S protea-
some, and the structure of ligand WA accounting the
flexibility of its bonds, were converted to PDBQT for-
mat in ADT, as required in AutoDock calculations.
The Lamarckian Genetic Algorithm was used with a
population size of 150 dockings. Five million energy
evaluations were used in the docking experiments. All
other parameters, e.g. crossover rate and mutation
rate, were run with default settings. The grid size for
specifying the search space was set at 40 × 30 × 30
centered on Thr1 of the b5 subunit with a default
grid point spacing of 0.375 Å. Energy scoring function
of AutoDock 4 is based upon the calculation of pair-
wise atomic terms including evaluations for different
secondary interactions, dispersion/repulsion, hydrogen
bonding, electrostatics, and desolvation [38]. Pre-cal-
culated grid maps, which store grids of interaction
energy based on the interaction of the ligand atom
probes with receptor target, were obtained using
AutoGrid. The user defined three dimensional grid
must surround the region of interest in the macromo-
lecule, and the ligand was limited to this search space
during docking. The results are clustered into bins of
similar conformations according to the cluster root
mean square deviation (rmsd) and orientation.

Confirmation of the docking results
The docking results obtained using AutoDock were also
confirmed using ParDOCK [39] , which is an all atom
energy based monte carlo docking protocol. Docking
using ParDOCK requires a reference complex (target
protein bound to a reference ligand) and a candidate
molecule along with specific mention of the centre of
mass of the cavity on which the ligand is to be docked.

Molecular Dynamics simulations of human proteasome in
water
The AMBER v.10 package [40] was used to prepare the
protein and the ligand files as well as for the MD (Mole-
cular Dynamics) simulations. The binding complex of
h20S/WA obtained using ParDOCK and the free protein

simulated in this study were neutralized by adding
appropriate number of chloride counterions and were
solvated in a octahedron box of TIP4P water with a 10
Å distance between the protein surface and the box
boundary [41]. The partial atomic charges for the ligand
were obtained using “antechamber” [42] module of
Amber. The energy minimization and MD simulations
of h20S and its complex with WA were carried out with
the aid of the PMEMD module of the AMBER 10 pro-
gram. First of all, the simulated binding complex was
effected with a 2500 step minimization using the stee-
pest descent algorithm followed by a 1000 step minimi-
zation using conjugate gradient to remove bad steric
contacts. Topology and parameter files for the protein
were generated using “ff03” and for the drug using
“gaff” based on the atom types of the force field model
developed by Cornell et al [43]. Then the system was
equilibrated beginning with the protein atom restrained
simulations having 150 ps equilibration dynamics of the
solvent molecules at 300 K and a harmonic potential
with a 10 kcal/mol restraint force. Next step involved
the equilibration of the solute molecules with a fixed
configuration of the solvent molecules in which the sys-
tem was slowly heated from T = 10 to 300 K in 58
small intervals of 2.5 ps each for a total period of 145
ps. The entire system was then equilibrated at 300 K for
100 ps before a sufficiently long MD simulation (4 ns)
at room temperature. The MD simulations were per-
formed with a periodic boundary condition in the NPT
ensemble at T=298.15 K with Berendsen temperature
coupling [44] and constant pressure P=1 atm with iso-
tropic molecule-based scaling . The SHAKE algorithm
[45] was applied to fix all covalent bonds containing
hydrogen atoms. We used a time step of 2 fs and a non-
bond-interaction cut-off radius of 10 A°. The Particle
Mesh Ewald (PME) method [46] was used to treat long-
range electrostatic interactions. The coordinates of the
trajectory was sampled every 1 ps for analysis of the
energy stabilization and RMSD values of the protein as
well as that of the complex. MD simulations were per-
formed on a 320 processors SUN Microsystems clusters
at Supercomputing Facility (SCFBio) at Indian Institute
of Technology Delhi.

