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Abstract

Background: While the accuracy and precision of deep sequencing data is significantly better than those obtained
by the earlier generation of hybridization-based high throughput technologies, the digital nature of deep
sequencing output often leads to unwarranted confidence in their reliability.

Results: The NGSQC (Next Generation Sequencing Quality Control) pipeline provides a set of novel quality control
measures for quickly detecting a wide variety of quality issues in deep sequencing data derived from two
dimensional surfaces, regardless of the assay technology used. It also enables researchers to determine whether
sequencing data related to their most interesting biological discoveries are caused by sequencing quality issues.

Conclusions: Next generation sequencing platforms have their own share of quality issues and there can be
significant lab-to-lab, batch-to-batch and even within chip/slide variations. NGSQC can help to ensure that
biological conclusions, in particular those based on relatively rare sequence alterations, are not caused by low
quality sequencing.

Background
Rapid advances in our understanding about the molecu-
lar mechanisms underlying different pathological pro-
cesses in the last decade or so have been largely
catalyzed by various hybridization-based high through-
put methods, which enable biomedical researchers to
explore the potential contribution from almost all
known genes and genomic structures. However, most
hybridization-based approaches are still constrained by
our current understanding of genome and transcrip-
tome, as we can only include probes for known targets.
This can be a significant limitation for areas about
which we have relatively little knowledge, such as alter-
native splicing, transcription factor binding and genome
methylation. In addition, the limited dynamic range and

the noisiness of hybridization signals also constrain their
usefulness in many studies.
In contrast, the next generation sequencing technolo-

gies provide the possibility of comprehensive sampling
of the genome/transcriptome in the absence of knowl-
edge about their potential variation, as sequence read-
outs provide both structure variation and quantity
information without relying on pre-designed probes. In
addition, the final sequencing readouts are digital in nat-
ure and they should cover a much broader dynamic
range as well as provide more accurate quantitative
values. Consequently, deep sequencing is quickly
becoming the preferred method for many genome and
transcriptome studies. It can be expected that the rapid
advancement of various ultra-high throughput technolo-
gies will likely make the sequencing-based approaches
even more popular for a wide variety of studies includ-
ing gene expression, transcription factor binding, geno-
mic structural change, genome methylation and even de
novo genome assemblies.
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However, due to the digital nature of sequencing out-
put, most biomedical researchers tend to believe that
although sequencing data will contain platform-specific
base calling errors and possibly small insertions/dele-
tions, it is unlikely that such sequencing errors will lead
to qualitatively incorrect conclusions. In addition, since
deep sequencing platform vendors already provide qual-
ity scores and filters for sequencing output, most users
would think that there should be no major quality issues
in sequencing if the vendor data analysis pipelines are
set up properly. This attitude is evident in the fact that
although three major deep sequencing platforms from
Illumina, Applied Biosystems and Roche have been in
widespread use for at least two years, there are only two
published third party quality control (QC) packages,
TileQC[1] and PIQA[2] , both of them targeted the Illu-
mina platform.
Regardless of the specific technologies used, sequen-

cing assays are very complicated processes and the final
output can be influenced by many factors including flui-
dics, optics, assay setup and sequencing library prepara-
tion. The complexity of the sequencing process also
means that there will be lab-to-lab and batch-to-batch
variations. In addition, identifying quality problems that
have significant impact on biological conclusions
requires in-depth understanding of the biological pro-
blem and considerable efforts for linking sequence reads
to assay quality issues. Consequently, it is unrealistic to
expect typical assay vendors to proactively devote signif-
icant resources to identify all major problems in their
assays under different situations. In fact, this is what we
have learned from the use of microarray platforms: high
throughput assay vendors are mainly focused on assay/
hardware development. Data analysis solutions provided
by vendors are workable but can often be significantly
improved by third party users and developers [3-8].
In our own deep sequencing data analysis projects, we

