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Abstract

Background: RNA-binding proteins (RBPs) play crucial roles in post-transcriptional control of RNA. RBPs are
designed to efficiently recognize specific RNA sequences after it is derived from the DNA sequence. To satisfy
diverse functional requirements, RNA binding proteins are composed of multiple blocks of RNA-binding domains
(RBDs) presented in various structural arrangements to provide versatile functions. The ability to computationally
predict RNA-binding residues in a RNA-binding protein can help biologists reveal important site-directed
mutagenesis in wet-lab experiments.

Results: The proposed prediction framework named “ProteRNA” combines a SVM-based classifier with conserved
residue discovery by WildSpan to identify the residues that interact with RNA in a RNA-binding protein. Although
these conserved residues can be either functionally conserved residues or structurally conserved residues, they
provide clues on the important residues in a protein sequence. In the independent testing dataset, ProteRNA has
been able to deliver overall accuracy of 89.78%, MCC of 0.2628, F-score of 0.3075, and F0.5-score of 0.3546.

Conclusions: This article presents the design of a sequence-based predictor aiming to identify the RNA-binding
residues in a RNA-binding protein by combining machine learning and pattern mining approaches. RNA-binding
proteins have diverse functions while interacting with different categories of RNAs because these proteins are
composed of multiple copies of RNA-binding domains presented in various structural arrangements to expand the
functional repertoire of RNA-binding proteins. Furthermore, predicting RNA-binding residues in a RNA-binding
protein can help biologists reveal important site-directed mutagenesis in wet-lab experiments.

Background
RNA-binding proteins (RBPs) are designed to efficiently
recognize specific RNA sequences after they are derived
from the DNA sequences. Protein-RNA interactions are
fundamental to cellular processes, including the assem-
bly and function of ribonucleoprotein particles (RNPs),
such as ribosomes and spliceosomes and the post-
transcriptional regulation of gene products. For

satisfying diverse functional requirements, RNA binding
proteins are composed of multiple blocks of RNA-bind-
ing domains (RBDs) presented in various structural
arrangements to provide versatile functionality [1,2].
Although RNA structure is hierarchical, that is, the pri-
mary sequence determines the secondary structure
which, in turns, determines tertiary structure, the ter-
tiary structure of RNA is not as stable as secondary
structure and is hard to predict [3]. However, sequence
conservations in RNA-binding domains have been dis-
covered in RNA-binding proteins [4, 5, 6, 7]. With the
recent growth of protein-RNA complexes in the Protein
Data Bank (PDB) [8] and the Nucleic Acid Database
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(NDB) [9], structural analysis on RNA-binding pockets
[10, 11, 12, 13, 14, 15, 16, 17, 18] and the themes of
RNA-protein recognition [18, 19, 20] have been investi-
gated as well.
Most recent works on predicting RNA-binding resi-

dues used support vector machine (SVM) with protein
evolutionary information from protein sequence. Wang
and Brown (2006) developed the web service, BindN
[21], to predict DNA and RNA binding sites using
sequence features to represent structural characteristics
including relative solvent accessible surface area, side
chain pKa, hydrophobicity index and molecular mass of
an amino acid. Tong et al. (2008) [22] proposed the
hybrid RISP (RNA-Interaction Site Prediction) method
by adjusting cutoff value of SVM discrimination func-
tion to improve prediction performance. Kumar et al.
(2008) developed Pprint [23] by using evolutionary pro-
files of the position-specific scoring matrices (PSSMs)
and amino acid composition while they also adjusted
cutoff value of SVM discrimination function to improve
prediction performance. Wang et al. (2008) developed
PRINTR [24] by using additional structural information
from protein-RNA complexes. Cheng et al. (2008) devel-
oped RNAProB [25] by smoothing PSSM profiles with
consideration of the correlation and dependency from
the neighboring residues for each amino acid in a pro-
tein. Spriggs et al. (2009) [26] developed the PiRaNhA
by using support vector machine with a PSSM profile
and three amino acid properties, including interface pro-
pensity (IP), predicted solvent accessibility (pA) and
hydrophobicity (H) for recognizing RNA-binding resi-
dues [27]. Other machine learning approaches such as
neural network and Naïve Bayes classifier have also
been applied to predict RNA-binding residues. Jeong
et al. (2004) [28] applied artificial neural network
(ANN)-based method with amino acid sequence and
predicted secondary structure information and improved
the performance by using post-processing procedures
such as state-shifting and filtering isolated interacting
residues from prediction. Improved version by Jeong
et al. (2006) [29] used evolutionary information extr-
acted from PSI-BLAST profiles and CLUSTALW align-
ment. Terribilini et al. (2006) [30] applied a Naïve Bayes
classifier with amino acid sequence information for pre-
dicting RNA interacting residues and presented the
results through the web service RNABindR [31]. The
ability to computationally predict RNA-binding residues
in a RNA-binding protein can help biologists reveal site-
directed mutagenesis in wet-lab experiments.
Caragea et al. [32] explored the problem of assessing

