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Abstract

Background: Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory
networks in bacteria is one of the critical tasks of modern genomics. The Shewanella genus is comprised of
metabolically versatile gamma-proteobacteria, whose lifestyles and natural environments are substantially different
from Escherichia coli and other model bacterial species. The comparative genomics approaches and computational
identification of regulatory sites are useful for the in silico reconstruction of transcriptional regulatory networks in
bacteria.

Results: To explore conservation and variations in the Shewanella transcriptional networks we analyzed the
repertoire of transcription factors and performed genomics-based reconstruction and comparative analysis
of regulons in 16 Shewanella genomes. The inferred regulatory network includes 82 transcription factors and
their DNA binding sites, 8 riboswitches and 6 translational attenuators. Forty five regulons were newly
inferred from the genome context analysis, whereas others were propagated from previously characterized
regulons in the Enterobacteria and Pseudomonas spp.. Multiple variations in regulatory strategies between
the Shewanella spp. and E. coli include regulon contraction and expansion (as in the case of PdhR, HexR,
FadR), numerous cases of recruiting non-orthologous regulators to control equivalent pathways (e.g. PsrA
for fatty acid degradation) and, conversely, orthologous regulators to control distinct pathways (e.g. TyrR,
ArgR, Crp).

Conclusions: We tentatively defined the first reference collection of ~100 transcriptional regulons in 16 Shewanella
genomes. The resulting regulatory network contains ~600 regulated genes per genome that are mostly involved in
metabolism of carbohydrates, amino acids, fatty acids, vitamins, metals, and stress responses. Several reconstructed
regulons including NagR for N-acetylglucosamine catabolism were experimentally validated in S. oneidensis MR-1.
Analysis of correlations in gene expression patterns helps to interpret the reconstructed regulatory network. The
inferred regulatory interactions will provide an additional regulatory constrains for an integrated model of
metabolism and regulation in S. oneidensis MR-1.
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Background
Fine-tuned regulation of gene expression in response to
extracellular and intracellular signals is a key mechanism
for successful adaptation of microorganisms to changing
environmental conditions. Activation and repression of
gene expression in bacteria is usually mediated by
DNA-binding transcription factors (TFs) that specifically
recognize TF-binding sites (TFBSs) in upstream regions
of target genes, and also by various regulatory RNA
structures including cis-acting metabolite-sensing ribos-
witches and attenuators encoded in the leader regions of
target genes. Genes and operons directly co-regulated by
the same TF or by an RNA structure are considered to
belong to a regulon. All regulons taken together form
the transcriptional regulatory network (TRN) of the cell.
TFs form more than 50 different protein families and
constitute around 5-10% of all genes in an average bac-
terial genome, and their respective regulons cover a sub-
stantial fraction of bacterial TRNs [1].
Traditional experimental methods for the analysis of

transcriptional gene regulation and characterization of
TFBSs provided a foundation for the current under-
standing of regulatory interactions [2]. However, taken
alone, they are limited in productivity (the scale) and
feasibility (often restricted to a few model organisms).
High-throughput transcriptome approaches opens new
opportunities for measuring the expression of thousands
of genes in a single experiment [3]. The microarray
technology has been successfully used to explore tran-
scriptional responses in several bacteria. However, con-
voluted regulatory cascades, multi-TF regulation of
certain genes, and various indirect effects on the tran-
scription and abundance of mRNA make the observed
regulatory responses too complex for a direct top-down
analysis. The chromatic immunoprecipitation approach
is now increasingly used for the investigation of gen-
ome-wide DNA-binding of global TFs in bacteria [3]. At
the same time, a growing number of complete prokaryo-
tic genomes allows us to extensively use comparative
genomics approaches to infer conserved cis-acting regu-
latory elements (e.g. TFBSs and riboswitches) in regula-
tory networks of numerous groups of bacteria ([4-15],
also reviewed in [1]). These and other previous studies
enabled us to define and prototype a general workflow
of the “knowledge-driven” approach for the compara-
tive-genomic reconstruction of regulons. Two major
components of this analysis are (i) propagation of pre-
viously known regulons from model organisms to others
and (ii) ab initio prediction of novel regulons (see Meth-
ods for more details). This approach is different, and in
many ways complementary to the two most common
alternative approaches to the TRN reconstruction: (i)
the “data-driven” approach, top-down regulatory

network reconstruction from microarray data [16]; and
(ii) the “computation-driven” approach, ab initio auto-
mated identification and clustering of conserved DNA
motifs [17] .
Shewanella spp. are Gram-negative facultative anaero-

bic g-proteobacteria characterized by a remarkable ver-
satility in using a variety of terminal electron acceptors
for anaerobic respiration (reviewed in [18]). Isolated
from various aquatic and sedimentary environments
worldwide, the Shewanella demonstrate diverse meta-
bolic capabilities and adaptation for survival in extreme
conditions (Fig. 1) [19]. Although the model species She-
wanella oneidensis MR-1 is a subject of extensive genet-
ics and physiological studies, as well as genome-scale
transcriptomics and proteomics approaches [18,20-22],
our experimental knowledge of transcriptional regula-
tion in S. oneidensis is limited to the Fur, ArcA, TorR,
Crp, and EtrA (Fnr) TFs controlling iron metabolism
and anaerobic respiration [23-29]. In addition, the novel
NrtR regulon for NAD cofactor metabolism was inferred
by comparative genomics and experimentally validated
in S. oneidensis[11].
Availability of multiple closely-related genomes from

the Shewanella genus (Fig. 1) provided a basis for the
reconstruction of the metabolic and regulatory networks
using comparative genomics. Recently, we have applied
the comparative genomic approach to predict novel
pathways and regulons for the N-acetylglucosamine and
lactate utilization [30,31], and to reconstruct two novel
regulons for the fatty acid and branched-chain amino
acid utilization pathways in Shewanella spp. [4]. In this
study, we have extended our previous analysis towards
the detailed reconstruction of ~100 transcriptional regu-
lons in 16 Shewanella species with completely
sequenced genomes. The identified TRN contains over
450 regulated genes per genome, mostly covering the
central and secondary metabolism and stress response
pathways. The comparative analysis of the reconstructed
regulons revealed many aspects of the metabolic regula-
tion in the Shewanella that are substantially different
from the established TRN model of Escherichia coli.

