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Abstract

Background: The genome-wide identification of both morbid genes, i.e., those genes whose mutations cause
hereditary human diseases, and druggable genes, i.e., genes coding for proteins whose modulation by small
molecules elicits phenotypic effects, requires experimental approaches that are time-consuming and laborious.
Thus, a computational approach which could accurately predict such genes on a genome-wide scale would be
invaluable for accelerating the pace of discovery of causal relationships between genes and diseases as well as the
determination of druggability of gene products.

Results: In this paper we propose a machine learning-based computational approach to predict morbid and
druggable genes on a genome-wide scale. For this purpose, we constructed a decision tree-based meta-classifier
and trained it on datasets containing, for each morbid and druggable gene, network topological features, tissue
expression profile and subcellular localization data as learning attributes. This meta-classifier correctly recovered
65% of known morbid genes with a precision of 66% and correctly recovered 78% of known druggable genes
with a precision of 75%. It was than used to assign morbidity and druggability scores to genes not known to be
morbid and druggable and we showed a good match between these scores and literature data. Finally, we
generated decision trees by training the J48 algorithm on the morbidity and druggability datasets to discover
cellular rules for morbidity and druggability and, among the rules, we found that the number of regulating
transcription factors and plasma membrane localization are the most important factors to morbidity and
druggability, respectively.

Conclusions: We were able to demonstrate that network topological features along with tissue expression profile
and subcellular localization can reliably predict human morbid and druggable genes on a genome-wide scale.
Moreover, by constructing decision trees based on these data, we could discover cellular rules governing morbidity
and druggability.

Background
Currently, the large-scale experimental identification of
both morbid genes, i.e. those genes whose mutations
cause hereditary human diseases, and druggable genes,

i.e. genes coding for proteins whose modulation by
small molecules elicits phenotypic effects, demands
time-consuming and laborious approaches that are
impractical for rapidly revealing the causal relationships
between genes and diseases and determining the drugg-
ability of gene products. The discovery of morbid genes,
for instance, requires a large effort to gather inheritance
patterns from families with the disease and to perform
linkage and mutation analyses in order to identify
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candidate gene(s) involved in a particular hereditary dis-
order [1]. In similar fashion, the discovery of new drug
targets also requires a large effort involving a variety of
genomics, proteomics, genetic association and forward
and reverse genetics-related techniques [2] in order to
find drugs capable to modulate disease processes.
In the light of above mentioned facts, a computational

approach which could accurately predict morbid and
druggable genes, especially on a genome-wide scale,
would be thus invaluable since the number of experi-
mental techniques to be performed to discover these
genes could be minimized. With the vast amount of cur-
rent available systems-level data, such as molecular
interaction data and genome-wide gene expression and
subcellular localization data, we have now the opportu-
nity for developing a computational approach based on
data mining tools, such as machine learning, to extract
patterns that could be used as genome-wide predictors
of morbid and druggable genes. Based on this assump-
tion, we have previously used a machine learning-based
methodology as a data mining tool to extract knowledge
from systems-level data and then apply this knowledge
to predict essential genes on a genome-wide scale and
determine cellular rules for essentiality on Escherichia
coli[3] and Saccharomyces cerevisiae[4]. In addition to
attain successful prediction rates, we have also obtained
biologically plausible cellular rules for gene essentiality
using this machine learning approach.
Due this successful prediction of essential genes and

determination of cellular rules for gene essentiality in
Escherichia coli and Saccharomyces cerevisiae, we sought
to verify in this present work whether a similar machine
learning-based approach is able to predict human mor-
bid and druggable genes on a genome-wide scale and to
reveal cellular rules governing morbidity and druggabil-
ity of genes. Using knowledge acquired from network
topological features, tissue expression profile and subcel-
lular localization data, we show here that the classifiers
trained on these systems-level data can reliably predict
morbid and druggable genes on a genome-wide scale
and also can define some general rules governing mor-
bidity and druggability in human.

Results and Discussion
The integrated network of human gene interactions and
calculation of topological features
For obtaining the network topological features used as
training data for predicting morbid and druggable genes,
we first constructed an integrated network of human
gene interactions (INHGI) simultaneously containing
experimentally verified protein physical interactions,
metabolic interactions and transcriptional regulation
interactions (definitions for each type of interaction are

detailed in “Methods”). This network is comprised by
10,241 genes interacting with one another via 43,342
protein physical interactions, 24,540 metabolic interac-
tions and 3,015 transcriptional regulation interactions.
INHGI contains approximately 25% of the already iden-
tified ≈ 45,000 human genes according to the Entrez-
Gene database [5].
From the INHGI, we calculated 12 different topologi-

cal features for each gene, including degree centralities
for each type of interaction, clustering coefficient,
betweenness centralities for each type of interaction,
closeness centrality and identicalness. The detailed
description of these topological features and how they
were calculated are found in the Additional file 1 and
“Methods”.

Evaluation of classifier performance
To examine how well a machine learning-based
approach is able to predict human morbid and drug-
gable genes on a genome-wide scale using knowledge
acquired from systems-level data, we designed a meta-
classifier similar to that used to predict essential genes
in Escherichia coli[3] and Saccharomyces cerevisiae[4]
and trained it on network topological features, tissue
expression profile and subcellular localization data of
known morbid and druggable genes (see “Methods” for
details). We then assessed its performance by measuring
its median recall, precision and area under the curve
(AUC) of the receiver operating characteristic (ROC)
curve across 10 different normal morbidity datasets and
10 different normal druggability datasets (see “Methods”
for more details).
Before analyzing the performance measures of our

meta-classifier trained on the datasets described above,
we decided to estimate the performance measures of
our meta-classifier on equivalent normal morbidity and
druggability datasets where the class labels—morbid and
druggable—were randomly shuffled among genes
(shuffled morbidity and shuffled druggability datasets)
and then compared them with our meta-classifier
trained on the normal morbidity and druggability data-
sets. This was done to check whether the meta-classifier
trained on non-shuffled datasets learned the traits actu-
ally associated with morbidity and druggability instead
of traits associated with any random subset of genes.
For this comparison, we used the Wilcoxon signed-rank
statistical test as described in “Methods”. As can be
observed in Table 1, all performance measures of our
meta-classifier trained on the correspondent shuffled
datasets were statistically different from measures of
meta-classifier trained on normal datasets (for all perfor-
mance measures, W ≤ Wc with N = 10 at the p = 0.05
level; see “Methods” and [6]), thereby indicating that the
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traits actually associated with morbidity and druggability
were learned by our meta-classifier.
After confirmation that our meta-classifier trained on