the performance of classifiers trained on macromolecu-
lar sequence data, with the emphasis on cross-validation
and data selection methods. In comparison of window-
based k-fold cross-validation and sequence-based k-fold

cross-validation, window-based cross-validation can
yield overly optimistic estimates of the performance of
classifier relative to the estimates obtained using
sequence-based cross-validation. RNAProB, BindN,
RISP, PRINTR and PiRaNhA are predictors that report
performance window-based k-fold cross-validation while
Pprint and RNABindR report performance with
sequence-based k-fold cross-validation. The predictors
evaluated with window-based k-fold cross-validation
have superior performance than those with sequence-
based k-fold cross-validation. The reason is that data
instances in the testing fold would be predicted by data
instances with sub-sequence identity higher than 25% in
the training fold in window-based k-fold cross-valida-
tion. Therefore, in data with class imbalance, the metrics
that measure the classification performance must be
chosen carefully. Matthew’s correlation coefficient
(MCC), F-score and F0.5-score are widely applied to
assess the prediction performance. MCC is used to mea-
sure prediction quality with the consideration of both
under- and over-predictions. F-score and F0.5-score are
used to assess balanced prediction quality on both posi-
tive class and negative class.
In this article, we proposed the prediction framework

“ProteRNA” with the combination of SVM-based classi-
fier with evolutionary profiles and conserved residues
discovery by sequence conservation for identifying
RNA-interacting residues in a RNA-binding protein. In
the SVM-based classifier, we use features including posi-
tion-specific scoring matrix computed by PSI-BLAST
and secondary structure information predicted by
PSIPRED as feature vectors [33]. To exploit the
sequence conservation information, WildSpan [34]
(http://biominer.bime.ntu.edu.tw/wildspan/), which is
developed to discover functional signatures and diagnos-
tic patterns of proteins directly from a set of unaligned
protein sequences, is incorporated. The most distin-
guishing feature of WildSpan is that it links short motifs
(local conserved regions) with large flexible gaps to deli-
ver the most frequently observed discontinuous patterns
present in related proteins. WildSpan has been
embedded in many applications [35, 36, 37, 38, 39] to
discover functionally important residues; therefore, we
apply WildSpan to discover conserved residues as RNA-
binding residues in a protein sequence to improve pre-
diction performance on detecting more RNA-binding
residues. The independent testing dataset collected for
performance evaluation contains 33 testing RNA-bind-
ing proteins with less than 30% sequence identity
against with training data. In the independent testing
dataset, ProteRNA has been able to deliver overall accu-
racy of 89.78%, MCC of 0.2628, F-score of 0.3075, and
F0.5-score of 0.3546. We emphasize MCC, F-score and
F0.5-score because it provides the biochemist with a
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confidence level for designing an experiment to confirm
whether a predicted binding residue is really involved in
interaction with the RNA.