Results
Repertoire of transcription factors in the Shewanella spp
Previous comparative analysis revealed extensive gene
content diversity among 10 Shewanella genomes [32].
To gain further insight into the scale of the TRN diver-
sity in this lineage, we analyzed the repertoire of DNA-
binding TFs encoded in 16 complete Shewanella gen-
omes (Additional file 1). The total number of TFs in
individual species varies broadly, from 138 TFs in S.
denitrificans to 262 TFs in S. woodyi, with an average of
~200 TFs per genome (Fig. 2). 95% of all TFs of the
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Shewanella amazonensis SB2B [Amazon river delta, Brazil; sediment, suboxic redox conditions; 1m]

Shewanella loihica PV-4 [Loihi seamount, Hawaii; Iron-rich mat, hydrothermal vent; 1325m]

Shewanella piezotolerans WP3 [west Pacific deep-sea sediment; 1914m]

Shewanella pealeana ATCC 700345 [Woods Hole harbor; squid nidamental gland]

Shewanella halifaxensis HAW-EB4 [Halifax harbor, Nova Scotia; sediment; 215m]
1.000

1.000

Shewanella woodyi ATCC 51908 [Strait of Gibraltar, Mediterranean; detritus; 37m]

Shewanella benthica KT99 [Tonga-Kermadec trench; 9000m]

Shewanella sediminis HAW-EB3 [Halifax harbor, Nova Scotia; sediment; 215m]
0.517

1.000

1.000

1.000

Shewanella oneidensis MR-1 [Lake Oneida, New York state; sediment; anaerobic]

Shewanella sp. ANA-3 [Woods Hole; brackish water, arsenic treated wooden pier]

Shewanella sp. MR-7 [Black Sea; sea water; anoxic zone; 60m]

Shewanella sp. MR-4 [Black Sea; sea water; oxic zone; 5m]
0.989

Shewanella baltica OS185 [Baltic Sea; sea water, oxic-anoxic interface; 120m]

Shewanella baltica OS195 [Baltic Sea; sea water, anoxic zone; 140m]

Shewanella baltica OS223 [Baltic Sea; sea water, oxic-anoxic interface; 120m]

Shewanella baltica OS155 [Baltic Sea; sea water, oxic zone; 90m]
0.893

Shewanella putrefaciens W3-18-1 [Washington coast; marine sediment; 997m ]

Shewanella putrefaciens CN-32 [Alberwuerque, New Mexico; subsurface; shale sandstone; 250m]
0.997

0.999

1.000

Shewanella frigidimarina NCIMB 400 [Coast of Aberdeen, North Sea; sea water]

Shewanella denitrificans OS217 [Baltic Sea;
1.000

1.000

0.671

1.000

MR-4, MR-7

S. benthica

S. baltica strains, S. denitrificans

A.

B. S. frigidimarina

S. woodyi

S. amazonensis

S. halifaxensis,
S. sediminis

MR-1

ANA-3

S. pealeana

W3-81-1

CN-32

S. loihica

S. piezotolerans

sea water, oxic-anoxic interface; 120m]

Figure 1 Phylogenetic tree, isolation site characteristics and the geographic origin of 20 Shewanella species with available genomes. The tree
was constructed using the concatenated alignment of ~78 universal prokaryotic proteins in the MicrobesOnline database http://www.
microbesonline.org/cgi-bin/speciesTree.cgi.
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Shewanella belong to 17 major protein families with at
least two distinct members per genome. At that, the
total number of TFs in most of these families varies sig-
nificantly among the Shewanella spp. The largest TF
families are LysR, OmpR, Fis, TetR, AraC, and LuxR
(>10 TFs per genome on average). Among the remain-
ing 14 families of TFs, mostly represented by single
members in the genomes (without paralogs), the Fur,
ArgR, BirA, LexA, MetJ, NrdR, RpiR, and TrpR families
are universally conserved in the Shewanella (Fig. 2). A
significant reduction of the TF repertoire is a unique
feature of S. denitrificans, which has limited anaerobic
growth capabilities due to massive gene loss in course of
ecological specialization [32].
The 3,228 predicted TFs in 16 Shewanella genomes
were clustered into 686 orthologous groups (Additional
file 1), among which only 63 TFs (9%) were universally
conserved in all genomes (the core TF set), 320 TFs
(47%) were found in at least two genomes (variable
TFs), whereas the remaining TFs (303 or 44%) were
strain-specific (Additional file 1). Although the genomes
of the Shewanella spp. and E. coli demonstrate a similar
repertoire and size of TF protein families, only 73 (30%)
TFs from E. coli have orthologs in at least one Shewa-
nella genome (Fig. 2). The group of 34 TFs that are pre-
sent in the Shewanella core TF set (Additional file 2)
and conserved between E. coli and the Shewanella spp.
(Additional file 3) is enriched by regulators controlling
the metabolism of amino acids (ArgR, AsnC, CysB,
GcvA, IlvY, MetJ, MetR, TrpR, TyrR), fatty acids (FabR,

FadR), cofactors (BirA, IscR), deoxynucleosides (NrdR),
nitrogen (NtrC), phosphate (PhoB), iron (Fur), central
carbohydrate metabolism (HexR, PdhR), stress responses
(CpxR, LexA, NhaR, NsrR), and global regulators (ArcA,
Crp, Fis, Fnr, and Lrp). The group of strain-specific
Shewanella regulators with orthologs in E. coli contains 5
known regulators for local carbohydrate utilization path-
ways (AlgR, NanR, DgoR, GalR, GntR) that were possibly
acquired together with the target metabolic pathway
genes via lateral gene transfer events [33]. Near 1/2 of
strain-specific TFs of the Shewanella spp. belong to two
protein families, LysR and AraC (96 and 50 TFs, respec-
tively), that were likely expanded via gene duplication in
course of ecological adaptation of individual species.

Comparative analysis of transcriptional regulation in the
Shewanella spp
To infer TRNs in the Shewanella spp., we used the inte-
grative comparative genomics approach that combines
identification of TFs and candidate TFBSs with cross-
genomic comparison of regulons and with the genomic
and functional context analysis of candidate target genes.
We analyzed 16 Shewanella genomes and inferred regu-
lons for 82 orthologous groups of TFs that split into two
groups: 41 regulators with experimentally characterized
orthologs in S. oneidensis or other g-proteobacteria
(Table 1), and 41 novel regulators without characterized
orthologs in any species (Table 2). The genomic and
functional content of the reconstructed TF regulons from
both groups, as well as of the regulons controlled by

Figure 2 Distribution by protein families of predicted DNA-binding transcription factors in the Shewanella genomes.
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Table 1 Previously known TF regulons reconstructed in Shewanella spp

TF
name

S. one-
idensis
MR-1

S.
putrefa-
ciens
CN-32

S. putre-
faciens
W3-18-1

Shewa-
nella
sp.