came across a number of issues, such as uneven base
percentage across assay surface and large scale low qual-
ity patterns that neither QC solutions from sequencing
platform vendors or third party quality (i.e., TileQC and
PIQA) can detect. Besides lacking some important QC
measures, existing deep sequencing QC solutions
emphasize quality analysis at the individual sequence or
the individual sequencing data capture tile/panel level. It
is difficult to identify quality change trends or patterns
across the whole sample, which usually consists of 100
to over 2000 tiles/panels. In addition, existing solutions
do not provide an easy way to identify biological conse-
quences of deep sequencing quality issues. It is a very
time-consuming task for a typical biomedical researcher
to verify that sequence reads related to an interesting
biological conclusion are not the result of quality issues
in the sequencing assay. Moreover, available third party

deep sequencing QC solutions are designed for the Illu-
mina platform only. There is no third party QC package
that can deal with QC needs for the widely used
Applied Biosystems SOLiD platform or for future gen-
erations of deep sequencing platforms.
Our NGSQC (Next Generation Sequencing Quality

Control) pipeline is designed to address the above short-
comings in deep sequencing quality analysis. NGSQC
provides comprehensive quality control measures at
sequence, tile/panel and sample levels. It can be quickly
adapted for new sequencing platforms that perform
sequencing on two dimensional surfaces. NGSQC also
allows biomedical researchers to quickly identify biologi-
cally relevant quality issues in their deep sequencing
data and to make sure that sequences related to specific
biological conclusions are not the result of sequencing
quality problems.

Implementation
New quality control measures
All sequencing platform vendors provide quality scores
for individual bases in the sequence reads. These quality
scores are utilized by TileQC[1] and PIQA[2], as well as
vendor provided solutions for plotting quality score
trend in sequencing cycles and quality score distribution
in each tile, which is the unit of image capture for the
Illumina platform. TileQC also plots genomic alignment
results based on number of mismatches on individual
tiles and such graphs are very helpful for understanding
the impact of quality issues on sequence alignment.
Besides incorporating key QC measures from existing

solutions, we add the following novel QC measures in
NGSQC for detecting quality issues that other solutions
cannot identify:
1. Base/color code distribution across each tile/panel.

In the sequencing data that we have processed, we have
noticed that the percentage of a specific base (e.g., per-
centage of A bases in all called bases in Illumina
sequencing or percentage of color code 0 in Applied
Biosystem sequencing) in a fixed size area often exhibits
non-random patterns across the sequencing surface (e.
g., Figures 1C). Although the base composition (or the
dibase composition in the case of SOLiD sequencing) is
unique for each sample, we would expect that the distri-
bution of sequence fragments on the sequencing sur-
faces be random. As a result, the distribution of base/
color code should be fairly consistent across the sequen-
cing surface if the surface area used for deriving the
base percentage includes hundreds or even only dozens
of sequences. Any deviation from the expected random
distribution of sequences, e.g., the uneven concentration
of A base rich sequences in a sub-region of the sequen-
cing surface, would suggest problems in sequencing
assays.
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2. Base/color code percentage plot in full sequencing
cycle for all sequences in each tile/panel. Similarly, we
noticed cyclic patterns for the percentage of specific base/
color code call along the full sequencing process, in particu-
lar in the later cycles of the sequencing assay for some sam-
ples (Figure 2). Since the widely-used quality score plots
cannot predict base/color code bias, the base/color code
percentage trend plot can reveal new sources of sequencing
problems not detectable by the quality score plots.
3. Summary of all tile/panels based on x-y coordinates

in each tile/panel: In our analysis of deep sequencing
data, we also noticed that summarizing a specific quality
measure (e.g., quality score or base percentage) for the
same xy location for all tiles/panels in a sample can
sometimes reveal patterns not obvious when these mea-
sures are examined at individual tile/panel levels. Con-
ceivably, the summary across all tiles/panels will make
weak but repetitive or consistent biases that the sequen-
cing system introduced on each tile/panel more obvious.
A common problem is likely to be the inappropriate
imaging capture system setup, as donut-like patterns or
stripes can sometimes be seen on the data we examined.

