
PROCEEDINGS Open Access

Decreasing the number of false positives in
sequence classification
Ariane Machado-Lima1,2, André Yoshiaki Kashiwabara3, Alan Mitchell Durham3*

From 5th International Conference of the Brazilian Association for Bioinformatics and Computational Biology
(X-meeting 2009)
Angra Dos Reis, RJ, Brazil. 18-22 October 2009

Abstract

Background: A large number of probabilistic models used in sequence analysis assign non-zero probability values
to most input sequences. To decide when a given probability is sufficient the most common way is bayesian
binary classification, where the probability of the model characterizing the sequence family of interest is compared
to that of an alternative probability model. We can use as alternative model a null model. This is the scoring
technique used by sequence analysis tools such as HMMER, SAM and INFERNAL. The most prevalent null models
are position-independent residue distributions that include: the uniform distribution, genomic distribution, family-
specific distribution and the target sequence distribution. This paper presents a study to evaluate the impact of the
choice of a null model in the final result of classifications. In particular, we are interested in minimizing the number
of false predictions in a classification. This is a crucial issue to reduce costs of biological validation.

Results: For all the tests, the target null model presented the lowest number of false positives, when using
random sequences as a test. The study was performed in DNA sequences using GC content as the measure of
content bias, but the results should be valid also for protein sequences. To broaden the application of the results,
the study was performed using randomly generated sequences. Previous studies were performed on aminoacid
sequences, using only one probabilistic model (HMM) and on a specific benchmark, and lack more general
conclusions about the performance of null models. Finally, a benchmark test with P. falciparum confirmed these
results.

Conclusions: Of the evaluated models the best suited for classification are the uniform model and the target
model. However, the use of the uniform model presents a GC bias that can cause more false positives for candidate
sequences with extreme compositional bias, a characteristic not described in previous studies. In these cases the
target model is more dependable for biological validation due to its higher specificity.

Background
Probabilistic models are widely used in biological
sequence analysis. They are essential mechanisms to
pre-process the plethora of data available, creating
hypothesis for biological validation. Examples are Hid-
den Markov Models (HMM) [1-3], Weight Array
Matrices (WAMs) [4] and Covariance Models (CMs)
[5]. In this context, probabilistic models can be used to

represent known families of sequences and to create
programs to predict if specific sequences belong to the
family of interest. However, these models assign non-
zero probability values to most input sequences. There-
fore, we need a criteria to decide when a given probabil-
ity value is sufficient. One of the most commonly used
technique is bayesian classification using two probabilis-
tic models: F, that represents a family of sequences, and
A, an alternative model. The likelihoods of each of the
two models is measured and the sequence is classified
as belonging to F if the likelihood of F is greater than
the likelihood of A.
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The choice of the alternative model is essential to
reduce the number of false predictions and depends on
the problem. An alternative model can be either a nega-
tive model representing the complementary set of the
sequences of interest, or a null model, representing ran-
dom sequences. Negative models are used when there is
a deeper biological understanding of the particular pro-
blem and it is possible, with a high degree of certainty,
to characterize the sequences that are not part of the
family. Therefore, the choice of the probabilistic model
to be used as the negative model depends on a strong
biological hypothesis about the complementary set. Null
models are used when we do not have sufficient infor-
mation to characterize the complementary set of the
sequences we want to classify. This situation is generally
the rule for annotation software, where we want to char-
acterize a sequence family (e.g. tRNAs, exons, miRNAs,
transmembrane domains,...) against all other sequences.
This is the scoring technique used by sequence analysis
tools such as HMMER [2], SAM [6] and INFERNAL [7].
Null models is the chosen strategy for alternative model
considered in this work.
More technically, we want to compute, given a

nucleotide sequence x, which model better represents
the sequence: the family model (representing the family
of sequences we are interested on) or the null model
(representing other sequences). The sequence x is classi-
fied as belonging to the family represented by the model
F if P(F|x) > P(N|x) or, alternatively, if

P x F P F

P x N P N

( ) ( )
( ) ( )

> 1 . Considering P(F) = P(N), the clas-

sification of x simplifies to the comparison of the likeli-

hoods:
P x F

P x N

( )
( ) . To cope with the very small

probability values when sequences are long, log values
are used. So, we use the log-odds score S:

S
P x F

P x N
P x F P x N=

( )
( ) = ( ) − ( )log( ) log log (1)