Results and discussion
In this section, we will report the experiments conducted
to evaluate the performance of our proposed approach,
ProteRNA with the combination of SVM-based classifier
with evolutionary profiles and conserved residues discov-
ery by sequence conservation. In order to avoid bias, we
repeated 5-fold cross-validation procedure 20 times to
observe prediction performance on the training dataset
RB147 (see Materials and Methods for details). For each
run, we applied sequence-based 5-fold cross-validation;
therefore, protein chains will be randomly divided into 5
folds: one fold for testing and remaining 4 folds for train-
ing. For this study, LIBSVM (http://www.csie.ntu.edu.tw/
~cjlin/libsvm) was used for data training and classifica-
tion and WildSpan was used for detecting conserved resi-
dues from homologous protein sequences. We use
independent testing dataset containing 33 protein chains
for comparing ProteRNA with other predictors such as
PiRaNhA, Pprint, BindN, and PRIP.

Performance evaluation by five-fold cross-validation
In order to avoid bias, we repeated 5-fold cross-validation
20 times to observe prediction performance and experi-
mental result was shown in Table 1. Only using SVM-
based classifier, ProteRNASVM delivers overall sensitivity
of 38.85%, specificity of 97.01%, precision of 75.99%,
accuracy of 85.93%, MCC of 0.4732, F-score of 0.5170
and F0.5-score of 0.6343. Since the experiments are
repeated 20 times for reducing prediction bias, standard
deviation for each assessment is also listed. The results
have been obtained using the training parameters, C =
21, g = 2-5, which give better results than other values for
prediction of RNA-binding residues. Then WildSpan
only outputs patterns for each input protein chain once
so there is no information about standard deviation for
each assessment. ProteRNAWildSpan delivers overall sensi-
tivity of 12.28%, specificity of 96.26%, precision of
43.60%, accuracy of 80.27%, MCC of 0.1489, F-score of
0.1916 and F0.5-score of 0.2887. After combining predic-
tion results by ProteRNASVM and ProteRNAWildSpan, Pro-
teRNA delivers overall sensitivity of 44.84%, specificity of

93.56%, precision of 62.10%, accuracy of 84.28%, MCC of
0.4378, F-score of 0.5208 and F0.5-score of 0.5766.
As reported by Towfic et al. [40], over half (55.7%) of

the RNAs are rRNAs in the dataset of RB147. According
to their study, Table 2 shows the distribution of differ-
ent categories of RNAs on RNA-binding residues. rRNA
is the major group that contains about 38% positive
samples in rRNA group. Remaining groups presents
highly imbalanced class dataset, containing about 10%
positive sample in average. If the predictor tries to pre-
dict all samples as negative class exclusive of rRNA
group, the predictor may gain better performance in
assessment but provide no clues for biologists. Table 1
describes the average prediction performance of 20 runs
of 5-fold cross-validation; however, we only choose one
of the repeated experiments that had a performance that
is close to the average performance for detailed analysis
in Table 3. As shown in Table 3 ProteRNAWildSpan pre-
dicts an equal amount of true positives and false posi-
tives on average. Previous research on studying RNA-
binding domains revealed that RNA binding proteins
are composed of multiple blocks of RNA-binding
domains to provide versatile functionality. Therefore,
conserved residues in the same RNA-binding domain
from different RNA-binding proteins would not always
interact with a specific RNA. Furthermore, while com-
bining prediction results predicted by ProteRNASVM and
ProteRNAWildSpan, ProteRNAWildSpan detected additional
RNA-binding residues that ProteRNASVM didn’t predict.
As we known, rRNA is the major group among the

training dataset. Comparing the amount of RNA-binding
proteins in terms of interacting target (e.g. rRNA, tRNA,
mRNA), we find that tRNA generally has the most
interaction partners followed by mRNA and rRNA has
the least partners. ProteRNASVM tends to predict nega-
tive for proteins in the mRNA group and over-predict
either positive class or negative class in tRNA group.
However, ProteRNAWildSpan shows no different between
categories of RNAs because of discovered homologous
proteins in Swiss-Prot. In addition, ProteRNAWildSpan

detects conserved residues as binding residues that
cover regions that ProteRNASVM doesn’t predict; there-
fore, we apply WildSpan to detect conserved residues
because these conserved residues have higher probability
to play roles in interacting RNAs.