4. Full sample view: Since the individual tile/panel
based visualization cannot capture large scale quality
pattern across the full sample assay, NGSQC provides
full sample view of several quality control measures
derived from individual tiles. There are two different
views for all tiles/panels in a sample: 1) heat maps for
all tile/panels based on their original spatial relation-
ships on the sequencing chip/slide. 2) cycle-based plot
for QC measures derived from all tiles/panels in indivi-
dual rows or columns in a sample. These graphs allow
users to quickly identify the pattern of problematic tiles/
panels, and thus can use tile/panel location as a filter in
sequencing analysis.
5. Quality measures for paired-end/mate pair libraries:

Although sequencing library preparation is not part of
the deep sequencing assay per se, paired end/mate pair
sequencing library preparation procedures have major
influences on the final sequencing results. We included
two quality measures, the distribution of distance
between sequencing reads from the two ends and per-
centage of chimeras, in the NGSQC package for paired-
end/mate pair libraries.

Figure 1 Sample overview of full slide SOLiD runs. Figures 1A and 1B show panel average quality score distributions across two different full
SOLiD slide runs. Black areas in four corners are regions not used by sequencing assay by design. Heat map scales are set up automatically
according to the quality score range in each run. The pattern of low quality regions varies from run to run even in data from the same
sequencing core. Figures 1C and 1D show the color code 0 percentage distribution and the genomic hit count distribution across different
panels for the same sample illustrated in Fig. 1B, respectively. Numbers on the left and lower edge of each figure are the row and column
number of panels. Numbers of the right side of the heat map scale bar are values associated with colors in the heatmap.
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Identifying potential quality issues in sequence reads
related to specific biological conclusions
An important reason that quality control analysis is not
widely used by biomedical researchers is that although
existing solutions can reveal a number of quality issues,
it is hard to investigate the biological consequences of
these quality issues. A key feature provided by NGSQC
is the ability to link sequence reads related to a specific
biological conclusion (e.g., a list of differentially
expressed genes, novel alternative splicing variants, etc.)
to potential quality issues. NGSQC will plot the user-
provided sequence lists back to the original sequencing
surface as sequence distribution heat maps, which can
help identifying potential quality issues related to speci-
fic biological results.
The most straightforward method is to examine the

sequence read distribution in the sample/tile maps.
Since we expect sequences related to a specific biologi-
cal conclusion be distributed relatively evenly across the
sequencing assay surface, any significant deviation from
random distribution, either at the full sample overview
or at the all tile/panel summary view, will suggest the
involvement of sequencing quality issues. The expected
random distribution of sequencing reads is a surpris-
ingly powerful property that has not previously been uti-
lized in quality control solutions. We believe that the
deviation of random distribution can detect many types
of quality issues even if we do not understand the
underlying mechanisms.
In addition, our solution provides side-by-side com-

parison of the user-defined sequence reads distribution
with different types of quality control heat maps gener-
ated by NGSQC for the full sequencing assay. The side-
by-side comparison allows users to quickly identify

situations where most of the sequence reads related to a
specific biological conclusion are from problematic
regions revealed by the heat map of a specific quality
measure through visual pattern match. This approach is
particularly useful for identifying quality issues in a
small number of sequence reads related to rare genome
structure changes or transcriptome variants, as it is hard
to judge the randomness of distribution for a small
number of sequence reads.

Multiple deep sequencing platform support
Currently, neither TileQC nor PIQA supports sequen-
cing data from the Applied Biosystems SOLiD platform,
which is gaining popularity for SNP identification and
genomic structure analysis. It is highly likely new deep
sequencing platforms will become available in the com-
ing years. NGSQC is designed to support all sequencing
technologies that perform sequencing on a two dimen-
sional surface, as long as they provide methods for link-
ing individual sequence reads to specific locations on
the sequencing surface.
In NGSQC, we use the sequencing format files to cap-

ture the two-dimensional arrangement of different
sequencing assay types for a sample. For each new
sequencing format from an existing or new sequencing
platform, we will add a new sequencing format file that
defines the arrangement of tiles/panels in each sample
as well as the number of x and y values in each tile/
panel.
For each analysis, NGSQC will ask a user to select a

sequencing format file out of a list of all supported plat-
forms. NGSQC will find corresponding sequencing for-
mat file under the conf folder, which is created during
NGSQC pipeline setup, for generating the heat maps as