We want null models that help classifiers reject
sequences that do not belong to family F (which we will
call negative sequences). Therefore, such a null model N
should score higher than the family model F for any
negative sequence. In other words, with a good null
model, log-odds score for negative sequences will have
value zero or less.
Null models, due to their very generic nature, should

not present any structure. Therefore a convenient model
to describe random sequences in a null model N is a
position-independent probability distribution, which

imposes no structure on the sequences. For nucleic
acids sequences, the null model assigns a fixed probabil-
ity value PN(i) to each nucleotide (i = A, C, G, T).
Therefore, the probability value of a sequence x of
length L is given by the formula:

P(x|N, L) = [PN(A)]
cA*[PN(C)]

cC*[PN(G)]
cG*[PN(T)]

cT (2)

where ci is the count of the nucleotide i in the

sequence x, c Li
i

∑ = .

There are many possible strategies to set up a null
model discussed in literature [8-10], all of which seem
to make sense biologically. Some of them are: i. using a
uniform distribution, ii. using the genomic background
distribution, iii. using the training set distribution, iv.
using the target sequence distribution. Each strategy
uses a different reasoning to minimize false positives.
The reasoning behind each strategy is based on how we
will characterize “random sequences”. With the uniform
distribution, we define randomness by the absence of
information, even about the nucleotide composition.
With the genomic background distribution, we define
randomness by what should be the standard nucleotide
distribution of a sequence in a specific genome. With
the training set distribution, we assume the family
model will favor a certain specific nucleotide distribu-
tion (that of the known sequences of that family used to
infer the model, the training set); so if we use the
nucleotide distribution of the training set as a null
model, this will help the classifier reject sequences with
a high score only due to their base composition. Finally,
with the target sequence distribution, random sequences
are those with the same base distribution of the target
sequence (in other words, a genomic background strat-
egy reduced to the sequence locality). Independently of
the rationale chosen, the null model will fall in one of
three classes: a uniform distribution, a fixed non-uni-
form distribution or a target-dependent distribution.
The goal of this study is to evaluate the impact of

each of these three classes of null models in the false
positive rate of classifiers. We found only two studies in
literature that analyzed the performance of null models
[8,9]. Each study evaluates one specific benchmarks of
aminoacid sequences and only one probabilistic model
(HMM). This approach limits the generality of their
conclusions. First, they do not address the problem for a
wider amplitude of classification models. Second, and
more important, they only analyze the final accuracy
results for their specific benchmarks, without any con-
sideration on why these can be generalized to other
sequence families.
To make this study more general than previous works,

we use random sequences and two different probabilistic

Machado-Lima et al. BMC Genomics 2010, 11(Suppl 5):S10
http://www.biomedcentral.com/1471-2164/11/S5/S10

Page 2 of 12



models. Using random sequences guarantees there is no
bias in the study towards any particular benchmark, so
we expect the results to be of broad application. Also,
the simulations used random sequences across the
whole GC spectrum, in an effort to make the results
applicable to any real-life situation. The two probabilis-
tic models chosen are very different, aimed at covering a
wide range of models: one with very simple architecture
and one able to represent more structured sequences.
The studies were performed using Weight Array
Matrices (WAMs) [4] and Covariance Models (CMs) [5].
WAMs record only fixed-distance content dependen-

cies, useful to represent sequence motifs. CMs are able
to characterize indels and register dependencies in non-
adjacent bases at arbitrary distances, which can be used
to characterize secondary structure. We evaluated
WAMs in the context of splice site prediction and CMs
in the context of predicting RNA or other genomic ele-
ments with secondary structure. Splice sites were used
for three reasons: first, splice site prediction is at the
heart of gene prediction, an biologically important pro-
blem in bioinformatics, second, the abundance of data
in public databases, third, because many successful pre-
dictors use position-dependent models, which is the
base of our probabilistic model range. The spectrum of
GC content in the dataset enabled using a single
sequence family (splice sites) for all experiments with
WAMs. In this context, the same was not possible for
CMs, where training sets are generally small and con-
centrated on a small spectrum of GC content. In this
case we had to use three different sequence families (see
methods for details).
We will see below that the training set and the genomic

background are not good choices for a null model. In fact,
no fixed, non-uniform distribution is, as a quick mathema-
tical analysis can demonstrate. As we will see below, two
probabilistic i.i.d. models are best suited for classification:
the uniform model and the target model. However, we also
show that the uniform distribution can also have a deleter-
ious effect in sequences with biased GC distribution. This
is particularly relevant, since it has not been described
before and since uniform models are widely used in the
context of nucleotide sequences. The final conclusion is
that the target model is more dependable when choosing
candidates for biological validation due to its higher speci-
ficity. This is reinforced by the real data experiment using
Plasmodium falciparum, a highly AT-rich genome. The
study was performed in DNA sequences using GC content
as the measure of content bias, but the results should be
valid also for protein sequences.