Table 1 Prediction performance evaluated by the 5-fold cross-validation using the training dataset, RB147

Predictors Sensitivity Specificity Precision Accuracy MCC F-score F0.5-score

ProteRNASVM 38.85% ± 0.46% 97.01% ± 0.09% 75.99% ± 0.48% 85.93% ± 0.08% 0.4732 ± 0.0036 0.5170 ± 0.0040 0.6343 ± 0.0034

ProteRNAWildSpan 12.28% 96.26% 43.60% 80.27% 0.1489 0.1916 0.2887

ProteRNA 44.84% ± 0.37% 93.56% ± 0.09% 62.10% ± 0.25% 84.28% ± 0.06% 0.4378 ± 0.0027 0.5208 ± 0.0027 0.5766 ± 0.0022
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Comparison with other predictors by independent testing
Only predictors that predict RNA-binding residues from
protein primary sequence information were selected for
performance comparison. In addition, RISP did not
respond with any prediction results after submitting the
jobs and PRINTR is unavailable. According to the
designed framework of RNABindR, if there is an exact
matched protein chain in Protein Data Bank, RNABindR
will return the actual RNA-binding residues of protein-
RNA complex. Therefore, it is difficult to distinguish
whether the returned result is actually binding or pre-
dicted binding so RNABindR will be excluded. Finally,
Table 4 shows the prediction performance of ProteRNA
in comparison with PiRaNhA, Pprint, BindN, and PRIP.
While ordering prediction performance in terms of
MCC, ProteRNA delivers better performance than other
predictors in accuracy, MCC, and F0.5-score.
Table 5 shows the Top-10 predictions by different

predictors ordered by the MCC and precision among 33
independent testing samples. In terms of MCC, we can
find that at least 4 predictors have predictions in 6 pro-
tein chains of Top-10 ranking. In terms of precision, we
can find that at least 4 predictors have predictions in 7
protein chains of Top-10 ranking. Figure 1 (a) and (b)
show the predicted RNA-binding residues in the case
of E. coli SelB protein with PDB ID 2PJPA [41] by

ProteRNA and PiRaNhA respectively. In this case,
because WildSpan does not mine any patterns for
2PJPA, only ProteRNASVM gives prediction result. Fig-
ure 2 (a) and (b) show the predicted RNA-binding resi-
dues in the case of RluA [42]. In this case, ProteRNA
outperforms than other predictors in terms of MCC.
BindN and Pprint tend to predict more and more class
label for each residue; therefore, they recommend more
and more false positives and false negatives. Meanwhile,
PRIP and PiRaNhA have similar performance in pre-
dicting RNA-binding residues in the case of 2I82C.
These figures are rendered by PyMOL (http://www.
pymol.org/).

Conclusions
This article presents the design of a sequence based pre-
dictor aiming to identify the RNA-binding residues in a
RNA-binding protein by machine learning and pattern
mining approaches. RNA-binding proteins play different
roles while interacting with different categories of RNAs
to represent diverse functions. However, RNA-binding
proteins are accommodated by the presence of multiple
copies of these RNA-binding domains presented in var-
ious structural arrangements to expand the functional
repertoire of RNA-binding proteins. Therefore, it is still
difficult to predict RNA-binding residues in a RNA-

Table 2 Statistical information of the training dataset, RB147 in terms of RNA-binding residues

Number of RNA-binding residues Total number of residues Ratio of RNA-binding residues

rRNA 3916 10267 38.14%

mRNA 256 1878 13.63%

tRNA 1230 12401 9.92%

others 755 7778 9.71%

Total 6157 32324 19.05%

Table 3 Prediction performance breakdown in terms of the categories of RNA using the training dataset, RB147

Predictor RNA TP FP TN FN Sensitivity Specificity Precision Accuracy MCC F-score F0.5-score