Figure 2 SOLiD color code bias during the sequencing by ligation process. Each line in Figure 2 represents the fluctuations of SOLiD color
code zero for each one of the 29 columns of panels obtained in Figure 1B during the SOLiD sequencing process. The y-axis is the percentage
of color code 0 at different sequencing cycles shown on the x-axis.
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well as tile/panel row/column based statistics. For exam-
ple, if the user selects ‘Illumina_120’, the pipeline draws
the image with file ‘conf/Illumina_120.tile’, which is an
ASCII file for the one lane per sample sequencing on
the current generation of Ilumina Genome Analyzer.
Since the sequencing format files are ASCII files, users

of the NGSQC package can follow the example of exist-
ing sequencing format files for new sequencing assay
formats or new platforms. However, if a new sequencing
platform is very different, we will be happy to work with
users and the corresponding vendor to generate new
sequencing format files.

NGSQC software architecture
NGSQC performs various analysis and reporting tasks in
a pipeline. Its workflow is controlled by a GNU Make
file, which calls a number of programs for sequence
alignment (BOWTIE [9]), quality graph generation (gnu-
plot [10]), as well as custom LINUX scripts and Python
programs for processing various text files.
Users of NGSQC can take advantage easily of multi-

processor/core computers by specifying a number of
jobs that can run simultaneously. NGSQC can be run
on LINUX clusters too. Both Torque and SUN/Oracle
Grid Engine are supported.

NGSQC usage
To set up the NGSQC pipeline, a user needs to down-
load a ngsqc_version.tar.gz file at http://brainarray.mbni.
med.umich.edu/brainarray/ngsqc/. After unzipping it,
he/she needs to go to the ngsqc folder and 1) copy gen-
ome (or transcriptome) fasta file to INPUT/fasta. 2) if
the sequence reads are from the Illumina platform, copy
the fastq file to INPUT/solexa. If the sequence reads are
from the Applied Biosystems platform, copy both the
csfasta file and qual file to INPUT/solid.
If a user wants to analyze a different type of target

sequence or perform quality analysis for another species,
he/she needs to perform the above procedures at
another location and copy the required files.
For paired-end analysis, a user needs to create a file

‘<PAIRID>.pair’ under either sub-folder INPUT/solid or
INPUT/solexa. This file has two lines: the first line ‘pair:
<END1> <END2>’ defines the two sequence read file
names separated by a white space. These two sequence
files contain sequence reads from two ends of the same
sequencing library. Naturally, sequence read files END1
and END2 must exist under INPUT/solexa or INPUT/
solid. The second line is ‘range: 500 5000’, which defines
expected minimum and maximum distance between the
sequence reads from two ends. In the above example,
NGSQC will consider any paired-end reads with dis-
tance within 500 bp or over 5000 bp as abnormal. The
NGSQC will report the number of such paired-end

reads as quality measures for paired-end/mate pair
library preparation.
To run the NGSQC, a user only needs to type ‘make’.

Users can also tweak some run parameters in the ‘Envir-
onment Section’ of the makefile. For example, if
NGSQC is run on a big memory computer, a user
might want to specify a bigger memory for program
‘sort’ to get better performance.
To view the result, a user can directly access file

‘index.html’ under the folder OUTPUT. He/she can also
run ‘make httpserver’, which will start a web server
using 8080 as the default port. The default port can be
specified in makefile too.
If a user wants to perform QC analysis for several lists

of sequence reads related to specific biological targets or
conclusions, he/she can create sub-folders under
INPUT/solexa or INPUT/solid, with one sub-folder for
each sequence list. The subfolder name should be the
same as the name of the corresponding sequence read
file but without a suffix. Each line of such a custom
sequence read file should be the sequence read ID of
the corresponding sequence. After copying the custom
sequence read files to their destination folders, the user
only needs to run ‘make’ again to generate read distribu-
tion maps for a side-by-side comparison of the full sam-
ple QC heat maps described in earlier sections.
To utilize multi-core/CPU computer, a user can run