ANA-3

Shewa-
nella

sp. MR-
4

Shewa-
nella

sp. MR-
7

S.
baltica
OS155

S.
denitri-
ficans
OS217

S. frigidi-
marina
NCIMB
400

S.
amazo-
nensis
SB2B

S.
loihica
PV-4

S.
pealeana
ATCC
700345

S.halifa-
xensis
HAW-
EB4

S.
piezoto-
lerans
WP3

S.
sediminis
HAW-EB3

S.woodyi
ATCCC
51908

Pseudo-
monas
spp.

E.
coli

Regulon
functional

role

AgaR - - - + + + - - - + - - - - - - - rs GalNAc
utilization

ArgR + + + + + + + + + + + + + + + + - rs Arginine
biosynthesis

BetI - - - - - - + + + - - + + + + + + rs Osmotic
protection

BirA + + + + + + + + + + + + + + + + + rs Biotin
biosynthesis

Crp r + + + + + + + + + + + + + + + + rs Global
regulon

CueR + + + + + + + + - + - + + + + + rs rs Copper efflux

Dnr - - - - - - - + - + + - - - - - rs - Denitrification

FabR + + + + + + + + + + + + + + + + + rs Fatty acid
biosynthesis

FadR + + + + + + + + + + + + + + + + - rs Fatty acid
degradation

Fnr r + + + + + + + + + + + + + + + + rs Global
regulon

Fur rs + + + + + + + + + + + + + + + rs rs Iron
homeostasis

GalR - - - - - - - - - - - - - - - + - rs Galactose
utilization

GcvA + + + + + + + + + + + + + + + + - rs Glycine
metabolism

GlmR + + + + + + + + + + + + + + + + r - LPS synthesis

GntR - - - - - - + - - - - - - - - - + rs Gluconate
utilization

HexR + + + + + + + + + + + + + + + + rs + Central sugar
metabolism

HutC + + + + + + + + + + + + + + + + r - Histidine
utilization

IlvY + + + + + + + + + + + + + + + + - rs Isoleucine-
valine
synthesis

IscR + + + + + + + + + + + + + + + + + rs Fe-S cluster
assembly

LexA + + + + + + + + + + + + + + + + rs rs DNA damage
stress

MetJ + + + + + + + + + + + + + + + + - rs Methionine
biosynthesis
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Table 1 Previously known TF regulons reconstructed in Shewanella spp (Continued)

MetR + + + + + + + + + + + + + + + + + rs Methionine
biosynthesis

ModE + - - + + + + - - - - - - - - - + rs Molybdenium
metabolism

NanR - - - - - - - - - - - + - - - - - rs Sialic acid
utilization

NarP + + + + + + + - + + + + + + + + - rs Nitrate/nitrite
respiration

NhaR + + + + + + + + + + + + + + + + - rs Osmotic stress
protection

NikR - - - - - - - - - - - + + - + - + rs Nickel uptake

NorR - + + + + + - - + + + + + + + + + rs Nitrosative
stress

NrdR + + + + + + + + + + + + + + + + + rs Nucleotide
metabolism

NrtR rs + + - - - - - - - - - - - - - + - Nicotinamide
utilization

NsrR + + + + + + + + + + + + + + + + - rs Nitrosative
stress

NtrC + + + + + + + + + + + + + + + + rs rs Nitrogen
assimilation

PdhR + + + + + + + + + + + + + + + + - rs Pyruvate
metabolism

PsrA + + + + + + + + + + + + + + + + rs - Fatty acid
degradation

RbsR - - - - - - - - - - - + + - - - + rs Ribose
utilization

SdaR + + + + + + + - + - + + + + + + + r Glycerate
utilization

SoxR - - - - - - - + + + + - - - - + + rs Superoxide
stress

TorR rs - - + + + + - + + + + + + + + - rs TMAO
respiration

TrpR + + + + + + + + + + + + + + + + - rs Amino acid
metabolism

TyrR + + + + + + + + + + + + + + + + rs* rs Amino acid
metabolism

ZntR + + + + + + + + + + + + + + + + - rs Zinc efflux

The presence of orthologous transcription factors is shown by ‘+’, ‘r’ and ‘rs’, whereas its absence is denoted by ‘-’. TFs with previously characterized target genes in model species are denoted by ‘r’. TFs with
previously known TFBSs at their target genes are denoted by ‘rs’. Ortholog of TyrR in Pseudomonas spp. that was characterized as the phenylalanine and tyrosine catabolism regulator PhhR is marked by asterisk.
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Table 2 Novel TF regulons predicted and reconstructed in Shewanella spp

TF
name

S.
oneid-
ensis
MR-1

S.
putrefa-
ciens
CN-32

S.putrefa-
ciens W3-

18-1

Shewa-
nella sp.
ANA-3

Shewa-
nella sp.
MR-4

Shewa-
nella sp.
MR-7

S.
baltica
OS155

S. denitri-
ficans
OS217

S. frigidi-
marina

NCIMB 400

S.
amazo-
nensis
SB2B

S.
loihica
PV-4

S.
pealeana
ATCC
700345

S.halifax-
ensis

HAW-EB4

S.
piezoto-
lerans
WP3

S.
sediminis
HAW-EB3

S.woodyi
ATCCC
51908

Regulon
functional role

A. Regulons inferred from the analysis of metabolic pathways

AlgR* - - - - - - - - + - - - - - - - Hexuronate
utilization

AraR* - + + + + + - - - - - - - - - - Arabinose
utilization

BglR* - - - - - - + + + + - - - + - + Beta-glucoside
utilization

HmgR* + + + + + + + + + + + + + + + + Tyrosine
degradation

HypR* + + + + + + + + + + + + + + + + Hydroxyproline
utilization

LiuR + + + + + + + + + + + + + + + + Amino acid
utilization

LldR* + + + + + + + - + + + + + + + - Lactate
utilization

MalR* + - - + + + + + + + + - - + - + Maltodextrin
utilization

ManR1* - - - - - + - - - + - - - - - - Mannose
utilization

ManR2* - - - - - - - - - + - - - - - - Mannose
utilization

MtlR2 - - - - - - - - + - - - - - - - Mannitol
utilization

NagR + + + + + + + + - + + + + + + + GlcNAc
utilization

PflR* - + + - - - - - + + + + + + + + Formate
metabolism

PrpR* + + + + + + + + + + + + + + + + Propionate
utilization

PUR* + + + + + + + + + + + + + + + + Purine
biosynthesis

ScrR* - - - + + + + - + - - - - - - - Sucrose
utilization

TreR* - - - - - - - - + - - - - - - + Trehalose
utilization

XltR* - - - - - - - - - - - + + - - - Xylitol utilization
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Table 2 Novel TF regulons predicted and reconstructed in Shewanella spp (Continued)