Results
Since we are interested in minimizing the number of
false positive predictions, we used randomly generated

sequences for evaluation. Random sequences should
receive negative log-odds scores in probabilistic classi-
fiers for any specific sequence family. In other words, a
better performance in terms of specificity means fewer
random sequences with positive scores. We evaluated
six null models: 5%GC, 25%GC, uniform, 75%GC, 95%
GC and the model obtained from the base frequencies
in the target sequence (the target model)1.

1We used GC content as a simplified measure of
nucleotide composition, which allows the visualization
of 2D plots.
Initially, for illustrative purposes, we computed the log

of the probability values of the test sequences given the
null models alone (no log-odds score). This illustrates
the values produced by these models for sequences at
different GC compositions. We called these “raw
scores”. Next, we used each of these models as null
models in log-odds scoring classification for two differ-
ent types of family models, WAMs and CMs. Since we
are using only random sequences, the log-odds scores
should be negative. Positive scores indicate false
positives2.

2We assume that the chance of one of the random
sequences being an actual family sequence is negligible.

Raw score behavior on random sequences
We have plotted the raw scores (log of the probability
value) of random sequences using the fixed distribution
and target models alone. The results are shown in Fig-
ure 1.
As it was expected, the uniform model produces no

bias along the GC content (x axis), producing a constant
score, consistent with the fact that all analyzed
sequences have the same size. The raw scores using the
biased fixed distribution models (5%GC, 25%GC, 75%
GC, 95%GC) show a linear dependence on the GC con-
tent of the analyzed sequences; the GC content of the
model only determines the inclination of the linear plot.
The target model presents a less intuitive result, a curve
with the lowest scores at 50%GC and higher scores
towards more extreme GC distributions.

Effect of different null models in log-odds scoring
Probabilistic models such as WAMs and CMs also cap-
ture the base composition of the sequences of the train-
ing set. Therefore, when we use log-odds scoring, the
GC bias recorded by the family models should also
influence the final score and we have to analyze the
combined influence of the family and null models. We
embedded the null models used in the previous section
in classifiers using two different probabilistic techniques,
Weight Array Matrices (WAMs) [4] and Covariance
Models (CMs) [5]. For each technique we created classi-
fiers using training sets with different GC average
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compositions. For clarity, we only show the results for 4
null models: target, 5%GC, 50%GC and 95%GC. Data
for the null models corresponding to the 25%GC and
75%GC is consistent with the presented results (data
not shown).
Weight array matrices
We used sequences of acceptor splice sites to create
three distinct training sets with different average GC
content: 38%GC, 50%GC and 65%GC (see Materials and
Methods for a justification on GC percentages). For
each training set, a weight array matrix was trained and
used to score random sequences using the six null

models: 5 fixed GC models and the target model. The
results are shown in Figure 2.
As we can see, log-odds scores of random sequences

using fixed GC null models, including the uniform
model, present a quasi-linear dependence on their GC
content. This means that, no matter what is the compo-
sition of the sequences used to characterize the family
(the training set), any random sequence at the ends of
the GC spectrum will score consistently higher (or
lower) than any other sequence. This effect is so rele-
vant that random sequences in one of the GC content
extremes have positive scores when any of the fixed GC
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Figure 1 Raw scores of random sequences Raw scores (log of the probability given the null model) of random sequences as a function of
their GC content. The raw scores were calculated using the six models: • target model (with the nucleotide distribution of the analyzed
sequence) and 5 fixed GC models (x: 5%, □ 25%,◊: 50%, Δ: 75% and ∇ 95%).
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models is used, which indicates a strong tendency to
generate false positives in the classification of sequences
with extreme GC compositions. On the other hand, the
target null model presents higher scores for sequences
with GC content similar to the average GC content of
the training set and lower scores for sequences with
extreme GC content. The target null model presents the