Results and discussion
Docking of WA into b20S proteasome
One possible mode of action which is proposed here
for WA to act as a proteasome inhibitor is by suppres-
sion of the proteolytic activity which depends on the
N-terminal threonine (Thr1) residue hydroxyl group,
which is responsible for catalyzing the cleavage of pep-
tides through nucleophilic attack. Using binding pocket
analysis, S1 pocket of b-5 subunit was obtained as one
of the putative binding site. As evident from the
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docking of WA into b20S (Figure 2A), WA is trapped
inside this protein pocket. Figure 2B shows the ligand
occupying the S1 cavity of the receptor being repre-
sented as a mesh surface. As AutoDock reports the

best docking solution for each GA run and also per-
forms a cluster analysis in which the total number of
clusters and the rank of each docking mode (cluster
rank) is reported, in 7 out of 10 docked conformations
obtained by the clustering analysis at 2.0 Å, the carbo-
nyl group of the lactone ring is found closest to the
hydroxyl group of Thr1 (Figure 3A). The various prop-
erties of the docked conformation are shown in Table
1. The binding energies of the conformations of this
cluster range from -6.37 to -6.11 Kcal/mol. The high-
est binding energy of -7.62 Kcal/mol was obtained for
a conformation in which the epoxy group of the ligand
is close to the nucleophilic hydroxyl group of the pro-
tein but with only a 10% clustering frequency (Figure
3B).

Homology modelling of human 20S proteasome
The three dimensional structure of human proteasome
was determined by comparative homology modelling
with satisfaction of spacial constraints using multiple
known X-ray crystal structures as templates. The cho-
sen templates showed significant similarities to the
h20S with e-values equal to 0. Five modelled three
dimensional structures of human proteasome were
obtained using Modeller out of which the model hav-
ing the least DOPE score (Table 2) was chosen for the
purpose of studying ligand and protein interactions.
The quality and reliability of the model was ensured
by assessing the backbone and side-chain conforma-
tions, bond lengths, angles, and residue contacts of the
model through ProCheck, magnitudes of which are
well within the criteria established for reliable struc-
tures (data not shown). The model was almost as good
quality as those of the reference templates as evident
from the results obtained using Ramachandran plot
analysis (data not shown) for comparison of stereoche-
mical and energetic properties of the models with
those of the templates. The first 59 amino acids of the
protein were then removed off from the structure as
these are a part of a propeptide which is absent in the
mature form. This model was energy minimized with
an energy lowering of around 19,000 Kcal/mol and this
energy minimized structure was used further for dock-
ing analysis.

Docking of WA into modelled h20S proteasome
Binding energy of -6.92 Kcal/mol was obtained from
docking of WA into homology modelled h20S. The var-
ious properties listed in Table 1 provide sufficient
results in order to support the ongoing mechanism of
inhibition of h20S. Docked withefrin A positions itself
into the S1 pocket of the receptor as shown in Figure 4.
Moreover the ligand occupies the same conformation as
required to facilitate the nucleophilic attack, positioning

Figure 2 Docking representations of WA into b20S. (A) Docking
of WA into the cavity of b20S. (B) Docked ligand being trapped
inside the S1 pocket of the b-5 subunit of receptor mesh.
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Figure 3 Interactions of the ligand in different docked conformations of b20S. (A) Docked conformation showing proximity of lactone
ring’s carbonyl group of WA to the hydroxyl group of N-terminal Thr1 of b-5 subunit of b20S proteasome. (B) Docked conformation showing
proximity of three membered epoxy ring of WA to the hydroxyl group of N-terminal Thr1 of b-5 subunit of b20S proteasome.

Table 1 Properties of the docked conformations

Receptor b20S b20S h20S

Thr1 proximity to Ester group of lactone ring Epoxy ring Ester group of lactone ring