B. Regulons inferred from the analysis of chromosomal gene clusters

AzrR* + + + + + + + - - + + + + + + + Superoxide stress

CalR* + + + + + + + + + + + + + + + + Aromatics
utilization

CueR2 - + - - - - - - + - + - - - - - Copper efflux

DeoR* + + + + - - - - - - - + + + + + Nucleoside
utilization

PnuR* + + + - - - + - - - - - - - - - NAD metabolism

SO0072 + + + + + + + + + + + + - + - + ABC efflux
transporter

SO0082 + - - - + - + - + - - - - - - - Benzoate
degradation

SO0193 + + + + + + + - + + + - - - - - Phospholipid
synthesis

SO0734 + + + - - - + - - - - - - - - - hypothetical
transporter

SO1393 + - - + + + - - - - + - - - - - hypothetical

SO1415 + - - - + - - - - - + + + - + - flavocytochrome
c

SO1578 + - - + + + + - - + + - - - - + Glutathione
detoxification

SO1703 + + + + + + + + - + + + + + + - multidrug efflux

SO1758 + + + + + + + - - + + - - - + + hypothetical

SO2282 + + + + + + + - - + - + + + - + Amino acid
efflux

SO3277 + + + + + + + + + + + + + + + + multidrug efflux

SO3385 + + + + + + + - - - - - - - - - hypothetical

SO3393 + + + + + + + + + + + - - + + + xenobiotic
reductase

SO3494 + + + + + + + + + - - - - - - - multidrug efflux

SO3627 + - - - - - - - - - - - - - + - flavocytochrome
c

SO4326 + - - + - - - - - + - + + + + + multidrug efflux

SO4468 + + + + + + + + - + - - - + + - hypothetical

SO4705 + + + + + + + + + + + + + + + + hypothetical

The new TF names introduced in this work are marked by asterisks.
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known RNA regulatory elements (8 riboswitches and 6
transcriptional attenuators), is summarized in Additional
file 4 and briefly described below. These data, in conjunc-
tion with the detailed information about DNA binding
motifs and individual TFBSs, were compiled into the She-
wanella collection of regulons that was uploaded to the
RegPrecise database http://regprecise.lbl.gov[34].
Reconstruction of regulons for previously characterized
regulators
Our general strategy of reconstructing regulons con-
trolled by known TFs in a novel taxonomic group con-
sists of the following steps: (i) search for orthologous
TFs, (ii) collecting known target genes and TFBSs in a
model genome, (iii) identifying orthologous target genes
in the analyzed genomes and extracting their upstream
regions, iv) application of a pattern recognition program,
then constructing positional weight matrices (PWMs)
and comparison of the newly identified TFBS motifs
with the previously known sites/motifs in a model
genome, v) search for additional sites in the analyzed
genomes and consistency check or cross-species com-
parison of the predicted regulons (details are provided
in Materials and Methods section; the strategy was also
reviewed in [1]). For regulons with significantly different
repertoire of target genes in the Shewanella spp., the
above procedure was repeated starting at the third step
in order to include novel candidate targets into the
TFBS motif model and to revise the final gene content
of the regulon.
For the Shewanella genomes, we performed regulon

reconstruction for 41 TFs that are orthologous to pre-
viously characterized regulators (Table 1). The majority
of these TFs have experimentally characterized orthologs
in g-proteobacteria from other lineages, such as E. coli
(35 TFs) and/or Pseudomonas spp. (10 TFs), or had
been previously studied in S. oneidensis (5 TFs) (Addi-
tional file 5). Among these regulators, there are 26 uni-
versal TFs, three strain-specific TFs and 13 TFs
mosaically distributed in the Shewanella spp. The
deduced TFBS motifs for 41 analyzed regulons in the
Shewanella spp. were compared to previously known
motifs for orthologous regulators in other g-proteobac-
teria using the RegulonDB database for E. coli[35] and
original publications for Pseudomonas spp. (Additional
file 5). For three regulators with previously unknown
binding sites (GlmR, HutC, and SdaR) we report, for the
first time, the identity of their cognate TFBSs. The iden-
tified new motifs in Shewanella are conserved in
upstream regions of known targets in E. coli (for SdaR)
and Pseudomonas spp. (for GlmR and HutC) (data not
shown). Two novel TFBS motifs (for AgaR and GcvA)
in the Shewanella spp. are completely different from the
respective motifs in E. coli. Five other TFBS motifs (for
CueR, NhaR, PsrA, TrpR, and ZntR) in the Shewanella

spp. are moderately different (3-4 mismatches in the
conserved positions) from the known motifs of ortholo-
gous TFs previously described in E. coli and/or Pseudo-
monas spp. The remaining 31 Shewanella TFs appear to
have binding motifs that are well conserved or only
slightly different (1-2 mismatches in the conserved posi-
tions) from the motifs of their previously characterized
orthologs.
Inference of novel regulons for metabolic pathways and
chromosomal gene clusters
To identify novel regulons in the absence of experimen-
tal data, we used two types of potentially co-regulated
gene sets: i) genes that constitute functional metabolic
pathways (subsystems); and ii) genes derived from con-
served gene neighborhoods that include a putative TF
gene. To analyze metabolic subsystems and conserved
chromosomal gene clusters projected across bacterial
genomes we used the SEED database [36]. Each training
set of potentially co-regulated operons was collected
from 16 analyzed Shewanella genomes, and a collection
of their upstream regions was used as an input for the
motif-recognition program SignalX to predict a common
DNA motif allowing a limited number of sequences to
be ignored. At the next step, the Shewanella genomes
were scanned with the constructed DNA motif to reveal
the distribution of similar sites that were further verified
by the consistency check procedure (reviewed in [1]).
Finally, the genomic context of candidate co-regulated
genes was used to attribute a potential TF to each novel
regulon and associated DNA motif.
As a result, we inferred 41 novel regulons in Shewa-