ProteRNASVM

rRNA 2060 537 5814 1856 52.60% 91.54% 79.32% 76.69% 0.4933 0.6326 0.7201

mRNA 27 16 1606 229 10.55% 99.01% 62.79% 86.95% 0.2193 0.1806 0.3154

tRNA 234 171 11000 996 19.02% 98.47% 57.78% 90.59% 0.2942 0.2862 0.4105

others 109 93 6930 646 14.44% 98.68% 53.96% 90.50% 0.2441 0.2278 0.3487

Total 2430 823 25344 3727 39.47% 96.86% 74.70% 85.92% 0.4741 0.5165 0.6338

ProteRNAWildSpan

rRNA 554 412 5939 3362 14.15% 93.51% 57.35% 63.24% 0.1274 0.2270 0.3560

mRNA 67 121 1501 189 26.17% 92.54% 35.64% 83.49% 0.2139 0.3018 0.3323

tRNA 50 173 10998 1180 4.07% 98.45% 22.42% 89.09% 0.0566 0.0688 0.1178

others 85 272 6751 670 11.26% 96.13% 23.81% 87.89% 0.1045 0.1529 0.1947

Total 756 978 25189 5401 12.28% 96.26% 43.60% 80.27% 0.1489 0.1916 0.2887

ProteRNA

rRNA 2256 878 5473 1660 57.61% 86.18% 71.98% 75.28% 0.4618 0.6400 0.6856

mRNA 89 138 1484 167 34.77% 91.49% 39.21% 83.76% 0.2764 0.3685 0.3823

tRNA 238 304 10867 992 19.35% 97.28% 43.91% 89.55% 0.2431 0.2686 0.3502

others 177 366 6657 578 23.44% 94.79% 32.60% 87.86% 0.2118 0.2727 0.3024

Total 2760 1686 24481 3397 44.83% 93.56% 62.08% 84.28% 0.4376 0.5206 0.5764
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binding protein. Furthermore, predicting RNA-binding
residues in a RNA-binding protein can help biologists
reveal site-directed mutagenesis in wet-lab experiments.
In the experiments reported in this article, ProteRNA

used not only evolutionary profile with predicted sec-
ondary structure but also sequence conservation

Table 4 Comparison of ProteRNA with other predictors using the independent testing dataset, RB33

Predictor* TP FP TN FN Sensitivity Specificity Precision Accuracy MCC F-score F0.5-score

ProteRNA 222 340 8563 660 25.17% 96.18% 39.50% 89.78% 0.2628 0.3075 0.3546

PiRaNhA 265 538 8365 617 30.05% 93.96% 33.00% 88.20% 0.2504 0.3145 0.3236

Pprint 447 1782 7121 435 50.68% 79.98% 20.05% 77.34% 0.2094 0.2873 0.2281

BindN 348 1613 7290 534 39.46% 81.88% 17.75% 78.06% 0.1527 0.2449 0.1994

PRIP 131 835 8068 751 14.85% 90.62% 13.56% 83.79% 0.0526 0.1418 0.1380

*Order by MCC.

Table 5 Comparison of the top 10 ranking predictions
with results from other predictors