‘make -j N’, where N is a number, to run N analyses
simultaneously. To run the pipeline on cluster, a user
needs to modify the ‘CLUSTER’ parameter to either
‘SGE’ or ‘TORQUE’ in Makefile, and run ‘make’. All
analyses will be split into multiple smaller units and
then be submitted to the cluster. The NGSQC pipeline
will ensure smaller analysis units with dependency rela-
tionships executed in proper order.
Detailed usage is described in the ‘README’ file. The

NGSQC package comes with some sample files and a
user can just run ‘make’ for a test after unzipping. The
NGSQC project website at http://brainarray.mbni.med.
umich.edu/brainarray/ngsqc/ will also provide updated
usage information, sample data files and sample output.

NGSQC output
NGSQC generates an html file that organizes the quality
measures in a three-layered hierarchical output. At the
first level, quality control outputs are listed by lane/sam-
ple names used in the input data file. Once a sample/
lane name is clicked, it will open a window displaying
the quality control measures associated with this sample.
Clicking on individual quality measures will show the
corresponding quality analysis results in heat maps, line
graphs or bar charts. The “<help>” signs on the right
side of each QC measure are linked to examples on the
NGSQC project webpage, if more detailed explanations
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are needed. The following is a brief summary of the
output.
1. Full Sample View: provide sample level overview of

several QC measures, including the distribution base/
color code, target hit count under different mismatch
criteria and target hit levels (unique or multiple),
sequencing read density, and quality score based on the
corresponding average values for each tile/panel used by
a sample. The results are presented in the same spatial
layout as it is the deep sequencing assay to facilitate a
quick identification of trends/patterns of quality issues
in the whole sample assay.
2. All Tiles/Panels Summary View: The above quality

measures from all tiles/panels are used to create heat-
maps based on individual x-y locations on the two
dimensional tile/panel surfaces. This set of QC graphs is
designed for detecting QC problems that are repeated
for every tile/panel.
3. Individual tile/panel QC: Individual tile QC maps

can be used for identifying QC issues in individual tiles.
To facilitate quick identification of problematic tiles/
panels, we try to rank the unevenness of two measures,
the read count and the genomic hit on each tile/panel,
across x-y coordinates. Currently, we use a simple fixed
grid for detecting unevenness.
4. Cycle-based QC plot: the average of quality mea-

sures from all tiles/panels as well as rows and columns
of tiles/panels plotted against the base/color position in
the sequence reads. We also include the mismatch rate
derived from unique genome hits for each base position
along the full-length sequence reads. These graphs will
not only help to identify cycle-specific sequencing issues
but also spatial-related issues based on tile/panel rows
and columns.
5. Target hit plot: These graphs present sequence

alignment results across the target genome or transcrip-
tome sequences. They are useful for identifying uneven
distribution of sequences when compared to reference
targets or help to identify sequence structural differ-
ences between the sample and the reference genome/
transcriptome.
6. QC for user-defined sequence lists. If a user ana-

lyzes the lists of sequences related to specific biological
conclusions, the resulting QC data will be listed under
the above categories in the output. The QC graphs for
user-defined sequences will be displayed side-by-side
with the QC graph for all sequences in the sample thus
users can quickly find out whether their interested
sequences are from problematic regions of sequencing
assay.
7. Library QC for paired-end/mate-pair sequencing:

The paired-end/mate-pair library overview graph pre-
sents the percentage of good pairs (correct orientation
on the same chromosome), unpaired reads, chimeric

pairs from different chromosomes, chimeric pairs with
the wrong orientation from the same chromosome, and
chimeric pairs less than or greater than the user-defined
library fragment range in a bar chart. The pair distance
distribution plot can be used to judge whether the
matched paired-end/mate-pair reads exhibit the correct
distance distribution. The distance between each good
pair is calculated by the starting position of the first
end, minus the starting position of the second end, thus
the distance values can be negative. We also plot pairs
hitting different strands of the target separately. As a
result, the pair distance distribution plot can also be
used to detect strand bias.