Binding Energy -6.37 Kcal/mol -7.62 Kcal/mol -6.92 Kcal/mol

Ligand efficiency -0.19 -0.22 -0.2

Inhibitoin constant 21.29 µM 2.59 µM 8.45 µM

Intermolecular energy -7.71 Kcal/mol -8.07 Kcal/mol -7.57 Kcal/mol

Total internal energy -0.03 Kcal/mol -0.93 Kcal/mol -0.73 Kcal/mol
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its lactone ring in vicinity of the hydroxyl nucleophile
(Figure 5), with a clustering frequency of 30%.
It has been shown using kinetic analysis and X-ray dif-

fraction studies that the ester bond of specific protea-
some inhibitor lactacystin covalently modifies the N-
terminal threonine of the b5-subunit, which is critical
for proteasome inhibition [1,47-49]. Thus it is quite
probable that lactacystin-like reaction occurs with WA
also as it contains an internal ester bond in a δ-valero
lactone ring (Figure 1B). A similar kind of cleavage of
the lactone ring by serine protease has been reported in
which the 3-benzyl-2-oxetanone, a b-lactone has been
found to be a slowly hydrolyzed substrate of a-chymo-
trypsin [50]. Other herbal ligands like polyphenols [51]
especially green tea polyphenols like EGCG and its ana-
logs, genistein etc. [52,53], which have an ester bond
susceptible to nucleophilic attack by Thr1 have also
been reported to possess proteasome inhibition activity.
Our results obtained from docking of WA into bovine
and human 20S proteasome structures substantiate the
proposed inhibition mechanism.

MD simulations in water
The h20S/WA protein-drug binding complex with the
binding energy of -6.91 kcal/mol obtained using Par-
DOCK (Figure 6) was used for carrying out MD simula-
tions. After MD simulations, we calculated RMSDs
between Ca trajectory of h20S and Ca of its modelled
structure recorded every 1 ps. The RMSDs for the tra-
jectory of h20S complexed with WA were also calcu-
lated using its initial model as a reference structure. The
results in Figure 7A show that the RMSDs of the trajec-
tory of the complex were always less than 2 Å for the
entire simulation suggesting the stability of our simula-
tion system. The trajectories were not greatly different
from the modelled structure, with only minor move-
ments of the Ca of the protein observed. The adherence
of the total energy trajectories to more or less constant
values for both the complex and the protein were seen

Table 2 DOPE scores of the homology modelled structures

Model No. DOPE Score

1 -24266.906

2 -24125.959

3 -24320.133

4 -24123.34

5 -23791.557

Figure 4 Conformation of docked ligand occupying S1 pocket
of the modelled h20S.

Figure 5 Positioning of WA in the docked structure of h20S.
Lactone ring of WA positions itself quite close to the hydroxyl
group of Thr1 of h20S receptor thus making itself prone to the
nucleophilic attack by Thr1 of b-5 subunit.

Figure 6 Docking representation of the drug WA inside the
cavity of h20S obtained using ParDOCK.
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during the entire simulation length (Figure 7B), with the
energy values of the complex much lowered than that of
the native protein indicating thermodynamic stability of
the complex. The simulation length used in this study
was long enough to allow rearrangement of side chains
of the native as well as the drug complexed protein to
find their most stable binding mode. Thus the present
MD simulations along with the molecular docking
experiments made clear the dynamic structural stability
of h20S in complex with the drug WA, together with
the inhibitory mechanism.

Conclusions
Since proteasomes play an essential role in the turnover
of cellular proteins, modulation or inhibition of protea-
somal activity are thus promising ways to retard or
block degradation of specific proteins in order to correct
diverse pathologies. Though nowadays there exist quite
a number of selective and efficient proteasomal inhibi-
tors, the toxic side effects of these compounds strongly
limit their potential in possible disease treatment. Thus
there is an indispensable need for exploration of novel
natural products as anti-cancer drug candidates. The
study conducted here makes use of molecular docking
and molecular dynamics simulation approaches, which

include the search in space for the energetically most
favorable conformation of a protein-ligand complex and
the scoring of the resulting geometries with respect to
binding energy, to analyze the proteasome inhibitory
potential of WA and to investigate the underlying inhi-
bitory mechanism. We have obtained significant results
delineating the mammalian proteasomes’ inhibitory
activity of WA alongwith elucidation of its possible
mode of action. Since WA is a small herbal molecule, it
is expected to provide one of the modest modes of inhi-
bition alogwith added favors of ease in oral administra-
tion and decreased immunogenicity. Conclusively it is
strongly suggested here that WA is a potent proteasome
inhibitor and should be looked forward for further clini-
cal investigations as a possible proteasome inhibitory
drug candidate.
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