Rank ProteRNA PiRaNhA Pprint BindN PRIP

(a) Rank by
MCC

1 2PJP_A 2QAM_Z 2QAM_Z 2QAM_Z 2PY9_C

2 2QAM_Z 2QBE_T 1VS8_O 2PY9_C 2QAM_Z

3 2PY9_C 2DER_B 2PJP_A 1VS8_O 2HYI_D

4 1VS8_O 2G4B_A 2PY9_C 2QBE_T 2NQP_B

5 2G4B_A 1VS8_O 2GYA_3 2G4B_A 2IY5_A

6 2Q66_A 2PY9_C 2DER_B 2DER_B 1VS8_O

7 2I82_C 2G8K_A 2G4B_A 2J0Q_A 2I82_C

8 2DER_B 2OZB_B 2QBE_T 2IPY_B 2V47_C

9 2QBE_T 2V47_C 2DR2_A 2HVR_A 2GJE_A

10 2DR2_A 2GJE_D 2QKK_F 2GTT_G 2JEA_B

MCC of Rank 1 0.6668 0.6415 0.6006 0.4364 0.5521

MCC of Rank
10

0.3063 0.2719 0.2390 0.1951 0.0517

(b) Rank by
precision

1 2Q66_A 2GYA_3 2GYA_3 2QAM_Z 2QAM_Z

2 2PJP_A 2QBE_T 2QAM_Z 2QBE_T 2PY9_C

3 2PY9_C 2QAM_Z 2QBE_T 1VS8_O 1VS8_O

4 2QAM_Z 1VS8_O 1VS8_O 2PY9_C 2QBE_T

5 2DER_B 2OZB_B 2PY9_C 2GYA_3 2I82_C

6 1VS8_O 2PY9_C 2DER_B 2G4B_A 2V47_C

7 2GYA_3 2DER_B 2V47_C 2J0Q_A 2IY5_A

8 2I82_C 2V47_C 2I82_C 2I82_C 2GYA_3

9 2QBE_T 2G4B_A 2G4B_A 2DER_B 2G4B_A

10 2G8K_A 2Q66_A 2GJE_A 2V47_C 2GJE_A

Precision of
Rank 1

100.00% 100.00% 76.92% 76.47% 75.00%

Precision of
Rank 10

50.00% 35.71% 25.00% 24.00% 13.33%

Figure 1 Case study on E. coli SelB (PDBID 2PJPA). Residues
colored by green, red, and blue represent true positive, false
positive and false negative, respectively. (a) Predicted RNA-binding
residues by ProteRNA. (b) Predicted RNA-binding residues by
PiRaNhA.
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information. Although these conserved residues can be
functional conserved residues or structural conserved
residues, they also provide clues to indicate the impor-
tant residues in a protein sequence. In the independent
testing dataset, ProteRNA has been able to deliver over-
all accuracy of 89.78%, MCC of 0.2628, F-score of
0.3075, and F0.5-score of 0.3546. It is anticipated that
the prediction accuracy delivered by ProteRNA will con-
tinue to improve as the number of protein-RNA com-
plexes deposited in the PDB continues to grow and the
number of training samples that can be exploited

continues to increase accordingly. Nevertheless, it is the
computational biologists’ primary interest to develop
more advanced prediction mechanisms. In this respect,
we believe that, as the number of protein-RNA com-
plexes deposited in the PDB increases, we can obtain
more insights about the key physiochemical properties
that play essential roles in protein-RNA interactions and
then we will be able to develop more advanced predic-
tion mechanisms accordingly. In addition, we will
exploit the experiences learned in this study in order to
design specific predictors for other families of proteins
interacting with RNA. We believe that different families
of proteins may have very different characteristics.
Therefore, concerning a specific type of proteins, a spe-
cifically-designed predictor should be able to deliver
superior performance in compared to a general-purpose
predictor.

Materials and methods
Datasets
We used RB147 as the training dataset for predicting
RNA-binding residues in a protein collected by Terribi-
lini et al., containing 147 non-redundant protein chains
with resolution better than 3.5 Å in the PDB solved by
X-ray crystallography [31,40]. No two protein chains has
a sequence identity greater than 30%. Based on the cut-
off distance of 5 Å, a total of 32,324 amino acids are in
RB147, which contains 6,157 RNA-binding residues and
26,167 non-binding residues. The list of PDB ids of the
training dataset, RB147, is shown in Table 6(a).
In order to evaluate prediction performance among

different prediction models, we collected a new indepen-
dent testing dataset by extracting all structures of
Protein-RNA complexes from the PDB that were added
after January 2006. Protein chains with a resolution bet-
ter than 3.5 Å and sequence length of protein chain
longer than 40 amino acids will be reserved. We then
performed a redundancy reduction using BLASTclust
[2] to ensure that none of the chains showed a sequence
similarity of more than 30% within the dataset and also
in the training dataset; therefore, 33 protein-RNA com-
plexes were selected to create a dataset called RB33.
The list of PDB ids in RB33 are shown in Table 6(b).
Based on the cut-off distance of 5 Å, a total of 9,785
amino acids are in RB33, which contains 882 RNA-
binding residues and 8,903 non-binding residues.