normal datasets was likely to learn the traits actually
associated with morbidity and druggability, we aimed to
analyze its performance measures. As shown in Table 1,
for the genome-wide prediction of morbid genes, our
meta-classifier achieved a median recall of 0.648 and a
median precision of 0.658, i.e., it correctly recovered
64.8% of known morbid genes with a precision of 65.8%.
Furthermore, the probability of a gene predicted as mor-
bid belongs to the set of known morbid genes is 71.2%
as indicated by the median AUC. For the genome-wide
prediction of druggable genes, our meta-classifier
achieved a median recall of 0.782 and a median preci-
sion of 0.748, i.e, it correctly recovered 78.2% of known
druggable genes with a precision of 74.8% (Table 1).
Furthermore, the probability of a gene predicted as
druggable belongs to the set of known druggable genes
is 82.0% as indicated by the median AUC.
The moderate values for both median recall (0.648)

and median precision (0.662) for genome-wide predic-
tion of morbid genes indicate that the level of noise in
the training data is high and likely associated with exis-
tence of shared common features between morbid and
non-morbid genes that induced our meta-classifier to
yield a moderate performance in discriminating morbid
from non-morbid genes. This could be partially due to
the approach used to select non-morbid genes: since it
is impossible at present to compile a list of genes not
known to cause any hereditary disease, we selected
genes not known to be morbid, i.e., all genes in INHGI
except the known morbid genes, as non-morbid genes.
Thus, some of these non-morbid genes may actually be
existing unknown morbid genes sharing common char-
acteristics with the existing known morbid genes. Other

contributing factor for the existence of shared common
features between morbid and non-morbid genes could
be the incompleteness of INHGI: Stumpf et al.[7], for
example, have estimated that the size of human interac-
tome (only protein-protein interactions) is about
650,000 interactions. Since our network contains about
43,000 protein-protein interactions, we could envisage
that the values of all network topological parameters
might change with the enlargement of network size and,
therefore, some of the network topological parameters-
related shared common features between morbid and
non-morbid might disappear as a consequence. The
existence of shared common features between druggable
and non-druggable genes also seems to affect the perfor-
mance of our meta-classifier, but to a lesser extent: our
meta-classifier achieved reliables values for the median
recall (0.782) and precision (0.748) for genome-wide
prediction of druggable genes (Table 1).
Despite these limitations discussed above, our meta-

classifier trained on network topological features, tissue
expression profile and subcellular localization data
seems indeed to be a reliable predictor of morbid and
druggable genes on a genome-wide scale as shown by
Figures 1 and 2: the frequency distribution of known
morbid and known druggable genes per intervals of
morbidity and druggability scores—probabilities of clas-
sifying genes as morbid and druggable, respectively, as
output by the meta-classifier (see “Prediction of novel
morbid and druggable genes” and “Methods” for more
details)—tend to increase as morbidity (Figure 1) and
druggability (Figure 2) scores increase.

Evaluation of individual features on classifier performance
We sought to verify the influence of individual features
on the meta-classifier performance. To achieve this goal,
we first trained our meta-classifier on normal morbidity

Table 1 Classifier performance measures for prediction of morbid and druggable genes

Prediction of morbid genes

Performance measure Median [min,max] 1 Median [min,max] 1 N W Wc (two-tailed p = 0.05)2

Normal Shuffled

Precision 0.658 [0.648,0.679] 0.495 [0.473,0.522] 10 0 8 *

Recall 0.648 [0.632,0.657] 0.502 [0.471,0.521] 10 0 8 *

AUC 0.716 [0.706,0.729] 0.498 [0.462,0.526] 10 0 8 *

Prediction of druggable genes

Performance measure Median [min,max] 1 Median [min,max] 1 N W Wc (two-tailed p = 0.05)2

Normal Shuffled

Precision 0.748 [0.72,0.763] 0.5 [0.451,0.556] 10 0 8 *

Recall 0.782 [0.732,0.809] 0.492 [0.447,0.564] 10 0 8 *

AUC 0.820 [0.801,0.835] 0.500 [0.43,0.546] 10 0 8 *
1 Of 10 datasets
2 According to table of critical values for W in [6]

* Difference statistically significant
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and druggability datasets without one of the features,
which we call “without-one-feature” datasets as described
in “Methods” . We then compared the output AUC
values with those of meta-classifier trained on datasets
with all features by using the Wilcoxon signed-rank sta-
tistical test [6]. A difference is considered statistically sig-
nificant If the obtained W is lower than or equal to Wc

with a given N at the p = 0.05 level (see “Methods”).
Note that we use AUC instead of recall or precision to
compare the overall performances of meta-classifiers
because it represents the meta-classifier performance
across all combinations of recall and precision (see
“Methods”). Table 2 shows that the median AUC of our
meta-classifier trained on morbidity datasets without the
number of tissues in which the gene is expressed at least
5 transcripts per million (tpm) (see “Methods” for details)
was statistically lower than the median AUC for normal
morbidity datasets (W = 7 versus Wc = 8 for N = 10 at p
= 0.05). So, the tissue expression profile seems to be an
important feature to distinguish morbids from non-mor-
bids genes.
As shown in Table 3, for prediction of druggable

genes, the overall performance (AUC) of our meta-clas-
sifier was statistically lower following the removal of the

plasma membrane feature (W = 1 versus Wc = 8 for N =
10 at p = 0.05). This result is in concert with the most
important cellular rule for druggability derived from the
analysis of decision trees (see more details in “Methods”)
that we will show in the section“Cellular rules for gene
morbidity and druggability”): if proteins are located in
plasma membrane, their encoding genes are likely to be
druggable. This rule is supported by Bakheet and Doig
[8] that demonstrated that proteins encoded by drug-
gable genes had more transmembrane helices than pro-
teins encoded by non-druggable ones which suggests
that proteins encoded by druggable genes are more
likely to be found in plasma membrane.