nella spp. including: i) 18 regulons for metabolic subsys-
tems; and ii) 23 regulons for conserved chromosomal
gene clusters (Table 2). The metabolic regulons from
the first group control genes from the metabolic path-
ways of utilization of various carbohydrates, as well as
formate, lactate, propionate, hydroxyproline/proline, tyr-
osine, and branched chain amino acids, and the purine
biosynthesis pathway. All of these metabolic regulons
except the purine regulon were assigned to a TF by a
combination of different evidence types such as (i) posi-
tional clustering of target genes and TFs on the chro-
mosome; ii) autoregulation of a TF by a cognate TFBS;
iii) correlation in the phylogenetic pattern of co-occur-
rence of TFBSs and TFs in the genomes. Each of these
novel TFs was functionally annotated in the SEED data-
base (http://theseed.uchicago.edu) and tentatively named
using an abbreviation of the target metabolic pathway/
genes. Hereinafter we mark the new names by asterisks.
Most of the novel metabolic TFs represent non-ortho-

logous replacement of previously known TFs that con-
trol similar metabolic pathways in other lineages. For
example, the propionate catabolism in the Enterobac-
teria is activated by the Fis-family regulator PrpR,
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whereas in the Shewanella spp. it is predicted to be con-
trolled by a GntR-family TF PrpR*. The proline utiliza-
tion is controlled by the Lrp-family activator PutR in
the Vibrio spp. [37], the AraC-family activator PruR in
the Pseudomonas spp. [38], and the predicted GntR-
family regulator HypR* in the Shewanella spp.. The
homogentisate pathway of the tyrosine degradation is
regulated by the IclR-type repressor HmgR in the Pseu-
domonas spp. [39], which is replaced by novel LysR-
family regulator HmgR* in the Shewanella spp.. Similar
non-orthologous replacements of regulators have been
detected for ten different carbohydrate catabolic path-
ways [33] and the lactate utilization system in the She-
wanella spp. [30]. A novel purine-pathway regulon
(named PUR*) with hitherto unknown cognate TF was
inferred in Shewanella instead of PurR regulon pre-
viously characterized in other g-proteobacteria including
E. coli[40] and missing in the Shewanella spp.. Two
novel regulators PflR* and XltR* were predicted to con-
trol metabolic pathways of pyruvate to formate fermen-
tation and xylitol catabolism, whose regulation have not
yet been previously described in any bacteria.
Functional annotations of novel TF regulons that were

deduced from the analysis of conserved gene clusters
are largely hypothetical and incomplete. Most of them
are local regulators controlling one or two target oper-
ons (Additional file 4). Two novel TF regulators from
the Crp family, named DeoR* and PnuR*, control candi-
date phosphorylases and transporters likely involved in
the nucleoside/nicotinamide ribose utilization. A novel
AsnC-type regulator AzrR* controls the azr-SO3586
operon, which encodes azoreductase and lactoylglu-
tathione lyase that are likely involved in the superoxide
stress protection. Novel regulator CalR* controls expres-
sion of the coniferyl aldehyde dehydrogenase calB that
play a role in phytochemical aromatic compound utiliza-
tion. Other inferred TF regulons appear to contain var-
ious hypothetical metabolite efflux transporters or
flavocytochromes potentially involved in detoxification
and undescribed respiratory processes, respectively.
Identification of regulons for RNA regulatory elements
We used known regulatory-RNA patterns from the
Rfam database [41] to scan intergenic regions in 16 She-
wanella genomes and analyzed the genomic context of
candidate regulatory RNAs (Additional file 4).
Representatives of eight metabolite-responsive ribos-

witch families are scattered in most Shewanella gen-
omes. The lysine, glycine, thiamine, cobalamin,
riboflavin, and molybdenum cofactor riboswitches con-
trol genes for the respective amino acid / cofactor bio-
synthetic pathways and/or uptake transporters. The
purine riboswitch controls adenosine deaminase and
purine transporter. The riboswitch that binds second
messenger cyclic di-GMP was found to control various

subsets of genes in the Shewanella spp. including genes
encoding extracellular proteins such as the chitin bind-
ing protein, chitinases, peptidases, and other hypotheti-
cal secreted proteins.
Six candidate attenuators that regulate operons

responsible for the biosynthesis of branched chain
amino acids, histidine, threonine, tryptophan, and phe-
nylalanine in proteobacteria [42] are conserved in all
analyzed Shewanella spp.

Experimental validation of N-acetylglucosamine-
responsive regulon NagR in S. oneidensis MR-1
A predicted transcriptional regulator NagR of the LacI
family is a nonorthologous replacement of the NagC
repressor from Enterobacteria. In addition to genes
involved in Nag transport (nagP and ompNag) and bio-
chemical conversion (nagK-nagBII-nagA), the recon-
structed NagR regulon contains auxiliary components
that are likely involved in chemotaxis and hydrolysis of
chitin and/or chitooligosaccharides (mcpNag-hex and
cbp). Experimental validation of the reconstructed NagR
regulon in S. oneidensis MR-1 was performed by both in
vitro and in vivo approaches. The nagR gene was cloned
and overexpressed in E. coli, and the recombinant pro-
tein was purified by Ni2+-chelating chromatography. We
used electrophoretic mobility shift assay to test specific
DNA-binding of the purified NagR protein to its pre-
dicted operator sites in upstream regions of the nagP
(SO3503), nagK (SO3507), mcpNag (SO3510), ompNag

(SO3514) and cbp (SO1072) genes in S. oneidensis MR-
1. The maximal shift of the nagK DNA fragment
observed at 100 nM NagR was completely suppressed
by the addition of 20 mM of N-acetylglucosamine,
which was thus proven as a negative effector (Additional
file 6A). Specific binding at 100 nM NagR protein was
also confirmed for the other four tested DNA fragments.
To confirm the negative regulatory effect of NagR on
gene expression in vivo, the S. oneidensis ?nagR targeted
deletion mutant was constructed and relative transcript
levels of the predicted NagR target genes were analyzed
by quantitative RT-PCR. Relative mRNA levels of the
nagP, nagK, mcpNag, ompNag, and cbp genes were ele-
vated 15-, 50-, 16- 11-, and 5-fold, respectively, in the ?
nagR mutant compared to the wild-type strain when
grown in the minimal medium supplied with lactate
(Additional file 6B). These results confirm that NagR is
a negative regulator of the chitin utilization genes that
are de-repressed in response to N-acetylglucosamine.

