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Abstract

Background: Reassortments are events in the evolution of the genome of influenza (flu), whereby segments of
the genome are exchanged between different strains. As reassortments have been implicated in major human
pandemics of the last century, their identification has become a health priority. While such identification can be
done “by hand” on a small dataset, researchers and health authorities are building up enormous databases of
genomic sequences for every flu strain, so that it is imperative to develop automated identification methods.
However, current methods are limited to pairwise segment comparisons.

Results: We present FluReF, a fully automated flu virus reassortment finder. FluReF is inspired by the visual
approach to reassortment identification and uses the reconstructed phylogenetic trees of the individual segments
and of the full genome. We also present a simple flu evolution simulator, based on the current, source-sink,
hypothesis for flu cycles. On synthetic datasets produced by our simulator, FluReF, tuned for a 0% false positive
rate, yielded false negative rates of less than 10%. FluReF corroborated two new reassortments identified by visual
analysis of 75 Human H3N2 New York flu strains from 2005–2008 and gave partial verification of reassortments
found using another bioinformatics method.

Methods: FluReF finds reassortments by a bottom-up search of the full-genome and segment-based phylogenetic
trees for candidate clades—groups of one or more sampled viruses that are separated from the other variants
from the same season. Candidate clades in each tree are tested to guarantee confidence values, using the lengths
of key edges as well as other tree parameters; clades with reassortments must have validated incongruencies
among segment trees.

Conclusions: FluReF demonstrates robustness of prediction for geographically and temporally expanded datasets,
and is not limited to finding reassortments with previously collected sequences. The complete source code is
available from http://lcbb.epfl.ch/software.html.

Introduction
Influenza (the “flu”) is an RNA virus with an extremely
high mutation rate [1-3] that causes fever and respira-
tory problems in humans and other animals. It is
responsible for half a million human deaths every year
[4]. Flu populations typically experience a seasonal bot-
tleneck event, as host-to-host transmission in the tem-
perate regions drops to very low levels during the warm

season. According to the source-sink hypothesis [2],
new strains of viruses are seeded from a flu reservoir in
the tropics, called the source, and spread seasonally to
the temperate zones, called sinks [5-7], thus creating
multiple coexisting generations of flu strains in the tem-
perate regions [8].
The genome of the flu virus is composed of eight seg-

ments. Reassortment of segments among flu virus
strains, i.e., mixing of segments from one or more
strains to produce new strains, is a frequent event
[9-11]. Strains resulting from such reassortments have
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been responsible for two of the three great pandemics of
the 20th century [12].
A large number of fully sequenced flu genomes

recently became publicly available [13], but large
amounts of data cannot be processed by the most widely
used reassortment-finding techniques, as these involve
human scrutiny of phylogenetic trees. In these methods,
one constructs a phylogenetic tree based on the full gen-
omes, as well as a tree based on each of the eight seg-
ments, for a total of nine trees; one then examines these
trees, looking for strains that have segments on different
branches of their respective trees [12,14]. While the
visual inspection method is intuitive and logical, it is
prohibitively time-consuming, and outright inapplicable
when thousands of samples are to be examined.
A few methods have been proposed to process the flu

data automatically. Rabadan et al.[11] postulated that,
for any two strains, the Hamming distance between
their respective first segments and the Hamming dis-
tance between their respective second segments should
be equal (after normalization) in the absence of reassort-
ment, while different distances should point to a reas-
sortment. Niranjan et al.[10] used phylogenies, but
considered distributions of phylogenetic trees for each
segment, instead of the consensus tree. Their method
enumerates the maximal bicliques on a bipartite graph
of tree edges for the distributions of the two segments;
these bicliques represent sets of mutually incompatible
choices, indicating that the two segments may have had
different evolutionary histories. Both methods are lim-
ited to detecting reassortments between collected and
sequenced strains. While these approaches were used to
detect meaningful reassortment events [11,15], they are
not scalable to large datasets when all reassorted seg-
ments need to be identified, because they use pairwise
comparisons which must then be manually aggregated.