lowest number of positively scored sequences. The con-
sequence in real-life classifications would be a lower
number of false positives.
Covariance Models
Covariance Models (CMs) are usually used to character-
ize families of RNAs or other genomic elements with
secondary structure. Training sets for CMs tend to be
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Figure 2 Log-odds scores of weight array matrices Null model influence on log-odds scores based on weight array matrices (WAMs). The
plots show the log-odds scores of random sequences as a function of their GC content. In each plot, a horizontal line indicates the 0 log-odds
score (used as classification threshold) and a vertical line indicates the average GC content of the training sequences. WAMs inferred by low,
medium and high GC training sequences were used in the plots at lines 1, 2 and 3, respectively. 5%GC, 50%GC, 95%GC and target null models
were used in the plots at columns 1, 2, 3 and 4, respectively. Note: the three bands visible in the plots are generated by the WAM models, and
not by the use of any particular null model.
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much smaller. Therefore, instead of dividing the training
set of a single family in different training sets separated
by GC content (as performed in the analysis using
WAMs), we used three different CMs obtained from the
RFAM database [11], each one targeting a family with a
distinct compositional bias: i. the CMlow family with
5.6% GC (rbcL 5’ UTR RNA stabilizing element, rfam
number RF00197), ii. the CMmedium family, with 49.2%

GC (small nucleolar RNA SNORA67, rfam number
RF00272), iii. the CMhigh family, with 71.4% GC (bag-1
internal ribosome entry site - IRES, rfam number
RF00222).
We can observe in Figure 3 that log-odds scores using

the fixed GC distribution null models show, again, a
quasi-linear dependence on the GC content, resulting in
a large number of false positives in one side of the GC
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Figure 3 Log-odds scores of covariance models Null model influence on log-odds scores based on Covariance Models (CMs). The plots show
the log-odds scores of random sequences as a function of their GC content. In each plot, a horizontal line indicates the 0 log-odds score (used
as classification threshold) and a vertical line indicates the average GC content of the training sequences. CMs inferred by low, medium and
high GC training sequences were used in the plots at lines 1, 2 and 3, respectively. 5%GC, 50%GC, 95%GC and target null models were used in
the plots at columns 1, 2, 3 and 4, respectively.
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spectrum. Similar to what happened with WAMs, the
uniform model also shows a reduced, but still present
quasi-monotonic bias (i.e. only increasing or only
decreasing). The target model, on the other hand, shows
a non-linear dependence on the GC content, with a
peak towards the GC content of the training set.

Specificity of the different null models
Table 1 clearly shows the superior specificity perfor-
mance of the target null model over all other options.
We can see that the target null model shows a signifi-
cantly lower number of positive scores against the other
models in almost all of the six families. The only excep-
tion was the RNA GC-rich family (CMhigh), where the
uniform null model tied with zero false positives.

Testing in Plasmodium falciparum real data
As we have seen above, the target null model presented
much better performance against the other models when
testing against random sequences. To validate these
results in a realistic environment, we have tested the per-
formance of 4 null models in the context of acceptor site
prediction for Plasmodium falciparum. This organism
was chosen due its well known GC bias (19% GC). We
tested four null models used in prediction: target null
model, uniform null model, genomic background null
model (19% GC) and training set null model (17.9%GC).
The precision-recall curves are depicted in Figure 4. As
expected, splice site prediction with the target null model
shows a significantly better performance, with a higher
precision (percentage of true prediction among the posi-
tive results) in most marks. Considering all the tested
sequences (all the GC marks) the target null model pre-
sented the best precision (22.81%), the best specificity
(99.12%), and the best balance between precision and
sensitivity (F-score = 28.16%) (Table 2). A ROC curve
has also been generated and reinforced the best perfor-
mance of the target null model (Additional file S1).