Comparison with other methods
Regarding prediction of morbid genes, there have been
several methods available for predicting morbid genes
[9-16]. However, our method can not be directly com-
pared to most of them since they have been constructed
to predict only small sets of disease-specific candidate
genes, such as ENDEAVOUR [13] and ToppGene [15],
while our method has been constructed for the genome-
wide prediction of morbid genes. We can, however,
compare our method to PROSPECTR [9], CIPHER [14]

Figure 1 Frequency distribution of known morbid genes per intervals of morbidity scores Bars show the frequency distribution of known
morbid genes (in percent) per 0.2 intervals of normal morbidity scores.The blue-shaded area represents the frequency distribution of known
morbid genes (in percent) per intervals of shuffled morbidity scores.
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and that developed by Xu and Li [16]. Our method out-
performs CIPHER (this method, for genome-wide pre-
diction, yields a precision of about 0.1; there is no value
of recall reported) and is comparable to PROSPECTR
that achieves a recall of 0.70, a precision of 0.62 and an
AUC of 0.70. Although PROSPECTR has a higher recall,
we considered our method comparable to it as the pre-
cision and AUC values of our method are higher than
those of PROSPECTR. Moreover, our performance mea-
sures are medians of 10 runs of 10-cross-fold validation
(see “Methods” for more details), while the performance
measures of PROSPECTR were obtained by only one
run of 10-cross-fold validation.
The method developed by Xu and Li is the only gen-

ome-wide prediction method that apparently outper-
forms our method (this method achieves, for genome-
wide prediction, an average recall about 0.78 and an
average precision about 0.77). Their method is also
based on network topological parameters, but while we
trained our meta-classifier on various features, including
12 network topological parameters (see “Methods” and
Additional file 1), they trained their classifiers on only
five network topological parameters: degree, defined as
the number of links to node i; 1N index, defined as the
proportion of the number of links to morbid genes

among all links to node i; 2N index, defined as the pro-
portion of the number of links to morbid genes among
all links to neighbors of node i; the average distance to
morbid genes; and positive topological coefficient, a var-
iant of the classical topological coefficient [17]. The
apparent success of Xu and Li approach in predicting
morbid genes mostly relies on the 2N index: when node
i is a morbid gene, 2N index is always higher than zero
since at least one neighbor of node i’s neighbor—the
node i itself—is a morbid gene; if node i is a non-mor-
bid gene, 2N index is higher than or equal to zero.
Thus, this parameter induces a spurious correlation on
dataset that is captured by classifiers that, in turn,
achieve high performance measures. Therefore, the Xu
and Li method can be disregarded for comparison pur-
poses and, accordingly, our approach, although showing
moderate recall and precision values, is currently, along
with PROSPECTR, the most accurate predictor of mor-
bid genes on a genome-wide scale.
Concerning the prediction of druggable genes, as for

prediction of morbid genes, we can compare our
method only with those developed to predict druggable
genes on a genome-wide scale. Therefore, to our knowl-
edge, we can compare our methodology with that devel-
oped by Sugaya and Ikeda [18]. Using support vector

Figure 2 Frequency distribution of known druggable genes per intervals of druggability scores Bars show the frequency distribution of
known druggable genes (in percent) per 0.2 intervals of normal druggability scores.The blue-shaded area represents the frequency distribution
of known druggable genes (in percent) per intervals of shuffled druggability scores
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machines trained on 69 different features covering struc-
tural, drug and chemical, and functional information on
protein-protein interactions, Sugaya and Ikeda classifiers
achieved an average recall of 75%, an average precision
of 70% and an average AUC of 72%, performance mea-
sures comparable to those obtained by our meta-
classifier.

Prediction of novel morbid and druggable genes
Since the morbidity and druggability of most of genes in
INHGI are unknown—only ≈ 14% and ≈ 3% are known
to be morbid and druggable, respectively—we applied
our trained meta-classifier to determine the morbidity
and druggability statuses of these genes. Instead of sim-
ply predicting genes as morbid or druggable, we decided
to assign a “morbidity score” and a “druggability score”
(see “Methods”) to each gene since we understand that
there is no gene that is absolutely non-morbid or non-
druggable. We also assigned to each gene a “shuffled
morbidity score” and a “shuffled druggability score” to

test the significance of normal scores. For this purpose,
we used the Wilcoxon signed-rank statistical test as
described in “Methods”.
Table 4 shows genes not known to be morbid with the

10 highest morbidity scores (see Additional file 2 for the
normal and shuffled morbidity scores of all genes in
INHGI). All these scores are significantly higher than
the shuffled scores (W ≤ Wc with N = 10 at the p =
0.05 level; see “Methods” and [6]). With the purpose of
investigating whether the assigned scores resemble the
potential morbidities of these genes, we mined the
Human Genome Epidemiology Network (HuGENet)
database [19] for articles clearly stating that such genes
may be associated with some disease, which we call as
“morbidity evidences”. According to this approach, we
found that 10 of 11 (≈ 90%) genes with the 10 highest
morbidity scores are considered to be associated with
some disease (Table 4). This shows that our meta-classi-
fier is quite capable of assigning high morbidity scores
to genes potentially morbid.

Table 2 Statistical comparison of performances of classifiers trained on normal and without-one-feature morbidity
datasets

Missing feature 1 Median AUC [min,max]2 N W Wc (two-tailed p = 0.05)3

ppi 0.715 [0.705,0.726] 10 26 8

metin 0.714 [0.707,0.727] 10 26 8

metout 0.713 [0.707,0.729] 10 25 8

regin 0.714 [0.703,0.726] 9 18 6

regout 0.716 [0.705,0.729] 10 26 10

c 0.713 [0.701,0.724] 10 13 8

identicalness 0.711 [0.704,0.727] 10 24 8

cent 0.714 [0.707,0.727] 10 25 8

inbet 0.716 [0.708,0.731] 10 25 8

inbetppi 0.714 [0.707,0.727] 9 21 6

inbetmet 0.714 [0.707,0.728] 9 21 6

inbetreg 0.715 [0.706,0.727] 10 25 8

numtissuesexp4 0.709 [0.701,0.719] 10 7 8*

avegexptec5 0.715 [0.704,0.727] 10 27 8

Unknown 0.713 [0.701,0.725] 10 18 8

Cytoplasm 0.715 [0.706,0.728] 10 26 8

Endoplasmic reticulum 0.716 [0.705,0.727] 10 26 8

Mitochondrion 0.714 [0.706,0.728] 10 24 8

Nucleus 0.715 [0.704,0.728] 10 24 8

Other localization 0.714 [0.704,0.726] 10 21 8

Cellular component 0.714 [0.705,0.727] 9 21 6

Extracellular space 0.710 [0.7,0.723] 10 14 8

Golgi apparatus 0.715 [0.706,0.728] 10 26 8

Median AUC [min,max] for normal datasets: 0.716 [0.706,0.729]
1 See “Methods” and Additional file 1 for a description of features
2 Of 10 datasets
3 According to table of critical values for W in [6]
4 The number of tissues (out of 32) in which the gene is expressed at least 5 transcripts per million (tpm) according to Reverter et al. [33]
5 The average expression in tpm among all the tissues in which the gene is expressed according to Reverter et al. [33]