Our contribution
Our new, fully automated, flu reassortment finding algo-
rithm, FluReF, embodies and parameterizes the struc-
tural observations used in visual reassortment finding.
We describe an algorithm that examines the recon-
structed phylogenetic trees of individual segments and
of the full genome, selects candidate reassortment
groups through a bottom-up search of the full phyloge-
netic tree, and confirms candidates that meet preset
thresholds and cause demonstrated incongruencies
among segment trees.
FluReF is designed to find all segments involved in all

reassortment events in a dataset. The method is scalable,
running in time quadratic in the number of full genome
sequences. Furthermore, FluReF is not limited to finding
reassortments among sequenced strains, as it searches
for reassortments with ancestral source strains.

We also present a simple simulator for the evolution
of flu genomes, in terms of point mutations and reas-
sortment, and incorporating both strain isolation and
bottleneck events. On data produced by this simulator,
FluReF tuned for a 0% false positive rate has consistently
demonstrated a 10% false negative rate. On sequence
data from influenza databases, FluReF corroborated two
new reassortments identified during our visual analysis
of the 75 Human H3N2 New York flu strains from
2005–2008. FluReF demonstrated robustness of predic-
tion with temporally and geographically expanded data-
sets. We obtained partial verification of reassortments
found by Holmes et al., who performed a phylogenetic
analysis of 156 Human H3N2 New York flu strains from
1999–2004 [8].

Results
We first describe the principles behind our method.
Next, we present the FluReF algorithm, including the
description of tunable parameters. We then present the
results on various flu datasets from the state of New
York. We conducted a visual analysis of a collection of
2005–2008 New York flu genomes, identifying two reas-
sortments, and ran FluReF on this dataset. We then
expanded the temporal and geographic scope of the
data to test the robustness of FluReF by augmenting our
dataset with (i) a large number of sequences from the
same area (New York) from a prior year (2004) and (ii)
sequence data from all over the United States. We then
ran FluReF on another, unrelated flu dataset from
Holmes et al.[8]. Finally, we experimented with a larger
set of simulated sequences.

FluReF: principles
FluReF exploits certain characteristics of phylogenetic
trees of the flu genome. The trees produced from sam-
ples taken over a number of years in the same geogra-
phical location follow a well established pattern—
sequences from the same year tend to cluster together,
sometimes forming a clade with sequences from the
year before or the year after [3]. Another common fea-
ture of localized phylogenetic trees is that sequences
collected in earlier years tend to be closer to the root
than those collected in later years, as they had less time
to evolve away from the common ancestor at the root.
In visual inspection methods [12,14], the exploration
starts by examining the full genome tree, looking for
individual sequences, or small groups of sequences, that
do not fit these characteristics.
For example, we may find some sequences that are

not grouped with the others from the same year, but
with sequences sampled in an earlier year: Figure 1 (A)
shows a toy example where clade E from year 3 is
grouped together with the sample from year 2. Similarly,
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we may find some sequences that, while grouped
together with the rest of the season, are separated
from them by a significantly large distance: Figure 1
(B) shows clade E correctly grouped with the other
samples from year 3, but at a significant evolutionary
distance from them. In either case, sequences phylo-
genetically separated from their seasonal grouping are
candidates for reassortment. We postulate that this
genetic disparity is possible if a strain from the sam-
pling year, the survivor of the previous bottleneck
event, has reassorted some of its segments with a
strain that re-emerged from the source population. We
assume that the lower selective pressure in the source
population results in slower evolutionary change, so
that a re-emerging sample from the source population
would be more genetically similar to the sink popula-
tion from prior sampling years.
To test for a reassortment, we examine the eight seg-

ment trees, searching for an isolated candidate clade. If
the candidate clade remains isolated in all individual
segment trees, the reason is unrelated to reassortment.
One of the possible explanations is that such candidate
strains infected the human host in a geographic area
far away from the sampling area and thus have a
somewhat different evolutionary history. If, however,
the candidate clade is grouped together with the other
samples from its season in some of the segments, but
is isolated in others, we have identified a probable
reassortment. Figure 2 shows a toy example with three
sampled years. Segments in the isolated candidate
clade E3 (3, 5, and 6) have come from the seasonal
migration of the source strain, while the rest of the
segments for E3 (1, 2, 4, 7, and 8) came from the local
seasonal population.