Discussion
Conservation and variations in the regulatory network
evolution
Conservation of 5738 regulatory interactions identified
for all predicted members of the reconstructed regulons
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across the Shewanella genus is shown in Additional file
4. Overall, the regulatory systems of the Shewanella spp.
appears out to be considerably variable within the genus
and quite distinct from other previously studied g-pro-
teobacteria. The observed variations can be classified in
three distinct types: (i) “regulon expansion” in the She-
wanella compared to other lineages that can be ranged
from additions of several regulon members to larger-
scale shifts in the regulated metabolic pathways (e.g.,
HexR, PdhR, and TyrR regulons); (ii) “fuzzy regulons”
when a regulon possess a conserved core and variable
periphery within the Shewanella group (e.g., global regu-
lons ArgR, Crp, Fur, NarP, and Fnr); (iii) “regulon loss
or acquisition” when entire regulon (including all oper-
ons from a regulated pathway) is present only in some
of the Shewanella species (e.g., for Dnr, ModE, BetI, and
17 regulons controlling various sugar utilization path-
ways [33]). Of course, this distinction is very schematic
and in reality these types of behavior overlap. The
mostly conserved regulatory interactions occur among
TF regulons that are involved in the control of essential
biosynthetic pathways (e.g., BirA, FabR, GlmR, IlvY,
NrdR regulons), and universal stress responses (LexA
and ZntR regulons).
To estimate the relative conservation of the predicted

regulatory interactions in other lineages, we searched for
orthologs of the putative regulon members in E.coli and
compared the gene contents of the regulons recon-
structed in the Shewanella and with orthologous regu-
lons in E.coli captured in the RegulonDB database
(Additional file 4). Similar analysis was performed for
the Shewanella regulons characterized in the Pseudomo-
nas spp. (but not in E. coli), including Dnr, GlmR,
HexR, HutC, and PsrA (for references see Additional
file 5). Among 468 cognate operons that belong to 42
studied regulons in the Shewanella spp., 138 operons
(30%) have orthologous known targets in E. coli or Pseu-
domonas, 223 operons (~50%) lack orthologous operons,
whereas the remaining 107 operons (~20%) have ortho-
logous operons that are not under control of ortholo-
gous TFs in these species. Examples of impressive
variations in the content of orthologous TF regulons in
the Shewanella and E. coli are discussed below.
The comparison of the inferred regulons revealed

striking differences in the strategies for regulation of the
central carbohydrate and amino acid metabolism
between the lineages comprising the Shewanella spp.
and the Enterobacteria. In E. coli, two global regulators,
FruR (fructose repressor/activator) and Crp (cAMP-
responsive activator), control the central carbohydrate
metabolism, whereas HexR (phospho-keto-deoxy-gluco-
nate-responsive repressor) and PdhR (pyruvate repres-
sor) are local regulators of glucose-6P dehydrogenase
and pyruvate dehydrogenase, respectively. By contrast,

the Shewanella spp. are predicted to use the HexR and
PdhR regulators for the global control of the central car-
bohydrate metabolism and fermentation (Fig. 3). The
FruR TF is absent in the Shewanella spp. that are not
able to utilize fructose. The content and functional role
of the Crp regulon is significantly different in the two
lineages: the catabolism of carbohydrates and amino
acids in the Enterobacteria, and the anaerobic respiration
in the Shewanella spp. Most sugar catabolic pathways in
the Shewanella spp. seem to be exclusively controlled by
local sugar-responsive TFs that are often replaced by
non-orthologous TFs (e.g., NagR vs. NagC for the N-
acetylglucosamine utilization), and lack global co-regula-
tion by Crp. Thus, the Shewanella spp. seem to lack
many “feed-forward loops” that are characteristic for the
regulation of sugar catabolism pathways in E.coli (when
an operon is regulated by Crp and a local regulator that
also is regulated by Crp) [43], thus may have a different
strategy of sugar catabolism on mixed substrates.
Significant shifts in the regulon content were also

identified for the TyrR, FadR, and FabR regulons
(Fig. 3). In E. coli, the tyrosine- and phenylalanine-
responsive regulator TyrR represses most aromatic
amino acid biosynthetic enzymes and transporters
encoded by multiple aro and tyr genes scattered on the
chromosome, and activates the tyrosine transporter
encoded by the mtr gene. In the Shewanella spp., we
identified TyrR as a master regulator of the degradation
pathways for various amino acids, including phenylala-
nine (phhAB operon), tyrosine (fahA-maiA operon),
branched chain amino acids (ldh, brnQ, liu, ivd, and bkd
operons), proline (putA gene), and oligopeptides (var-
ious peptidase genes), as well as some other pathways
such as the glyoxylate shunt (aceBA operon), and the
chorismate biosynthesis (aroA gene). These findings are
in accordance with the previously established role of
PhhR, a TyrR ortholog in Pseudomonas spp., as an acti-
vator for phenylalanine and tyrosine degradation genes
[44]. The fatty acid degradation pathway in the Shewa-
nella app. and many other g-proteobacteria is controlled
by PsrA, whereas in the Enterobacteria the analogous
pathway is regulated by FadR [4]. The Shewanella spp.
also have a significantly reduced in size FadR regulon,
which retains only two operons shared with the ortholo-
gous regulon of E. coli, fadIJ and fadL[4]. Finally, the
fatty acid biosynthesis regulon FabR has only one gene,
fabA, which has conserved regulation in both E. coli and
the Shewanella spp., whereas the remaining target genes
were identified as a lineage-specific regulon extension.

Interconnections between the predicted regulons in
Shewanella spp
The collection of the inferred Shewanella regulons con-
tains at least 30 regulons (for 24 TFs and 6 regulatory
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RNAs) that have at least one operon under simulta-
neous control of at least two regulators (Additional file
4). Most of the overlapping regulons control amino acid,
fatty acid, nitrogen, and central carbohydrate metabo-
lism (Fig. 3). The glyoxylate shunt operon aceBA con-
trolled by five TFs is the most regulated operon in the
current TRN model (see below). The glycine utilization
operon gcvTHP was found to be controlled by the gly-
cine-responsive regulator GcvA, the central carbohy-
drate regulator HexR, and the novel purine biosynthesis
regulator PUR*. In the predicted regulons, 14 operons
are under overlapping control of three regulons, whereas
~70 operons are co-regulated by two regulons. At least
four regulatory cascades between various TFs were iden-
tified in the Shewanella spp.: LiuR for tyrR, NarP for
crp, Crp for hmgR, and MetJ for metR, and only the lat-
ter cascade is conserved in E. coli.
The reconstructed TRN provides insight into interplay

between several different TFs controlling multiple genes
from the LiuR regulon (Fig. 4). LiuR is a MerR-family
repressor that controls the branched chain amino acid