* Difference statistically significant
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Table 5 shows genes not known to be druggable with
the 10 highest druggability scores (see Additional file 2
for the normal and shuffled druggability scores of all
genes in INHGI). All these scores are significantly higher
than the shuffled scores (W ≤ Wc with N = 10 at the p =
0.05 level; see “Methods” and [6]). With the purpose of
investigating whether the assigned scores resemble the
potential druggabilities of these genes, we mined the lit-
erature for articles clearly stating that such genes may be
drug target candidates, which we call as “druggability evi-
dences”. According to this approach, we found that 8 of
11 (≈ 73%) genes with the 10 highest druggability scores
are considered to be drug target candidates (Table 5).
This shows that our meta-classifier is quite capable of

assigning high druggability scores to genes potentially
druggable. Among these candidates, five (PLAU, CD8A,
CD19, ITGAM and IL6) are known morbid genes and
two (THBS1 and TIMP2) are within the list of genes with
the 10 highest morbidity scores. About the known mor-
bid genes with druggability evidence—PLAU, CD19,
ITGAM and IL6—, it is interesting to note that the
druggabilities assigned to these genes by our classifier are
not related to the diseases caused by their corresponding
mutated versions. The gene PLAU is a susceptibility gene
for late-onset Alzheimer disease according to the Online
Mendelian Inheritance in Man (OMIM) database [20]
(MIM # 191840), but the protein encoded by this gene
seems to be a good candidate target for treatment of can-
cer in combination with conventional therapeutics such
as chemotherapy or radiation [21]. Similarly, mutations in
the gene CD19 cause antibody deficiency that increases
susceptibility to infection ([22] (MIM #107265), but its
encoded protein has proven to be a promise as a novel
and well-tolerated therapy in B-cell non-Hodgkin’s lym-
phoma [23]. Regarding ITGAM, while Yang et al.[24]
have confirmed the association of the this gene with dis-
ease susceptibility and renal nephritis of systemic lupus
erythematosus (MIM # 609939), Romano et al.[25], on
the other hand, have suggested that the protein encoded
by ITGAM is a potential target of the femtomolar-acting
eight-amino-acid peptide for protection against the dele-
terious effects of closed head injury in mice. Finally,
according to OMIM database (MIM # 147620), the gene
IL6 mediates growth failure in Crohn disease [26], but we
found that its encoded protein is a promising target for
therapy of several chronic inflammatory and autoimmune
diseases as well as in cancer [27]. These findings show
that our classifier, besides discovering new druggable
genes, can also reveal unexpectedly roles for known mor-
bid genes in the modulation of diseases caused by other
seemingly unrelated genes.
Two potential morbid genes, THBS1 and TIMP2, rein-

force the fact that our meta-classifier is able to reveal
unexpectedly roles for morbid genes in the modulation
of diseases caused by other seemingly unrelated genes.
Mutations in the gene THBS1 have been suggested to
play a role in atherosclerosis and thrombosis [28], but
its encoded protein may be considered a promising ther-
apeutic target for diabetic nephropathy [29]; alterations
in TIMP2 has been demonstrated to be one of the
causes of chronic obstructive pulmonary disease [30],
but targeting its encoded protein may be a therapeutic
intervention against connective amino acid tissue degra-
dation [30].

Cellular rules for gene morbidity and druggability
Beyond the prediction capability, machine learning tech-
niques can be used for knowledge acquisition in order to

Table 3 Statistical comparison of performances of
classifiers trained on normal and without-one-feature
druggability datasets

Missing feature 1 Median AUC
[min,max]2

N W Wc (two-tailed
p = 0.05)3

ppi 0.819 [0.798,0.835] 10 27 8

metin 0.817 [0.803,0.834] 10 26 8

metout 0.817 [0.801,0.832] 9 20 6

regin 0.818 [0.799,0.83] 9 18 6

regout 0.818 [0.801,0.833] 10 26 8

c 0.821 [0.799,0.836] 10 21 8

identicalness 0.819 [0.8,0.836] 10 27 8

cent 0.814 [0.797,0.832] 10 18 8

inbet 0.821 [0.804,0.837] 10 25 8

inbetppi 0.819 [0.803,0.833] 10 25 8

inbetmet 0.82 [0.791,0.833] 10 26 8

inbetreg 0.818 [0.802,0.83] 9 19 6

numtissuesexp4 0.806 [0.795,0.832] 9 11 6

avegexptec5 0.814 [0.799,0.835] 10 23 8

Unknown 0.816 [0.796,0.832] 9 12 6

Cytoplasm 0.814 [0.794,0.834] 10 20 8

Endoplasmic
reticulum

0.820 [0.799,0.834] 10 27 8

Mitochondrion 0.820 [0.796,0.831] 9 22 6

Nucleus 0.816 [0.793,0.831] 10 20 8

Other localization 0.821 [0.802,0.837] 9 20 6

Cellular
component

0.82 [0.801,0.835] 10 25 8

Extracellular space 0.817 [0.8,0.837] 10 26 8

Golgi apparatus 0.812 [0.8,0.834] 10 24 8

Plasma membrane 0.781 [0.762,0.816] 10 1 8*

Median AUC [min,max] for normal datasets : 0.820 [0.801,0.835]
1 See “Methods” and Additional file 1 for a description of features
2 Of 10 datasets
3 According to table of critical values for W in [6]
4 The number of tissues (out of 32) in which the gene is expressed at least 5
transcripts per million (tpm) according to Reverter et al. [33]
5 The average expression in tpm among all the tissues in which the gene is
expressed according to Reverter et al. [33]

* Difference statistically significant
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describe patterns in datasets. The machine learning algo-
rithms most used for knowledge acquisition are those
that generate decision trees. Decision trees are decision
support tools inferred from the training data that use a
graph of conditions and their possible consequences. The
structure of a decision tree consists of a root node repre-
senting the most important condition for discriminating
classes, internal nodes representing additional conditions
for class discrimination under the main condition, and
leaf nodes representing the final classification. So, one
can learn the conditions for classifying instances in a
given class by following the path from the root node to
the leaf node [31].