FluReF: algorithm
FluReF carries out an exhaustive bottom-up search of the
phylogenetic tree reconstructed from the full genome
sequences. As the search proceeds, various measures are
checked to ensure that candidate reassortments satisfy
parameter thresholds motivated by the visual inspection.
In the main loop of the algorithm, each leaf node (a

single sequence) is considered if it was not already iden-
tified as part of a candidate reassortment. A candidate
group is grown upward from the leaf, expansion termi-
nating upon reaching the noise threshold—exceeding a
tuneable parameter which dictates when the candidate
group would encompass an unacceptably heterogeneous
sample from different years.
Once a candidate group is identified, the Least Com-

mon Ancestor (LCA) is found for all leaves sampled in
the year that contains the majority of sequences in this
candidate group, as shown in Figure 3.
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Next, the Least Common Ancestor excluding the can-
didate group (LCA_Without) is found. Various metrics
for the path from the candidate group to the LCA_-
Without, via the LCA, are checked to ensure that the
separation distance is nontrivial and that the three path
has strong support.
In the visual reassortment search method, the path is

examined to ensure that it contains several edges with
very high confidence values as provided by the phyloge-
netic reconstruction software. In general, it is desirable
to have a majority of edges on the path with reasonably
high confidence values, generating trust in the existence
of the candidate group separation. FluReF translates this
intuition into several tuneable parameters which mini-
mize the rate of false positives by ensuring that only
paths with high confidence values from the phylogenetic
reconstruction are considered in a reassortment search.
During the visual reassortment search, the candidate
group is assessed for its distance away from the rest of
the season, compared to the rest of the tree. FluReF
encompasses this observation with a couple separation
parameters, tuned to ignore candidate groups with a tri-
vial genetic separation from the rest of the season. For
each candidate group which satisfies all parameters, the
algorithm then attempts to find the analog of this candi-
date group in each of the individual segment trees. If a
group is found in a segment tree, it is again checked
against various parameter thresholds—typically lower
than those used with the tree based on the full genome
sequences, because the confidence values from the phy-
logenetic reconstruction software tend to be lower for
individual segment trees. The candidate group is output
as a reassortment if it is found to be isolated from the
rest of the year sample in some segment trees, but is
grouped with the rest of the year sample in other seg-
ment trees, pointing to different evolutionary histories.
(Preference may be given to certain segments, as there
is evidence that some segments are more commonly
involved in reassortments than others [11].)
FluReF runs in at most quadratic time. The main loop

traverses a tree, taking time proportional to the size of
the tree, i.e., proportional to n, the number of leaves; if
each leaf (strain) is considered as a separate candidate
group, the main loop will iterate n times.

Experiment 1: confirming visual inspection
We examined a dataset of 75 Human H3N2 strains col-
lected between 2005 and 2008 in New York. The visual
inspection of full-sequence and individual segment phy-
logenetic trees revealed two reassortments. Clade A
from 2006, shown in Figure 4, was grouped separately
from the rest of its season in the full genome tree, as
well as in individual trees for segments 1, 2, 3, 5, and 6.

Clade B from 2007, also shown in Figure 4, was grouped
separately from the rest of its season in the full genome
tree, and in individual trees for segments 3 and 4. We
applied FluReF to this data set; it produced no false
positives and output both Clades A and B as reassort-
ment groups, with the same segments identified as in
the visual analysis. This result confirms that FluReF
properly applies the principles of the visual analysis of
phylogenetic trees.

Experiment 2: increasing the temporal scope
To test the robustness of FluReF, we augmented the
dataset from Experiment 1 with human H3N2 strains
sampled in 2004 from New York. The new data set thus
contains 118 sequences—at the limit of what visual
inspection can handle. FluReF run on this dataset
returned the same output as on the unaugmented data-
set used in Experiment 1, once again matching visual
inspection results.