(Ile/Leu/Val) utilization in diverse proteobacteria [4]. In
Shewanella spp., the predicted LiuR regulon was found
to regulate Ile/Leu/Val operons (ldh, liu, ivd, and bkd)
and was expanded by additional members involved in
the biosynthesis of glutamate (gltBD) and threonine
(thrABC), and the glyoxylate shunt (aceBA). Six out of
nine LiuR-controlled operons are also regulated by the
tyrosine/phenylalanine-responsive transcription factor
TyrR [45]. Although TyrR in E. coli can act both as acti-
vator and repressor on its target genes, the mode of
TyrR action on Shewanella targets is to be determined
experimentally. Preliminary comparative analysis of rela-
tive positions of the TyrR- and LiuR-binding sites in
Shewanella genomes (using multiple alignment of the
promoter gene regions) suggests that TyrR probably acts
as an activator for the ldh, liu, ivd, and bkd operons
(data not shown). This supposition suggests that integra-
tive effect of the LiuR and TyrR mediated control can be
activation of their target genes in the simultaneous pre-
sence of Ile/Leu/Val and Tyr/Phe. Indeed, the expres-
sion data confirm strong up-regulation of the Ile/Leu/
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Val utilization and glyoxylate shunt genes in the pre-
sence of casein-derived mixture of amino acids (Fig. 4).
In contrast, two amino acid biosynthetic operons are

down-regulated in the same condition. This observation
can be explained by additional regulatory mechanisms
found for each of these operons. The glutamate synthase
gltBD is also controlled by ArgR, which is known to
repress gene expression in the presence of arginine [46].
The threonine biosynthesis operon thrABC is also
repressed by threonine availability using RNA attenua-
tion mechanism [42].
Analysis of pairwise correlations for all LiuR-regulated

genes based on ~200 microarray expression profiles
available in the MicrobesOnLine database [47] allows us
to identify two subregulons that have different gene
expression patterns (Fig. 4). The first catabolic subregu-
lon contains six operons, five of which are involved in
the Ile/Leu/Val utilization, whereas the second subregu-
lon has two biosynthetic operons and the glyoxylate
shunt operon aceBA. The current TRN model has the
largest number of regulatory interactions for the latter
operon, which is controlled by five TFs including the
Ile/Leu/Val repressor LiuR, the Tyr/Phe repressor/acti-
vator TyrR, the phospho-keto-deoxy-gluconate regulator
HexR, the pyruvate repressor PdhR, and the fatty acid
repressor PsrA. The glyoxylate shunt pathway plays a
central metabolic role by providing intermediates
required for amino acid biosynthesis, and being involved
in the utilization of acetyl-CoA, a common product of
the Ile/Leu/Val amino acids, fatty acids and carbohy-
drate degradation pathways [48].

Conclusions and future perspectives
By applying the comparative genomics approach, we
tentatively defined the first reference collection of

transcriptional regulons in 16 Shewanella genomes com-
prised of 82 orthologous groups of TFs, ~7,300 TF-
binding sites (~450 per genome), and 258 RNA regula-
tory motifs from 14 families. The resulting regulatory
network contains ~600 regulated genes per genome that
are mostly involved in the central metabolism, produc-
tion of energy and biomass, metal ion homeostasis and
stress responses. Although some diversity of the pre-
dicted regulons was observed within the Shewanella
genus, the most significant diversification and adaptive
evolution of TRNs were revealed by comparison with
the established TRN in E. coli and related Enterobac-
teria. These differences are mostly attributed to: i) line-
age specific regulon expansion and contraction for
orthologous TFs that use conserved TFBS consensus
motifs, and ii) involvement of non-orthologous TFs to
control physiologically equivalent metabolic pathways in
the two lineages of g-proteobacteria.
The reconstructed regulons in S. oneidensis MR-1 are

supported by available microarray expression data for the
fur, crp, and etrA (fnr) knockout strains [25,26,28,29], as
well as for the wild type strain grown on various carbon
sources (inosine, N-acetylglucosamine, amino acids, lac-
tate, and pyruvate) [20]. Preliminary analysis of correla-
tions in expression patterns of genes from predicted
regulons was useful for the interpretation of the recon-
structed TRN, as illustrated by the LiuR regulon example.
We are currently expanding this approach to other data.
Targeted experimental validation of eight novel regulons
for central carbohydrate and amino acid metabolism in
S. oneidensis MR-1 is currently underway. Previously we
have characterized in vitro the novel NAD metabolism
regulon NrtR [11] and in this work we present in vivo and
in vitro validation of N-acetylglucosamine utilization regu-
lon NagR. Combined in vivo and in vitro experimental
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validation of the global carbohydrate metabolism regulon
HexR and the assessment of its physiological role in She-
wanella will be published elsewhere.
This work demonstrates the power of the comparative

genomics approach in application to the reconstruction
of transcriptional regulons in poorly studied groups of
related bacteria. The reference set of the Shewanella
regulons is the first taxonomy-wide collection of regu-
lons obtained by this approach. It can be assessed in the
RegPrecise database [34]. We anticipate a fast growth of
taxonomy-wide regulon collections for other lineages in
the near future. Regulatory interactions from the recon-
structed regulons will provide an additional regulatory
constrains for the recently published metabolic model of
S. oneidensis MR-1 [22], allowing one to build an inte-
grated model of metabolism and regulation. Such inte-
grated model can be used for phenotype prediction,
functional gene assignment and understanding of organ-
ism ecology. Finally, the reconstructed regulons were
useful for the genome context-based prediction of novel
functions of enzymes and transporters in previously
uncharacterized carbohydrate utilization pathways in
Shewanella spp. [33]

Methods
Bioinformatics methods for regulon reconstruction and
used databases
The Shewanella spp. genomes were downloaded from
the Genbank [49] (Fig. 1). The set of predicted DNA-
binding TFs was extracted from the DBD database [50].
The locus_tag gene identifiers are used throughout.
Orthologous proteins in 16 Shewanella genomes were
defined in the previous work by the best bidirectional
hits criterion [32]. Orthologous groups in Shewanella
were named by either a common name of characterized
protein, a novel name for proteins functionally anno-
tated in this study, or by a locus_tag from S. oneidensis
genome for uncharacterized proteins. Orthologs between
proteins from different taxonomic groups (e.g. Shewa-
nella and other g-proteobacteria) were defined as bidir-
ectional best hits with 30% of identity threshold using
the Smith-Waterman algorithm implemented in the
GenomeExplorer program [51]. In dubious cases ortho-
logs were confirmed by construction of phylogenetic
trees and comparative analysis of gene neighborhoods
using the MicrobesOnline tree browse tool [47]. Func-
tional gene assignments and metabolic subsystem analy-
sis were performed using the SEED annotation/analysis
tool http://theseed.uchicago.edu/FIG/index.cgi, which
combines protein similarity search, positional gene
clustering, and phylogenetic profiling of genes [36]. In
addition, the InterPro [52], and PFAM [53] databases
were used to verify protein functional and structural
annotations.