Therefore, in order to discover the rules for gene mor-
bidity and druggability, we analyzed decision trees gen-
erated by training the J48 algorithm, a WEKA’s
implementation of the C4.5 algorithm [32] (for more
details, see “Methods”), on the normal morbidity and
druggability datasets containing all network topological
features, tissue expression profiles and subcellular locali-
zation as training data. The decision trees in Figures 3
and 4 are the best representative tree among the 10 gen-
erated decision trees for morbidity (Figure 3) and the 10
generated decision trees for druggability (Figure 4).
From the best representative decision tree for morbid-

ity, we were able to devise some general rules for

Table 4 List of the human genes in the INHGI with the 10 highest morbidity scores

Gene Morbidity score (Median [min,max])1 N W Wc
2 (two-tailed p = 0.05) Morbidity evidence3

Normal Shuffled

TFRC 0.880 [0.576,0.939] 0.568 [0.447,0.678] 10 1 8* 5941956

ITGA5 0.875 [0.635,0.916] 0.491 [0.377,0.631] 10 0 8* No evidence

LTF 0.868 [0.803,0.913] 0.509 [0.356,0.642] 10 0 8* 19258923

SFTPD 0.866 [0.618,0.923] 0.565 [0.458,0.682] 10 2 8* 19590686

THBS1 0.865 [0.831,0.918] 0.511 [0.354,0.566] 10 0 8* 18178577

TIMP2 0.860 [0.603,0.92] 0.574 [0.388,0.609] 10 0 8* 19933216

TGFB2 0.857 [0.565,0.918] 0.526 [0.407,0.707] 10 3 8* 19258923

CGA 0.856 [0.62,0.916] 0.535 [0.283,0.656] 10 0 8* 19730683

SPP1 0.856 [0.577,0.887] 0.564 [0.34,0.696] 10 0 8* 15868370

FLT1 0.854 [0.61,0.931] 0.527 [0.424,0.715] 10 3 8* 19741061

NOL3 0.850 [0.647,0.875] 0.576 [0.31,0.651] 10 1 8* 19773279
1 Of 10 scores
2 According to table of critical values for W in [6]
3 Pudmed IDs of most recent article(s) clearly stating a gene-disease association

* Difference statistically significant

Table 5 List of the human genes in the INHGI with the 10 highest druggability scores

Gene Druggability score (Median [min,max])1 N W Wc
2 (two-tailed p = 0.05) Druggability evidence3

Normal Shuffled

HLA-F 0.887[0.803,0.915] 0.530[0.427,0.584] 10 0 8* No evidence

PLAU4 0.886[0.808,0.907] 0.561[0.387,0.675] 10 0 8* 19301652

CD8A4 0.885[0.871,0.902] 0.56[0.37,0.664] 10 0 8* No evidence

CD194 0.880[0.751,0.907] 0.562[0.38,0.628] 10 0 8* 19509168

ITGAM4 0.878[0.614,0.887] 0.534[0.36,0.656] 10 1 8* 11931348

THBS15 0.875[0.53,0.9] 0.532[0.293,0.592] 10 0 8* 17878288

ITGAX 0.873[0.784,0.897] 0.539[0.422,0.691] 10 0 8* No evidence

CXCR5 0.871[0.755,0.895] 0.537[0.49,0.59] 10 0 8* 17652619

EBI3 0.871[0.801,0.888] 0.529[0.391,0.626] 10 0 8* 19556516

IL64 0.87[0.766,0.893] 0.591[0.361,0.643] 10 0 8* 17465721

TIMP25 0.869[0.645,0.916] 0.584[0.34,0.701] 10 0 8* 10985804
1 Of 10 scores
2 According to table of critical values for W in [6]
3 Pudmed IDs of most recent articles clearly stating that such genes may be drug target candidates
4 Morbid genes according to Morbid Map [46]
5 Genes among those with 10 highest morbidity scores (Table 4)

* Difference statistically significant
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morbidity in human. As we can observe in Figure 3, the
root node of decision tree is the number of transcription
factors that regulate a given gene (regin). So, this attri-
bute can be considered the most important feature,
among those used to train the J48 algorithm, for discri-
minating a morbid from a non-morbid gene. To rein-
force this, we found, by walking the path from root
node to first leaf node through the right branch, the fol-
lowing rule for morbidity: if genes are regulated by
more than one transcription factor, they are likely to be
morbid (Figure 3). The study by Reverter et al.[33] sup-
ports this rule as they showed that morbid genes are
more likely to show tissue specific expression than non-
morbid ones. Genes whose expression is tissue specific
tend to be regulated by more transcription factors than
those that are ubiquitously expressed, e.g. housekeeping

genes, since a high level of transcriptional regulation is
needed in this case.
Walking the path from root node to first and second

leaf nodes through the left branch (Figure 4), we found
the following rule for morbidity: if genes are regulated
by one transcription factor and their encoded proteins
are either centrally located in metabolic pathways (inbet-
met is the betweenness centrality via metabolic interac-
tions; see “Methods” and Additional file 1) or play a role
in the extracellular region, genes are likely to be morbid.
This rule is supported by Jimenez-Sanchez and collea-
gues [34] that showed that morbid genes are more likely
to be enzymes than non-morbid ones and by Winter et
al. [35] that demonstrated that ≈ 40% of proteins
encoded by morbid genes are predicted to be secreted.
Furthermore, if proteins are neither centrally located in

Figure 3 Decision tree generated by training the J48 algorithm on the normal morbidity datasets This decision tree was generated by
training the J48 algorithm on the normal morbidity datasets (see “Methods”). The uppermost ellipse is the node root of tree that represents the
most important condition for discriminating morbid genes from non-morbid genes. In this case, such condition is the number of transcription
factors regulating the gene (regin). The remaining ellipses are internal nodes that represent additional conditions for considering a gene as
morbid or non-morbid. In the left branch of tree, such conditions are a central position in a metabolic pathway (inbetmet), the extracellular or
plasma membrane localization of respective encoded proteins and tendency of encoded proteins to form clusters with others (c). The rectangles
depict genes that, under certain conditions (represented by the root node and internal nodes), are respectively and predominantly classified as
morbid (True) and non-morbid (Unknown). In the round brackets inside rectangles, the number before the slash indicates the total number of
genes that are actually morbid or non-morbid and the number after the slash indicates how many genes were incorrectly predicted.