Experiment 3: increasing the geographic scope
The inclusion of geographically separated strains can
lead to the isolation of subgroups from their seasonal
cohort and thus potentially cause false positive identifi-
cations. We augmented the dataset from Experiment 2
with the rest of the 2005–2008 human H3N2 strain
sequences collected all over the United States. The
resulting data set contains 180 sequences, beyond our
ability to inspect visually. FluReF once again returned
the same output as on the unaugmented dataset from
Experiment 1, a reassuring result in that it was not mis-
led by geographically isolated strains.

Experiment 4: validating prior work
In 2005, Holmes et al. performed a phylogenetic analy-
sis of 156 complete genomes of human H3N2 influenza
A viruses collected between 1999 and 2004 from New
York State and found several reassortment events
between the various clades [8]. Aside from between-
clade reassortments, which are currently not targeted
by FluReF, Holmes et al. identified three reassortment
groups. Run on the same data, FluReF confirmed one
of these candidate reassortment groups: a small
clade containing two strains from 1999: [GenBank:
CY001120-27, GenBank:CY000989-96]; another candi-
date group was considered by the algorithm, but
rejected due to low confidence scores. We have tuned
the parameters of FluReF to be very conservative, so
the absence of false positives and the occurrence of
some false negatives are to be expected; a more sensi-
tive tuning is possible, especially one that favors certain
segments over others, a bias adopted by Holmes et al.
in their analysis.

Yurovsky and Moret BMC Genomics 2011, 12(Suppl 2):S3
http://www.biomedcentral.com/1471-2164/12/S2/S3

Page 4 of 7



Experiment 5: scaling
While the quadratic limit makes FluReF scalable in
terms of runtime, care must be take to ensure that the
accuracy of the algorithm does not suffer as the datasets
increase. We performed a first scaling experiment, with
a set of 420 simulated sequences containing a single
reassortment event. FluReF found this reassortment, and
reported no false positives.

Methods
External software and materials
All influenza A sequences were downloaded from the
NCBI Influenza Virus Sequence database [13]. GenBank
sample identifier strings were modified to include the
year of sampling and a short unique identifier, to aid in
the visual inspection of the phylogenetic trees. MAFFT,
a multiple alignment program based on Fast Fourier
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Figure 4 Full-genome phylogenetic tree for 75 Human H3N2 strains from New York, 2005–2008
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transforms [16], was used to align the sequences for all
experiments using real data. The RAxML web server
[17] was used to reconstruct the phylogenetic trees for
all real and synthetic datasets using the Maximum Like-
lihood approach.

Tuning FluReF
Parameter thresholds were tuned on simulated data gen-
erated by our simulator (described farther down) to
keep the number of false positives down to zero, while
minimizing the number of false negatives. Tuning was
done using two dozen small datasets of 40 strains each.
With tuned parameters, FluReF, when run on these
simulated datasets, finds no false positives (nonexistent
reassortment) and fails to find 10% of the existing reas-
sortments, for a 0% false positive rate and a 10% false
negative rate.

FluReF usage
FluReF input consists of nine files with phylogenetic
trees reconstructed by RAxML from aligned sequences
of viruses; these sequences should come from sampling,
at regular intervals, of the flu genome within a well
defined geographic area (or, of course, from simula-
tions). The first eight files contain the trees for their
respective segments, while the ninth file contains a tree
reconstructed from full genome sequences for each
virus strain. The output provides the identifier(s) of all
viruses in groups that have undergone a reassortment.
For each group, the names of the segments that partici-
pated in the reassortment are also output.

Viral evolution simulator
In the absence of sufficient verified reassortment data,
we needed a viral evolution simulator to produce syn-
thetic data sets with known reassortments, so as to be
able to test and tune our algorithm. We developed a
very simple simulator, which incorporates some more
recent theories on the flu evoltion, and used it to
produce synthetic datasets that resulted in realistic
phylogenies.
We begin the simulation by initializing the start

source population. The start source population consists
of any number of real virus sequences, downloaded
from NCBI, preferably collected from the same geo-
graphic and temporal location. The input is separated
into eight files, each containing aligned sequences of all
source population viruses for their respective segments.
The output consists of nine files with aligned sequences
sampled at regular intervals from the sink population.
The eight files each contain virus sequences for their
respective segments, and the ninth file contains a full
genome sequence for each virus strain, all in the format
described for input to FluReF.