Framework for prediction RNA-interacting residues
Figure 3 presents the overall framework for predicting
RNA-binding residues. In the overall framework, we
combined SVM-based classifier and sequence conserva-
tion discovery by WildSpan to predict RNA-binding
residues. For the SVM-based classifier (ProteRNASVM),
we have employed the LIBSVM package with the

Figure 2 Case study on RluA (PDBID 2I82C). Residues colored by
green, red, and blue represent true positive, false positive and false
negative, respectively. (a) Predicted RNA-binding residues by
ProteRNA. (b) Predicted RNA-binding residues by PiRaNhA.
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Gaussian kernel (software available at http://www.csie.
ntu.edu.tw/~cjlin/libsvm). The model of the SVM has
been generated based on the training data set derived by
associating each residue in the training protein chains
with the evolutionary profiles of the residue and its 22
neighboring residues (window size = 23) [43,44]. The
evolutionary profile of a residue is in fact the vector cor-
responding to the residue in the position specific scoring
matrix (PSSM) computed by the PSI-BLAST package
[45] with three iterations (blastpgp -j 3) against with
NCBI non-redundant reference sequence database (ftp://
ftp.ncbi.nih.gov/blast/db/). The normalization function
for PSSM features is defined as follow:

f x
e x( ) =

+ −
1

1

where x is the entry value in 20xN matrix of PSSM (N
is sequence length of a protein). With the consideration
of structure information, we also used secondary struc-
ture information predicted by PSIPRED; the predicted
secondary structure information consists of three prob-
ability values that represent helix, sheet and coil respec-
tively (e.g. (H, E, C) = (0.75, 0.25, 0.25)). In addition, each
residue was labelled based on whether it is involved in

binding with the RNA or not. Therefore, for each residue
in a protein sequence, we construct a 23 * 24 = 552
dimensional feature factor (window size = 23, feature size
= 24); the 24 dimensions include 20 features from PSSM,
3 features from PSIPRED and a boundary flag. As shown
in Figure 4, the detail data flow and feature vector pre-
paration for SVM-based classifier is addressed. The best
parameters selected for predicting RNA-binding residues
is decided by 5-fold cross-validation.
In the part of WildSpan (ProteRNAWildSpan), for

protein-based mining suggested by the authors, at most
150 unique homologous proteins with sequence identity
ranged from 30% to 90% are required by searching
against Swiss-Prot sequence database with PSI-BLAST
(blastpgp –j 6). Then we applied default parameter to
obtain patterns by WildSpan. WildSpan can’t generate
any pattern if there are not enough homologous pro-
teins selected from Swiss-Prot protein sequence data-
base or too similar homologous proteins.

Significance and performance evaluation
The predictions made for the testing instances are com-
pared with the defined class labels (binding or non-
binding) to evaluate the predictor. The accuracy is
defined as