Costa et al. BMC Genomics 2010, 11(Suppl 5):S9
http://www.biomedcentral.com/1471-2164/11/S5/S9

Page 9 of 15



metabolic pathways nor play a role in the extracellular
region but are located in plasma membrane and tend to
form clusters with other proteins (recall that c is the
clustering coefficient, a network feature the measures
the local group cohesiveness; see “Methods” and Addi-
tional file 1), their encoding genes are likely to be mor-
bid. For this rule, we could not find any article
supporting it. Therefore, the plasma membrane localiza-
tion of proteins encoded by morbid genes as well as the
tendency of these proteins to form clusters with other
proteins are issues to be examined.
From the best representative decision tree for drugg-

ability, we were able to devise some general rules for
druggability in human. As we can observe in Figure 4,
the root node of decision tree is the plasma membrane
localization of proteins. So, this attribute can be consid-
ered the most important feature, among those used to
train the J48 algorithm, for discriminating a druggable
from a non-druggable gene. To reinforce this, we found,
by walking the path from root node to first leaf node
through the right branch, the following rule for drugg-
ability: if proteins are located in plasma membrane, their
encoding genes are likely to be druggable (Figure 4).
This rule is supported by Bakheet and Doig [8] that
demonstrated that proteins encoded by druggable genes
had more transmembrane helices than proteins encoded
by non-druggable ones which suggests that proteins

encoded by druggable genes are more likely to be found
in plasma membrane. Walking the path from root node
to first and second leaf nodes through the left branch
(Figure 4), we found the following rule for druggability:
if proteins are not located in plasma membrane but are
either centrally located in a transcriptional regulatory
circuitry (inbetreg is the betweenness centrality via tran-
scriptional regulation interactions; see “Methods” and
Additional file 1) or are enzymes (metin is the number
of metabolites catalyzed by a given enzyme; see Addi-
tional file 1), their encoding genes are likely to be drug-
gable. This rule is partially supported by Bakheet and
Doig [8] as they showed that druggable proteins are
more likely to be enzymes than non-morbid ones. In
respect to central position in a transcriptional regulatory
circuitry, this is an issue that remains to be elucidated.

Conclusions
The identification of morbid and druggable genes has
largely been an experimental effort mostly performed by
time-consuming experiments. In an effort to accelerate
the pace of discovery of such genes, we designed a
machine learning-based computational approach that
relies on network topological features, tissue expression
profile and subcellular localization information for pre-
dicting morbid and druggable genes in human on a gen-
ome-wide scale.

Figure 4 Decision tree generated by training the J48 algorithm on the normal druggability datasets This decision tree was generated by
training the J48 algorithm on the normal druggability datasets (see “Methods”). The uppermost ellipse is the node root of tree that represents
the most important condition for discriminating druggable genes from non-druggable genes. In this case, such condition is the plasma
membrane localization of encoded proteins. The remaining ellipses are internal nodes that represent additional conditions for considering a
gene as druggable or non-druggable. In the left branch of tree, such conditions are a central position in a transcriptional regulatory circuitry
(inbetreg) and being an enzyme (metin). The rectangles depict genes that, under certain conditions (represented by the root node and internal
nodes), are respectively and predominantly classified as druggable (True) and non-druggable (Unknown). In the round brackets inside
rectangles, the number before the slash indicates the total number of genes that are actually druggable or non-druggable and the number after
the slash indicates how many genes were incorrectly predicted.
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We could demonstrate that our method is able to
reliable predict morbid and druggable genes on a gen-
ome-wide scale as demonstrated by (i) the moderate to
high performance measures achieved by the meta-classi-
fiers (Table 1), (ii) the observation that the designed
meta-classifiers learned traits actually related to morbid-
ity and druggability instead of traits associated with any
random sets of genes (Table 1) and (iii) the fact that
known morbid and druggable genes tend to have high
morbidity and druggability scores, respectively (Figures
1 and 2). Furthermore, in comparison with other avail-
able genome-wide prediction methods, the performance
of our method proved to be equal or superior . We
could also devise some cellular rules for gene morbidity
and druggability using all network topological features,
tissue expression profile and subcellular localization
information as learning attributes for generation of deci-
sion trees (see details in section “Cellular rules for gene
morbidity and druggability”). We discovered that num-
ber of regulating transcription factors, the central posi-
tion in metabolic pathways, the localization of their
encoded proteins in extracellular region and plasma
membrane and tendency to form clusters with other
proteins are important factors determining gene mor-
bidity. In respect to druggability, the important factors
determining druggability are plasma membrane localiza-
tion, a central position in a transcriptional regulatory
circuitry and being an enzyme. The fact that almost all
discovered rules are supported by some additional evi-
dences solidifies decision trees as useful tools for
extracting knowledge from complex biological data.
Albeit the good prediction performance and the ability
to discover cellular rules for morbidity and druggability,
our approach suffers from three limitations. First, it
depends on existing Gene Ontology annotation and
interaction data which are likely to be enriched in
small-scale experiments involving morbid and druggable
genes. Second, the construction of an integrated net-
work of gene interactions requires a large amount of
experimental interaction data that are currently available
only to a limited number of human genes—our INHGI,
for example, covers only ≈ 25% of already identified
human genes. Third, the lack of negative examples to
train the classifier forces us to consider all genes not
known to be morbid or druggable as de facto non-mor-
bid and non-druggable genes. We expect, however, that
such limitations will be soon addressed as more sys-
tems-level data are generated.