Results and discussions
The NGSQC program we developed has several impor-
tant advantages over existing Illumina sequencing qual-
ity control solutions such as TileQC and PIQA: 1)
NGSQC incorporates the most comprehensive quality
control measures, including the novel base bias detec-
tion on sequencing surfaces and in sequencing cycles,
full sample view for identifying large scale trend/uneven-
ness, all tiles/panels summary view for detecting repeti-
tive optical and fluidic problems and QC graphs for
assessing paired-end/mate-pair library quality issues. 2)
NGSQC enables easy identification of quality issues
related to specific biological targets/conclusions by plot-
ting user-defined sequences in the same QC pipeline. 3)
NGSQC is the first quality control package for the
SOLiD platform and it can be easily adapted for any
future sequencing technologies as long as the sequen-
cing is performed on a two dimensional surface. 4)
NGSQC supports cluster computing, thus it is suitable
for large sequencing projects.
The application of the NGSQC pipeline to various

deep sequencing data sets revealed unexpected quality
issues, which helped us to derive more reliable biological
conclusions. While detailed discussion of the related
biological issues is beyond the scope of this paper, we
would like to use three examples to demonstrate how
NGSQC can be utilized to identify potential quality pro-
blems and to improve deep sequencing data
interpretation.
Example 1: Quality issues in a full SOLiD slide run:
We start with the SOLiD example since there was no

QC analysis package for the SOLiD platform before
NGSQC. Figures 1A and 1B show the sample level over-
view of the individual panel quality score average in two
different full SOLiD slide runs from two different
sequencing labs. It is obvious that sequence data from
different labs produce different quality score distribu-
tions. In fact, the quality score distribution varies from
run-to-run even in the same lab. The region of low
quality scores near the upper middle part of the SOLiD
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slide in Fig. 1B actually has a good explanation: samples
are injected into the slide through an opening at the top
of the slide, thus the band of low quality region is likely
caused by fluidics issues.
Figures 1C and 1D show the distribution of the color

code 0 percentage and the genomic hit count across dif-
ferent panels for the same sample as in Fig. 1B. Both
the color code bias and the genome hit count across the
panels reflect at some degree the SOLiD quality score
distribution near the upper middle part as described
above. However, the magnitude of quality difference
across different panels is greatly magnified in the gen-
ome hit plot, suggesting that the final genome hit count
is a more sensitive measure for detecting quality issues
in sequencing assays.
Figure 2 shows the color code bias in the SOLiD

sequencing by ligation process: This is the average color
code bias for each column of panels (for a total of 29
columns) of the sample used in Figures 1B, 1C and 1D
across dinucleotide extension cycles. It is surprising to
see the SOLiD sequencing by ligation process, which

consists of 5 rounds of primer reset for each sequencing
tag (http://www.appliedbiosystems.com/absite/us/en/
home/applications-technologies/solid-next-generation-
sequencing/next-generation-systems/solid-sequencing-
chemistry.html ), also lead to cyclic dinucleotide bias
(every 5 dinucleotide extensions) in parallel to the pri-
mer reset cycles. Obviously, the color code bias problem
is most severe near the end of sequencing.
In addition, it can be seen that column 1 and column

29 exhibit very different color code bias changes in the
sequencing process. This corresponds well to other
quality measures in Fig. 1B, 1C and 1D (darker regions
in the leftmost and rightmost columns). Consequently,
it will be better to exclude sequence reads from column
1 and column 29 in the final analysis for this particular
run.
Example 2: Small but consistent base bias across Illu-

mina lanes:
Figure 3A and 3B show the A base percentage and the

C base percentage for each tile within a lane on the Illu-
mina sequence chip. There is a small (1%-2%) but