Discussion
The results of raw scores presented above show that all
but the uniform null model produce a score biased by

the GC content of the analyzed sequence. The proble-
matic aspect is not the GC dependence per se, but when
this dependence produces a raw score curve linear in
the whole GC spectrum. So, for instance, if the null
model is 75%GC, the greater the GC content of the
sequence, the higher the final raw score, including the
sequences with GC content higher than 75%. On the
other hand, the dependence introduced by the target
model is a curve with higher values at the extreme GC
contents and with the lowest value at 50%GC. So high
scores will always be attained by sequences with any
kind of bias (high or low GC). Therefore, raw score
curves seem to indicate that the only adequate null
model is the uniform model, since it is the only one
that does not introduce a dependence on the GC
content.
Indeed, when the models were used in log-odds scor-

ing, the uniform model showed the lowest dependence
on the GC content (Figures 2 and3), but still showed a
quasi-linear dependence (albeit smaller than the other
models). This indicates that the GC content registered
by the family models also have a small deleterious effect
when working with sequences with high GC bias, since
positive scores were ascribed to some random
sequences. The curve associated with the target model,
on the other hand, presented a peak near the average
GC content of the training sequences, “canceling” the
monotonic GC-dependence introduced by the family
models.
This is an interesting feature, since the GC content

can be a meaningful characteristic of a sequence family.
In fact, this is a more appropriate classifier behavior
than the effect associated to other null models, such as
a training set null model, that assign high scores to
sequences with a GC bias opposite to that presented by
the sequences of the targeted family. If a family of
sequences has low compositional variation, GC content
can be considered relevant information during the clas-
sification process. What we want in these cases is a
dependence that will “center” at the characteristics of
our training sets, that is, that rewards GC contents simi-
lar to those of the known sequences of the targeted

Table 1 Specificity of the different null models

null model WAMlow WAMmed WAMhigh CMlow CMmed CMhigh

5%GC 2431 (70%) 2377 (68%) 2173 (63%) 2439 (77%) 3775 (75%) 3567 (71%)

25%GC 1118 (32%) 1517 (44%) 1500 (43%) 1681 (53%) 2509 (50%) 2243 (44%)

50%GC 863 (25%) 79 ( 2%) 700 (20%) 674 (21%) 58 ( 1%) 0 ( 0%)

75%GC 1443 (42%) 1534 (44%) 738 (21%) 1644 (52%) 2521 (50%) 2197 (44%)

95%GC 2114 (61%) 2332 (68%) 2529 (73%) 2297 (73%) 3642 (72%) 3625 (72%)

target 45 ( 1%) 18 ( 0%) 25 ( 0%) 3 ( 0%) 0 ( 0%) 0 ( 0%)

Number (and percentage) of positively scored sequences for each null model. WAMlow, WAMmed and WAMhigh designate the WAM models generated by the
training set with low (36%), medium (48%) and high (65%) GC content, respectively. CMlow, CMmed and CMhigh designate the CM models generated by the
training set with low (5.6%), medium (49.2%) and high (71.4%) GC content, respectively.
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family and that “punishes” GC contents that are not.
That is exactly what the target null model does, without
producing too many false positives.
The location of the “peaks” (near the training set GC

content) is not a coincidence. In particular, if the family
model F is also a position-independent fixed-distribution
model, then the log-odds peak is exactly at the nucleo-
tide distribution represented by the family model. This
happens because, by definition, the target model is a dis-
tribution model trained using the target sequence with

the maximum likelihood method, i.e, the probability of
the sequence given the target model is the maximum
value possible in the family of distribution models. So
the peak observed in the log-odds curve occurs when
both models have the same nucleotide distribution and
it occurs when the target sequence has the same nucleo-
tide composition as represented by the family model. In
other words, when only GC composition is concerned,
log-odds scoring with the target model peaks at the
family’s GC content.
Also important is that the peak scores presented in

the target null model do not necessarily correspond to
positive scores. In fact, the target null model pre-
sented the best specificity results (lowest number of
positive scores for random sequences) in all tests.
Moreover, this effect is still in place even for models
that register secondary structure such as the CMs. In
this case, although the log-odds score peak is moved
towards the average GC content of the family, they do
not coincide exactly (which occurred in the WAM-
based classifiers). The explanation is probably related
to the structural component of the CM score, which
is not so directly dependent on the sequence GC
content.
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Figure 4 Precision-Recall Graph for P. falciparum data This picture shows the precision-recall graph for the acceptor splice site prediction in
P. falciparum comparing four different null models on respect of different GC contents of sequences. The tested null models were the target,
the uniform, the training set distribution and the genomic background null models.