Methods
Generation of the set of training features
Network topological features
In order to compute the network topological features
used as training features for predicting morbid and

druggable genes, we first constructed an integrated net-
work of human gene interactions (INHGI) based on
assumption that two genes, g1 and g2, coding respec-
tively for proteins p1 and p2, are interacting genes if (i)
p1 and p2 interact physically (protein physical interac-
tion), (ii) the transcription factor p1 directly regulates
the transcription of gene g2, i.e., p1 binds to the promo-
ter region of g2 (transcriptional regulation interaction),
or (iii) the enzymes p1 and p2 share metabolites, i.e., a
product generated by a reaction catalyzed by enzyme p1
is used as reactant by a reaction catalyzed by enzyme p2
(metabolic interaction). Experimentally verified human
protein physical interactions data were obtained from
the following databases: the Biological General Reposi-
tory for Interaction Datasets (BioGRID) database
(release 2.0.47; [36]), the Database of Interacting Pro-
teins (DIP; release Hsapi20081014; [37]), the Human
Protein Reference Database (HPRD; release 7; [1]),
IntAct (release 91; [38]), the Molecular Interactions
Database (MINT; October 2008 release; [39]) and The
Munich Information Center for Protein Sequences
(MIPS) Mammalian Protein Interaction Database
(MPPI; downloaded in December 2008; [40]. Experimen-
tally verified human transcriptional regulation interac-
tions were obtained from the Transcriptional Regulatory
Element Database (TRED; [41]).
Experimentally verified human metabolic interactions

were extracted from the human metabolic model
Recon 1 [42] by a code implemented in Mathematica®
7.0 (Wolfram Research, Inc.). We excluded those meta-
bolic interactions generated by the so-called “currency
metabolites”, abundant molecular species present
throughout the cell most of the time and, therefore,
unlikely to impose any constraints on the dynamics of
metabolic reactions. Due to this feature of currency
metabolites, the functionality of the network would be
better represented without them [43]. We considered
currency metabolites the eight most connected meta-
bolites (ADP, ATP, H+, H2O, NADP+, NADPH, ortho-
phosphate and pyrophosphate) in the original
metabolic model Recon 1.
The final INHGI is the result of integration of the

protein physical, metabolic and transcriptional regula-
tion interactions datasets through genes common to
these datasets. Before performing the integration, we
converted all human gene names to their GeneIDs—as
provided by the Entrez Gene database [5]—to avoid the
creation of false interactions due to gene name
ambiguity.
For each gene g in INHGI, we computed 12 network

topological features as listed in Additional file 1. Briefly,
degree centrality is defined as the number of links to
node (in our case, gene). We considered each type of
interaction as a distinct measure of degree as described
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in Additional file 1. Clustering coefficient (c) of a node
(in our case, a gene) quantifies how close the node and
its neighbors are to being a clique, i.e., all nodes con-
nected to all nodes. For the INHGI, c is defined as the
proportion of links between the genes within the neigh-
borhood of g divided by the number of links that could
possibly exist between them. Betweenness centrality
reflects the role played by a node (in our case, a gene)
in the global network architecture and, for the INHGI,
is defined as the fraction of shortest paths between gi
and gj passing through g. We computed the betweenness
centrality based on shortest paths via all types of inter-
action (inbet) as well as based on shortest paths via each
type of interaction (inbetppi, inbetmet and inbetreg).
Closeness centrality (cent) measures how close a node
(in our case, a gene) is to all others in the network and,
for the INHGI, is defined as the mean shortest path
between g and all other genes reachable from it. Identi-
calness is the number of genes with identical network
topological characteristics.
All these network topological features, except for the

betweenness centrality-related features, were calculated
by a program written in a Mathematica® 7.0 notebook.
The betweenness centrality-related features were calcu-
lated by the Python package NetworkX 0.99 [44].
Subcellular localization of human genes
We determined the subcellular localization of proteins
encoded by the genes in the INHGI by using the
QuickGO tool, a Gene Ontology (GO) browser asso-
ciated with the integrated database resource for protein
families (InterProt) at the European Bioinformatics Insti-
tute [45]. We selected GO slim terms—subsets of GO
terms consisting of a limited number of high-level GO
terms that cover some or all of the content of GO—
related to cellular components provided by QuickGO to
annotate genes in the INHGI. Genes were annotated to
the following slim terms:“cytoplasm”, “endoplasmic reti-
culum”, “mitochondrion”, “nucleus”, “extracellular
space”, “Golgi apparatus”, “plasma membrane” and “cel-
lular component”. Genes annotated to other slim terms
were reannotated to one of these terms or to a new
term named “other localization” and genes with no GO
cellular component slim term annotation was annotated
to the term “unknown”.
Tissue expression profile of human genes
We retrieved the tissue expression profiles of genes in
the INHGI from the study performed by Reverter and
colleagues [33]. In their study, Reverter and colleagues
mined three large datasets comprising expression data
obtained from massively parallel signature sequencing
across 32 tissues in order to classify genes as housekeep-
ing or tissue-specific genes and then relate this tissue
specificity with gene interactions and disease states.
According to Reverter and colleagues, tissue expression

profile of a given gene is (i) the number of tissues (out
of 32) in which the gene is expressed at least 5 tran-
scripts per million (tpm) and (ii) the average expression
in tpm among all the tissues in which the gene is
expressed [33].

Classifier design and evaluation
Construction of training datasets
For evaluating the performance of the chosen training
features–network topological features, subcellular locali-
zation and tissue expression profile–in predicting mor-
bid and druggable genes, we constructed four different
groups of balanced training datasets, i.e., datasets con-
taining the same number of positive (in our case, mor-
bid or druggable genes) and negative (in our case, non-
morbid or non-druggable genes) examples: (1) “normal
morbidity datasets”, (2) “shuffled morbidity datasets”, (3)
“normal druggability datasets” and (4) “shuffled drugg-
ability datasets”.
For the construction of the morbidity datasets, we first

gathered a list of “morbid genes”—genes whose muta-
tions cause hereditary diseases—from the morbid map
table in the Online Mendelian Inheritance in Man
(OMIM) [46] and then mapped them to the INHGI.
The final list of morbid genes used as positive examples
to train our classifier is comprised by 1,412 morbid
genes present in the INHGI. Regarding the negative
examples, we considered as “non-morbid genes” the
remaining genes present in the INHGI; this was done
since building a list of genes not known to be involved
in hereditary diseases is impossible currently. We ran-
domly selected 10 different sets of 1,412 of these non-
morbid genes and combine them with the list of morbid
genes to build 10 different training datasets which we
call “normal morbidity datasets”. From these normal
morbidity datasets, we generate 10 different “shuffled
morbidity datasets” by randomly shuffling the class
labels (morbid and non-morbid) among genes.
For the construction of the druggability dataset, we