We model the viral evolution by maintaining two
groups of viruses. The first group is kept at a stable size,
to mimic the viral source in the tropics. The second
group models a local virus sink; it expands every sam-
pling interval and then contracts in a bottleneck event,
to mimic the seasonal flu cycles. Instead of maintaining
individual viral strains, we maintain populations of rela-
tively small size. A population consists of up to one
hundred viruses with an identical sequence, a simple
way of modelling closely related strains or the viral qua-
sispecies population.
We model point mutations using the Kimura two-

parameter substitution model [18]. We introduce an
operation we call “global parallel mutate,” which makes
identical mutations in any number of populations. We
apply this operations to all viral populations in source
and sink to mimic conditions that make certain muta-
tions more advantageous during a particular season, as
well as to mimic the super-viral strains that rapidly
spread through the world during a particular season.
We also use a regular, “divergent” mutate operation,
that makes unique mutations in each viral population
and is responsible for individual variations between the
populations.
We perform a reassortment between one population

in the source and one population in the sink once per
sampling period. The genetic transfer is unidirectional,
as the genetic flow is thought to be unidirectional from
the source to the sink regions. At the end of each sam-
pling period, after the bottleneck event, we output a
small, randomly selected sample of survivor sequences.

Discussion
FluReF builds upon the visual inspection of recon-
structed phylogenetic trees, which is the most com-
monly used and best accepted method for finding
reassortments. However, whereas visual inspection is
limited to datasets of a hundred samples, FluReF is
designed to be scalable for very large data sets. Its run-
ning time is at most quadratic in the number of sam-
ples, so that analyses of datasets with tens or hundreds
of thousands of samples can be carried out rapidly—
the computational bottleneck is the reconstruction
of the nine phylogenetic trees, not the search for
reassortments.
The FluReF model does not tie us to searching for

reassortments between pairs (or triplets) of sampled and
sequenced strains in the same data set. This is very
important, as it is it entirely possible that only one of
the strains involved in a reassortment has been sampled.
While our results are promising, much work remains

to be done. FluReF will benefit from extensive para-
meter tuning on real datasets with proven reassort-
ments. Focusing the search on segments more likely to
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be involved in reassortments will both speed up the
search and increase its sensitivity—our current imple-
mentation is quite conservative and favors specificity
over sensitivity. Finally, reassortments between clades
could also be sought by a similar approach, with its own
set of parameters.

Conclusions
The recent swine flu epidemic, along with discoveries of
correlations between different circulating strains of flu,
underscore the importance of genomic analyses for
future influenza surveillance. Even reassortments in the
same lineage can cause a severe outbreak and failure of
vaccine coverage. As our databases of flu genomes
increase very rapidly, computational approaches must be
deployed to analyze the large volume of data and help
identify candidate events, such as reassortments, that
may pose new health threats. We developed FluReF, an
automatic reassortment finder algorithm inspired by the
visual identification approach. FluReF parameters were
tuned on the synthetic datasets produced by our simple
virus evolution simulator to yield no false positives; even
at this very conservative setting, FluReF had very high
sensitivity, with false negative rates consistently below
10%. With these parameter values, FluReF corroborated
the two reassortments we found during a visual analysis
of the 75 Human H3N2 New York strains from 2005–
2008; it also demonstrated robustness of prediction with
temporally and geographically expanded datasets, and
verified some of the reassortments found using another
bioinformatics method. FluReF is only as good as the
data for which its parameters have been tuned; while flu
databases accumulate ever more sequences, quality
annotation of reassortments has been very limited to
date. Any approach to reassortment finding based on
statistics or machine learning will benefit from addi-
tional reference data.
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