For de novo identification of a candidate regulatory
motif in the training set of potential upstream regions
of genes (intergenic regions up to 350 bp) we used a
simple iterative procedure DNA motif detection proce-
dure implemented in the program SignalX [54]. Weak
palindromes were selected in each region. Each palin-
drome was compared to all other palindromes, and the
palindromes most similar to the initial one were used to
make a profile. The candidate site score was defined as
the sum of the respective positional nucleotide weights
[7]. These profiles were used to scan the set of palin-
dromes again, and the procedure was iterated until con-
vergence. Thus a set of PWM profiles was constructed.
A profile with largest information content was used as
the recognition rule [55]. Each genome encoding the
studied TF was scanned with the constructed motif pro-
file using the GenomeExplorer software [51] and genes
with candidate regulatory sites in the upstream regions
were selected. The threshold for the site search was
defined as the lowest score observed in the training set.
Among new candidate members of a regulon, only
genes having candidate sites conserved in at least two
other genomes were retained for further analysis. We
also included new candidate regulon members that are
functionally related to the established regulon members.
Additional and more detailed description of various sce-
nario for regulon reconstruction using comparative
genomics was reviewed in [1]. Analysis of large regulons
(Fur, Crp, Fnr, NarP, LexA) was carried out using the
web-based tool RegPredict allowing the comparative
genomics-based regulon inference http://regpredict.lbl.
gov[56]. The details of reconstructed regulons were cap-
tured and displayed in our recently developed database
RegPrecise http://regprecise.lbl.gov[34]. For identifica-
tion of RNA regulatory motif sequences we scanned
complete genomes using tools and profiles available
from the Rfam database [41]. Calculation of the Pearson
coefficient for the LiuR-regulated genes was done by
tools available at the MicrobesOnLine resource [47].

Experimental methods for regulon validation
The nagR (SO3516) gene cloned at a pET-derived vector
containing the T7 promoter and His6 tag [57] was
kindly provided by Frank Collart (Argonne National
Laboratory, IL).
Protein purification. Recombinant proteins of nagR

(SO3516) from S. oneidensis MR-1 was overexpressed as
N-terminal fusion with a His6 tag in E. coli strain BL21/
DE3. Cells were grown on LB media to OD600 = 0.8 at
37°C, induced by 0.2mM IPTG, and harvested after 12 h
shaking at 20°C. Protein purification was performed
using rapid Ni-NTA agarose minicolumn protocol as
described [58]. Briefly, harvested cells were resuspended
in 20 mM HEPES buffer pH 7 containing 100 mM
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NaCl, 0.03% Brij 35, and 2 mM b-mercaptoethanol sup-
plemented with 2 mM phenylmethylsulfonyl fluoride
and a protease inhibitor cocktail (Sigma-Aldrich). Lyso-
zyme was added to 1 mg/mL, and the cells were lyzed
by freezing-thawing followed by sonication. After centri-
fugation at 18,000 rpm, the Tris-HCl buffer (pH 8) was
added to the supernatant (50 mM, final concentration),
and it was loaded onto a Ni-NTA agarose column (0.2
ml). After washing with the starting buffer containing 1
M NaCl and 0.3% Brij-35, bound proteins were eluted
with 0.3 ml of the starting buffer containing 250 mM
imidazole. Protein size, expression level, distribution
between soluble and insoluble forms, and extent of puri-
fication were monitored by SDS-PAGE.
qPCR. In-frame deletion mutagenesis of or nagR

(SO3516) was performed using previously published
method [33]. Genomic RNA was isolated from S. onei-
densis MR-1 and ΔnagR cells grown in minimal medium
supplied with lactate and collected at O.D.(600) of 0.52
using the RNA purification kit from Promega (Madison,
WI). Reverse transcription of total RNA was performed
with random primers using iScript cDNA synthesis kit
from BIO-RAD (Hercules, CA), following kits instruc-
tions. qPCR was performed using SYBR GreenER qPCR
SupeMix Universal kit from Invitrogene (Carlsbad, CA).
Transcript levels of the nagP (SO3503), nagK (SO3507),
mcpNag (SO3510), ompNag (SO3514), cbp (SO1072),
SO0854, and zwf (SO2489, used as a negative control)
genes were measured and the results were normalized
to the expression level of 16S mRNA. Fold change was
calculated by the 2-ΔCT method [59] as a ratio of nor-
malized mRNA levels in ΔnagR mutant and wild-type
MR-1 strains.
DNA-binding assay. Interaction of purified recombi-

nant protein NagR (SO3516) from S. oneidensis MR-1
with their cognate DNA motifs was assessed by EMSA
technique using the following dsDNA segments
obtained by PCR amplification or by custom synthesis
of both complementary oligonucleotides (IDT, San
Diego, CA), annealing and purification. One of the pri-
mers was 5′-biotinylated (IDT). By using S. oneidensis
MR-1 DNA as the template, we amplified DNA frag-
ments from the following upstream gene regions:
SO1072 (89 bp), SO3507 (69 bp), SO3510 (64 bp),
SO3514 (69 bp), SO3503 (62 bp), SO0854 (67 bp). For
EMSA, the biotin-labeled DNA (0.1 or 1 nM) was incu-
bated with the increasing amount of purified NagR (0-
100 nM) in a total volume of 20 μl. The binding buffer
contains Tris-HCl 20mM, KCl 150mM, MgCl2 5mM,
DTT 1mM, EDTA 1mM, 0.05% NP-40, 2.5% glycerol.
The poly(dI-dC) (Sigma) was added as nonspecific com-
petitor DNA at ~104-fold molar excess over labeled tar-
get DNA to reduce nonspecific binding. After 25 min
incubation at room temperature, the reaction mixtures

were separated by electrophoresis on a 5% native polya-
crylamide gel in 0.5 × Tris-borate-EDTA for 90 min at
90V, at 4°C. The gel was transferred by electrophoresis
(30 min, at 380 mA) onto a nylon membrane (Pierce,
Rockford, Ill.) and fixed by UV cross-linking.
Biotin-labeled DNA was detected with the LightShift
Chemiluminescent EMSA kit (Pierce, Rockford, Ill.), as
recommended by the manufacturer. The effect of
N-acetyl-glucosamine on NagR-DNA binding was tested
by addition of 20 mM of N-acetylglucosamine to the
incubation mixture.
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