Table 6 Datasets for ProteRNA

(a) Training dataset - RB147

1A34_A 1A9N_A 1APG_A 1ASY_A 1AV6_A 1B23_P 1B2M_A 1C0A_A

1DDL_A 1DFU_P 1DI2_A 1E8O_A 1EC6_A 1EIY_B 1F7U_A 1FEU_A

1FFY_A 1FJG_B 1FJG_C 1FJG_D 1FJG_E 1FJG_G 1FJG_I 1FJG_J

1FJG_K 1FJG_L 1FJG_M 1FJG_N 1FJG_P 1FJG_Q 1FJG_S 1FJG_T

1FJG_V 1G1X_A 1G1X_B 1G1X_C 1G2E_A 1GTF_Q 1H2C_A 1H3E_A

1H4S_A 1HQ1_A 1HRO_W 1I6U_A 1J1U_A 1J2B_A 1JBR_A 1JID_A

1K8W_A 1KNZ_A 1KQ2_A 1LAJ_A 1LNG_A 1M5O_C 1M8V_A 1M8X_A

1MZP_A 1N35_A 1N78_A 1NB7_A 1OOA_A 1PGL_2 1Q2S_A 1QF6_A

1QTQ_A 1R3E_A 1RMV_A 1RPU_A 1SDS_A 1SER_A 1SI3_A 1T0K_B

1TFW_A 1U0B_B 1UN6_B 1UVJ_A 1VFG_A 1VQO_1 1VQO_2 1VQO_3

1VQO_A 1VQO_B 1VQO_C 1VQO_D 1VQO_E 1VQO_G 1VQO_H 1VQO_I

1VQO_J 1VQO_K 1VQO_L 1VQO_M 1VQO_N 1VQO_P 1VQO_Q 1VQO_R

1VQO_S 1VQO_T 1VQO_U 1VQO_V 1VQO_W 1VQO_X 1VQO_Y 1VQO_Z

1W2B_5 1WNE_A 1WPU_A 1WSU_A 1WZ2_A 1Y69_8 1Y69_K 1Y69_U

1YVP_A 1YZ9_A 1ZH5_A 2A1R_A 2A8V_A 2ASB_A 2AVY_F 2AVY_U

2AW4_0 2AW4_1 2AW4_2 2AW4_3 2AW4_D 2AW4_E 2AW4_G 2AW4_H

2AW4_J 2AW4_L 2AW4_N 2AW4_P 2AW4_Q 2AW4_R 2AW4_S 2AW4_Y

2AW4_Z 2AZ0_A 2BGG_A 2BH2_A 2BTE_A 2BU1_A 2BX2_L 2CT8_A

2D3O_1 2D3O_S 2FMT_A

(b) Independent Testing Dataset - RB33

1VS8_O 2D6F_D 2DB3_C 2DER_B 2DR2_A 2DU3_A 2F8S_A 2FK6_A

2G4B_A 2G8K_A 2GJE_A 2GJE_D 2GJW_C 2GTT_G 2GYA_3 2HVR_A

2HYI_D 2I82_C 2IPY_B 2IX1_A 2IY5_A 2J0Q_A 2JEA_A 2JEA_B

2NQP_B 2OZB_B 2PJP_A 2PY9_C 2Q66_A 2QAM_Z 2QBE_T 2QKK_F

2V47_C
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Accuracy
TP TN

TP FP TN FN
= +

+ + +

where TP is the number of true positives (binding
residues with positive predictions); TN is the number of
true negatives (non-binding residues with negative
predictions); FP is the number of false positives (non-
binding residues but predicted as binding residues) and
FN is the number of false negatives (binding residues
but predicted as non-binding residues). Matthew’s corre-
lation coefficient (MCC) is defined as follows:

MCC
TP TN FP FN

TP FN TP FP TN FP TN FN
= ⋅ − ⋅

+ + + +( )( )( )( )

MCC is used to measure prediction performance with
the consideration of both under- and over-predictions,
where MCC = 1 denotes a perfect prediction, MCC = 0
indicates a completely random assignment, and MCC =
-1 means a perfectly reverse correlation.
Since the data for RNA-binding residue prediction is

skewed, so-called class imbalanced data, the accuracy
alone may be misleading. The predictor can achieve 85%

accuracy by simply predicting all residues as negative for
datasets where the positive to negative sample ratio is
1:10. Therefore, prediction performance on positive
class and negative class should be assessed individually.
Metrics of the specificity and sensitivity can help predic-
tors to know their prediction performance on positive
and negative samples respectively. The sensitivity is used
to measure the prediction capability of positive samples;
the specificity is used to measure the prediction capabil-
ity of negative samples. Specificity and sensitivity are
defined as follows:

Sensitivity
TP

TP FN
=

+

Specificity
TN

TN FP
=

+

In addition, precision and Fb-score are also defined as
follows:

precision
TP

TP FP
=

+

Figure 3 The overall framework of ProteRNA for predicting RNA-binding residues
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F - score
precision Sensitivity

precision Sensit





= + ⋅
⋅ +

( )( )

(

1 2

2 iivity)

Precision is used to assess prediction power on posi-
tive class. F-score (F1-score) is the harmonic mean of
precision and Sensitivity if b = 1. F0.5-score weights pre-
cision twice as much as sensitivity if b = 0.5.

List of abbreviations
RBP: RNA-binding protein, RBD: RNA-binding domain; RNP:
Ribonucleoprotein particle; PSSM: Position-specific scoring matrix; NDB:
Nucleic Acid Database; PDB: Protein Data Bank; SVM: Support vector
machine.
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