Figure 3 Small but consistent spatial base percentage gradient in Illumina sequencing. Figures 3A, 3B and 3C show the average
percentage of the A base, average percentage of the C base and the genome hit count in each tile within an Illumina lane for the same
sample. The x-axis labels and the y-axis labels on the left side are the column and row numbers of tiles. The y-axis labels on the right side of the
heatmap scale are the values associated with heatmap colors.
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consistent base percent different at two ends of each
lane. Figure 3C is a heat map based on the number of
sequences with unique genome hit count per tile (from
42000 to 58000). Again, genomic hit count is a more
sensitive quality measure than base percentage change
or the vendor provided quality score.
Nonetheless, base percent change heat map can help

users to better relate their sequence data to biological
problems. For example, if a user is looking for a rare
structural change involving sequences with high C base
content, he/she should become alarmed if the NGSQC
user sequence mapping function reveals that most of
those sequences are from the end of the lane containing
higher level of C bases. It is likely that sequencing assays
artificially introduced more calls for C bases in the
sequence reads to enable the alignment of those
sequences to the expected target, such as new exon-
exon junction or a genomic insertion/deletion. Such
candidates should definitely be given lower priority in
follow-up validation experiments.

We would like to point out that base bias and sample
level unevenness in sequencing quality are very common
issues in deep sequencing. However, neither TileQC nor
PIQA is able to detect the related quality issues directly
since they neither use base bias as a quality control
measure nor provide full sample view for detecting large
scale trends.
Example 3: Paired-end/mate-pair sequencing quality

measures:
Paired-end or mate-pair sequencing are widely used in

analyzing larger scale genome or transcriptome struc-
tural changes such as large insertion, gene fusion and
alternative splicing. A key issue in paired-end/mate pair
data analysis is the false chimeric sequences, whose two
ends are not from the original continuous sequence
fragments during library preparation. NGSQC can gen-
erate a barchart summarizing the extent of chimeric
sequences in the results based on unique genome hits
(Figure 4). Consequently, users can quickly learn the
fraction of two ends from different chromosomes, and

Figure 4 Quality control for paired-end sequencing. The y-axis shows the number of pairs for each of the following categories: 1) good pair:
sequence reads from both ends of a sequence are from the same chromosome and their distance and orientation are consistent with the
reference genome; 2) unpaired on the forward strand: orphan reads from one end of the sequencing; unpaired on the reverse strand: orphan
reads from the other end of sequencing. We separate the reads from two ends since for some technologies the reading efficiency and accuracy
are different for two ends; 3) different chromosome: two ends of the same fragment are from different chromosomes based on the reference
genome; 4) wrong orientation: although the two ends are from the same chromosome, their relative orientation is different from the reference
genome; 5) < defined range: paired-end reads with shorter than the expected library fragment range and 6) > defined range: paired-end reads
with longer than the expected library fragment range. In the above example, more than one third of the pairs have a shorter than expected
distances, thus indicating a library quality issue.
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two ends with wrong orientations, as well as those with
longer than or shorter than expected distances. Such
chimeric sequences are in fact candidates for gene
fusion, inversion, insertion and/or deletion. However, if
their levels are very high, it is likely that many such
“novel” genomic structural changes are caused by pro-
blems in library preparation. For example, Figure 4
shows the QC results for a public domain paired-end
sequencing sample from the 1000 genome project
[11,12]. About 10% of the paired end reads in that sam-
ple have ends from different chromosomes according to
the current version of genome assembly (hg19). Conse-
quently, most of the genomic structural changes
revealed by paired-end sequencing for this subject must
be the result of poor sequencing library preparation, as
it is highly unlikely that the corresponding subject can
survive with such a high level of genomic disruptions.

Conclusions
NGSQC is a comprehensive deep sequencing quality
control pipeline that can help biomedical researchers
quickly find out if there are specific quality issues
related to their results. We expect that the incorporation
of NGSQC in standard deep sequencing data analysis
pipeline can significantly improve the interpretation and
understanding of deep sequencing data. We also wel-
come feedback from the deep sequencing community
for further improvement of NGSQC.

Availability and requirements
• Project name: NGSQC
• Project home page:http://brainarray.mbni.med.

umich.edu/brainarray/ngsqc/
• Operating system(s): LINUX
• Programming language: gnu make, shell script and

python
• Other requirements: BOWTIE, gnuplot and Sun

Grid Engine or TORQUE as cluster manager if running
NGSQC on a LINUX cluster
• License: GNU GPL
• Any restrictions to use by non-academics: License

needed
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