Table 2 Performance of the null models on the P.
falciparum data

Precision Specificity Sensitivity F-score

target 22.81% 99.12% 36.79% 28.16%

uniform 3.51% 84.39% 81.28% 6.74%

genomic 13.07% 98.18% 39.01% 19.58%

training 5.39% 95.24% 38.69% 9.46%

This table shows the precision, specificity, sensitivity, and F-score for the
entire testing set of the P. falciparum using the target, uniform, genomic
background and the training null models. The best performance for each

measure is in bold face. The F-score,
2 ∗ ∗

+
Pr

Pr

ecision Sensitivity

ecision Sensitivity
is the

harmonic mean between precision and sensitivity values.
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If on one hand the target null model presents the best
specificity, on the other hand it may impair sensitivity in
detecting true sequences that have the base composition
very different from the average composition of the train-
ing set. When a high GC variation is expected within
the family of interest, it is possible that the target model
will generate a higher number of false negatives, in
which case the uniform model should also be consid-
ered. This phenomenon was observed in covariance
model tests performed with a benchmark of transfer
RNA sequences (tRNAs) (data not shown). For a test
sample of 100 tRNA sequences3 with GC content evenly
distributed over the GC range of the tRNA family (from
8.8% to 74.3%GC), the specificity values achieved using
the uniform and target null models were, respectively,
96.7% and 100% and the sensitivity values were, respec-
tively, 100% and 93%, corroborating the fact that the
target model tends to have higher specificity and lower
sensitivity than the uniform model. The same behavior
was observed in the Plasmodium falciparum data
experiment presented in this work. The target null
model presented the best precision (22.81%), but its sen-
sitivity was 36.8% (Table 2). The most sensitive model
was the uniform null model (81.3%) but at the cost of a
very low precision (3.5%). So in this specific context the
use of the uniform null model is not recommended. We
do not evaluate false negative rates, since this evaluation
cannot be performed using random sequences and is,
therefore, highly dependent on the benchmark used.

3Sequences downloaded from Rfam database release
8.1 [11] under the Rfam accession number RF00005.
The GC percentages of the fixed distribution null

models shown in this article do not correspond to the
specific GC contents that would constitute a “training
set” null model on each experiment using simulated
data. But, in fact, “training set” null models are fixed-
distribution models, where the distribution is deter-
mined by the training set. Therefore, a training null
model is not suitable because of its fixed distribution.
The homogeneous behavior of the performance of fixed-
probability null models and the inferior performance of
the training null model in the real data experiment sup-
port our conclusions. Also, for the covariance models,
the training set percentages (5.6%, 49.2%, 72.4%) were
very close to the percentages used in the tests (5%, 50%,
75%). The same is not true for the WAM tests, in which
case we did run tests for null models with the training
set percentages, and the results were consistent (data
not shown).
Our study was performed in the context of nucleotide

sequences, however we expect similar results for ami-
noacid compositions. This is supported by the fact that
the analytical reasoning we performed are also valid for

aminoacid sequences. In other words, when using any
fixed distribution model against the target null model in
log-odds scoring, the highest scores are obtained for
sequences with the same aminoacid composition as that
described in the fixed model. Due to the number of pos-
sible aminoacids, a similar study would be harder to
perform and interpret it as 2D plots would not be help-
ful. As a matter of fact, two HMM-based tools used for
protein domain identification, SAM [6] and HMMER
[2] also make use of target sequence data in some way
to compose their null model. SAM scores the reversed
target sequence with the same HMM. HMMER com-
bines the database background frequencies with a sec-
ond null model derived from the analysis of the target
sequence in an ad hoc way [2]. Their success seems to
reinforce our belief.

Conclusions
In this paper we evaluated the performance of 3 differ-
ent types of null models in profile-based probabilistic
models: uniform null model, fixednon-uniform GC null
model (5%, 25%, 75% and 95%), and target null model
on the analysis of random nucleic acids sequences of
various GC contents. We presented both the indepen-
dent behavior of each model in the form of raw scores
and their behavior when used in log-odds scoring in
conjunction with 2 different probabilistic techniques:
Weight Array Matrices (WAMs) [4] and Covariance
Models (CMs) [5].
All our results indicate that, when the sequence family