first built a list of “druggable genes”—genes coding for
proteins whose modulation by small molecules elicits
phenotypic effects—from the drug-target network con-
structed by Yildirim and colleagues [47] and then
mapped them to the INHGI. The final list of druggable
genes used as positive examples to train our classifier is
comprised by 257 druggable genes present in the
INHGI. Regarding the negative examples, we considered
as “non-druggable genes” the remaining genes present
in the INHGI; this was done since, similar to non-mor-
bid genes, it is also impossible to construct a list of
genes coding for proteins whose modulation by small
molecules do not elicits phenotypic effects. We ran-
domly selected 10 different sets of 257 of these non-
druggable genes and combine them with the list of
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druggable genes to build 10 different training datasets
which we call “normal druggability datasets”. From these
normal druggability datasets, we generate 10 different
“shuffled druggability datasets” by randomly shuffling
the class labels (druggable and non-druggable) among
genes. We also constructed 25 additional morbidity and
25 additional druggability datasets lacking one of the 25
features used as training attributes. We call these data-
sets as “without-one-feature” datasets, where one can be
replaced by the name of feature.
Classifier design
Using WEKA (Waikato Environment for Knowledge Ana-
lysis) software package, a collection of machine learning
algorithms for data mining tasks [48], we designed the
classifier used for predicting morbid and druggable genes
in the INHGI. This classifier is an ensemble of seven deci-
sion tree algorithms using the meta-classifier “Vote”, a
WEKA’s implementation of the voting algorithm that
combines the output predictions of each classifier by dif-
ferent rules [49]. We combined the classifiers by the aver-
age rule, where the output predictions computed by the
individual classifiers for each class are averaged and this
average is used in its decision [49]. The classifiers compos-
ing our model were: (1) REPtree [48], (2) random tree
[48], (3) random forest [50], (4) J48, a WEKA’s implemen-
tation of the C4.5 decision tree [32], with minimum num-
ber of 32 instances per leaf, (5) best-first decision tree with
minimum number of 32 instances at the terminal nodes
[51], (6) logistic model tree [52] and (7) alternating deci-
sion tree with 25 boost iterations [53]. In addition, we
applied the bootstrap aggregating (bagging) approach [54]
to each classifier. Parameters values for each classifier are
provided in the Additional file 3.
Classifier evaluation
We assessed the performance of our classifier by estimat-
ing the following measures: recall, precision and area
under the curve (AUC) of the receiver operating charac-
teristic (ROC) curve. Recall is the proportion of actual
morbid or druggable genes which are correctly predicted
as such against all actual morbid or druggable genes:

Recall
TP

TP FN
=

+

TP (true positive) denotes the amount of actual mor-
bid or druggable genes correctly predicted as such and
FN (false negative) denotes the amount of actual morbid
or druggable genes incorrectly predicted as non-morbid
or non-druggable, respectively.
Precision is the proportion of actual morbid or drug-

gable genes which are correctly predicted as such
against all genes predicted as morbid or druggable:

Precision
TP

TP FP
=

+

FP denotes the amount of actual non-morbid or non-
druggable genes incorrectly predicted as morbid or
druggable, respectively.
The AUC is a widely used summary measure of the

ROC curve–a plot of the true positive rate versus false
positive rate that indicates the probability of a true positive
prediction as a function of the probability of a false posi-
tive prediction for all possible threshold values [55]–and is
equivalent to the probability that a randomly chosen nega-
tive example (in our case, a non-morbid or non-druggable
gene) will have a smaller estimated probability of belong-
ing to the positive class than a randomly chosen positive
example (in our case, a morbid or druggable gene) [56].
We estimated the above-mentioned performance mea-

sures by performing a 10-fold cross-validation test–
using WEKA–on the 10 normal and 10 shuffled mor-
bidity datasets and on the 10 normal and 10 shuffled
druggability datasets constructed as described in the sec-
tion “Construction of training datasets”. During the 10-
fold cross-validation test process, each dataset is ran-
domly partitioned into 10 subsets. Of the 10 subsets, a
single subset is retained as the validation data for testing
the model, and the remaining 9 subsets are used as
training data. The cross-validation process is then
repeated 10 times, with each of the 10 subsets used
exactly once as the validation data. The 10 results from
the folds are then averaged to produce a single estima-
tion for each performance measure for each dataset. We
reported the performance measures estimated by the
10-fold cross-validation as medians of the 10 datasets
for each category (normal morbidity, shuffled morbidity,
normal morbidity and shuffled morbidity).
The statistical comparisons of (i) the performance

measures estimated by our classifier trained on normal
and shuffled datasets, (ii) the AUC values estimated by
our classifier trained on normal datasets and without-
one-feature datasets, and (iii) the normal and shuffled
morbidity and druggability scores for each gene in
INHGI were performed by the Wilcoxon signed-rank
test [6]. Following established conventions in the
machine learning community, we used this test since it
makes minimal assumptions about the underlying distri-
bution of performance measures used to evaluate classi-
fiers [57]. The differences were statistically significant if
the obtained Wilcoxon’s test statistic value (W) was
equal to or smaller than the critical Wilcoxon’s test sta-
tistic value (Wc) for a given sample size (N) at the two-
tailed significance level of 0.05 (p = 0.05) according to
the table of critical values for the Wilcoxon test [6].
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Prediction of novel morbid and druggable genes
The “normal morbidity scores” and the “normal drugg-
ability scores” were generated by applying the models
constructed by training our meta-classifier on the nor-
mal datasets to the entire set of genes in INHGI where
the class labels were removed. These scores are the
probability values of classifying each gene as morbid or
druggable as returned by the models. The final normal
morbidity and druggability scores are median scores of
10 scores. We also obtained “shuffled morbidity scores”
and “shuffled druggability scores” that were generated
by models trained on the shuffled datasets.

Determination of rules for gene morbidity and
druggability
The determination of rules for gene morbidity and
druggability was performed by analyzing the best repre-
sentative decision tree for each category among the 10
decision trees generated through the training of J48
algorithm [32] on the 10 normal morbidity and 10 nor-
mal druggability datasets. The parameters values for
producing decision trees by J48 algorithm training are
provided in the Additional file 3.

Additional material

Additional file 1: Network topological features Description: This file
includes a table showing the functions and descriptions of the 12
network topological features used as learning attributes for training the
classifier algorithm

Additional file 2: Morbidity and druggability scores of genes in
INHGI Description: Tab-limited text file containing all genes (Entrez
GeneIDs) in the INHGI with their morbidity and druggability scores.

Additional file 3: Parameters used to train the meta-classifier and
J48 Description: File containing all parameters values used to train the
meta-classifier for prediction of morbid and druggable genes and all
parameters values used to train the J48 algorithm to generate decision
trees for discovery of cellular rules for morbidity and druggability.
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