presents low variation on the GC content, the target
model is a more dependable model to generate hypoth-
esis for biological verification due to its high specificity
when compared to any fixed-distribution model, in parti-
cular for organisms that present genomic sequences with
high GC bias. Detecting acceptor splice sites in the GC-
poor Plasmodium falciparum genome (19% GC), the tar-
get null model presented the best precision (22.81%), the
best specificity (99.12%) and the best balance between
precision and sensitivity (F-score = 28.16%). The use of
the target residue composition in the null model con-
struction was also shown beneficial in substitution score
matrices. Yu, Altschul and colleagues proposed matrix
modifications taking into account the amino acid fre-
quency of both query and target sequence [13,14]. Accu-
racy of the PSI-BLAST program [15] is also improved by
re-evaluating promising alignments using statistics based
on the composition of target sequences [16].
This study was performed using 2 probabilistic techni-

ques, WAMs and CMs. However, we expect the results
to hold for other techniques such as Weight Matrix
Models [17] and Hidden Markov Models [1], which are
particular cases of WAMs and CMs, respectively.
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Methods
Generation of the random sequences
The random sequences were generated by a Perl script
written for this study. We wanted to visualize howthe
models behave when analyzing heterogeneous
sequences, i.e, sequences with different GC contents.
Thus we needed a homogeneous number of sequences
in each GC content mark. The script is parameterized
by two values, N the number of sequences for each per-
centage mark, and L the length of the sequences. It gen-
erates N sequences for each GC percentage W, varying
from 0.00 to 1.00 in intervals of 0.01 (101 GC marks).
For each W, a sequence of length L is created by gener-
ating two subsequences: (1) one subsequence of length
K1= ⌊L * W⌋ containing only the symbols G and C cho-
sen from a uniform distribution; (2) another subse-
quence of length K2 = L — K1 containing only the
symbols A and T chosen from a uniform distribution.
The final N sequences are random shufflings of the
sequence generated by concatenating these two subse-
quences. Step (1) induces a process that may generate
datasets with a different number of sequences associated
to each value of W. So the datasets were pruned to
ensure 0 or N sequences for each value of W. However,
this process generated datasets with different total sizes
(less than or equal to N * 101).
Five sets of random sequences were generated using

the approach described above: one for the raw score
computations (raw score set, 5050 sequences), one for
the WAM evaluations (WAM set, 3450 sequences) and
one for each of the three CMs (CMlow with 3150
sequences, CMmedium and CMhigh with 5050 sequences).
Different sets were generated to accommodate the parti-
cularities of each analysis. The raw score set consists of
sequences of length 100, the WAM score consists of
sequences of size 70 (the size of the acceptor splice sites
used to train the family model) with the AG consensus at
the splice site position. Each of the three covariance sets
consists of sequences with a specific length, each length
corresponding to the average length of the sequences
used to train each of the CMs (62nt, 164nt and 402nt for
CMlow, CMmedium and CMhigh respectively).

Obtaining raw scores for the fixed distribution and target
models
We calculated the probability of the random sequences
using six different probabilistic models: i. five fixed GC
null models (5%GC, 25%GC, 50%GC, 75%GC, 95%GC),
with G and C having the same individual probability, as
well as A and T; ii. the target null model. We plotted
the raw scores (logarithm of the probability value) ver-
sus the sequence GC content to illustrate the indepen-
dent behavior of each null model. We show in this

paper the plot using sequences with length 100. Plots
for the other lengths are similar: the same curve inclina-
tions with different score limits. To calculate the prob-
ability value of the sequence x given a null model N, we
use the formula:

P(x|N, L = 100) = [PN(A)]
cA * [PN(C)]

cC* [PN(G)]
cG* [PN

(T)]cT (3)

where ci is the count of the nucleotide i in sequence x

and c Li
i

= =∑ 100 .

Obtaining log-odds scores for WAMs
Acceptor splice sites from the HS3D database release 1.2
[18] were used to build three training sets with different
average GC content. We trimmed each sequence so that
the resulting sequences had length 70 with the canonical
AG sequence at position 49 (equation 1). We built three
distinct training sets to characterize distinct GC biases,
by partitioning splice site sequences by their GC con-
tent. The three training sets were: i. low GCcontent
containing 1013 sequences with GC content less or
equal to 50% (average GC content of 38%); ii. medium
GC content training set containing 1381 sequences with
GC content between 50% and 60% (average GC content
of 50% ); iii. high GC content training set containing
1006 sequences with GC content greater than 60%
(average GC content of 65%).
For each training set, we estimated Weight Array

Matrices (WAMs) [4] for acceptor splice sites using
MYOP, a framework for generating probabilistic classi-
fiers [19]. Using the estimated WAMs, we calculated the
log-odds scores for the random sequences with length
70 and with a consensus AG subsequence at position
49. Two different types of null model were applied: i.
five fixed GC models (5%GC, 25%GC, 50%GC, 75%GC
and 95%GC); ii. target null model. We plotted the log-
odds scores versus the GC content of each random
sequence to visualize the influence of null models on
the calculated scores.

Obtaining log-odds scores for CMs
Three RNA families with different GC content averages
were chosen: two with extreme GC content and one
with medium GC content. These families are: i. rbcL 5’
UTR RNA stabilizing element (5.6% GC), ii. small
nucleolar RNA SNORA67 (49.2% GC) and iii. bag-1
internal ribosome entry site - IRES (71.4% GC). The
structural multiple alignments for these RNA families
were downloaded from the full alignments of the Rfam
database release 8.1 [11] under the Rfam accession num-
bers RF00197, RF00272 and RF00222, respectively. Each
alignment was used to build a covariance model using
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the program cmbuild. These covariance models were
used to score a set of random sequences, generated as
described above, with length equal to the average length
of the respective RNA family. This scoring was per-
formed by the program cmsearch. Both programs,
cmbuild and cmsearch, are from the package Infernal,
version 0.7 [7]. Infernal embeds the null model in the
covariance model. It records the emission log-odds
values in the CM states instead of recording emission
probabilities. Therefore, the cmsearch output score is
already the log-odds score. However, this strategy can
output wrong values when using a non-uniform null
model. Note that the score reported by cmsearch for a
sequence x is obtained using the best path through the
Covariance Model. By definition, the best path in a CM
should be the sequence of CM states that maximizes the
total probability of the sequence using that path. When
maximizing the log-odds score instead of the total prob-
ability, different null models may lead to a “best path”
that is different from the correct one, that is, the path
based only on the probability values. To circumvent this
problem, we used an algebraic trick: (1) we used
cmbuild to build a CM with the uniform null model U
(that penalizes equally all nucleotides and, therefore,
does not alter the best path), (2) we used this CM to
score each sequence x (log-odds score SU and (3) we
adapted the log-odds score for a given null model N
using the equation:

SN(x) = SU(x) + log(P(x|U)) - log(P(x|N)) (4)

Six null models were used: five fixed GC models (5%
GC, 25%GC, 50%GC, 75%GC and 95%GC) and the tar-
get null model.
Default execution of cmsearch does not report hits

with negative score. Since the score of most of the ran-
dom sequences is negative, a small modification in
cmsearch’s source code to also report negative scores
was needed.

Acceptor splice site dataset for P. falciparum
We have extracted 7582 acceptor splice sites from Plas-
moDB release 6.4. This dataset was splitted in two parts.
We have used the first part having 1000 acceptor splice
sites as training set to estimate the parameters of the
WAM. The second part, having 6582 acceptor splice
sites, was used as positive testing set. Each acceptor
splice site sequence has 70 nucleotides with the con-
served AG dinucleotide at position 47.
Genomic sequences of length 70 that contains the

dinucleotide AG at position 47 and were not annotated
as acceptor splice sites were considered as negative sam-
ples. We have extracted a total of 939994 false acceptor
splice sites as negative testing set.

Precision Recall Graph
Since we are dealing with real data, in this experiment
we used four types of null models: (i) the target null
model; (ii) the genomic background null model; (iii) the
uniform null model; (iv) and the training set null model.
Using these null models and the WAM estimated with

the training set, we have generated the precision recall
graph comparing the model in respect of different GC
contents of the sequences in the testing set. We created
a partition of the testing set in which each subset con-
tains only sequences with a fixed GC content. For each
subset with more than 5 positive samples, we calculated
a point in the graph corresponding to the calculated
precision and recall values. In this analysis we used pre-

cision
true positive

true positive false positive+
⎛
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⎜
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⎠
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Additional file 1: ROC curve for P. falciparum data This picture shows
the ROC curve for the acceptor splice site prediction in P. falciparum
comparing four different null models on respect of different GC contents
of sequences. The tested null models were the target, the uniform, the
training set distribution and the genomic background null models.
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