
PROCEEDINGS Open Access

Ψ-RA: a parallel sparse index for genomic
read alignment
M Oğuzhan Külekci1*, Wing-Kai Hon2, Rahul Shah3, Jeffrey Scott Vitter4, Bojian Xu4

From IEEE International Conference on Bioinformatics and Biomedicine 2010
Hong Kong, P. R. China. 18-21 December 2010

Abstract

Background: Genomic read alignment involves mapping (exactly or approximately) short reads from a particular
individual onto a pre-sequenced reference genome of the same species. Because all individuals of the same species
share the majority of their genomes, short reads alignment provides an alternative and much more efficient way to
sequence the genome of a particular individual than does direct sequencing. Among many strategies proposed for this
alignment process, indexing the reference genome and short read searching over the index is a dominant technique.
Our goal is to design a space-efficient indexing structure with fast searching capability to catch the massive short reads
produced by the next generation high-throughput DNA sequencing technology.

Results: We concentrate on indexing DNA sequences via sparse suffix arrays (SSAs) and propose a new short read
aligner named Ψ-RA (PSI-RA: parallel sparse index read aligner). The motivation in using SSAs is the ability to trade
memory against time. It is possible to fine tune the space consumption of the index based on the available
memory of the machine and the minimum length of the arriving pattern queries. Although SSAs have been
studied before for exact matching of short reads, an elegant way of approximate matching capability was missing.
We provide this by defining the rightmost mismatch criteria that prioritize the errors towards the end of the reads,
where errors are more probable. Ψ-RA supports any number of mismatches in aligning reads. We give
comparisons with some of the well-known short read aligners, and show that indexing a genome with SSA is a
good alternative to the Burrows-Wheeler transform or seed-based solutions.

Conclusions: Ψ-RA is expected to serve as a valuable tool in the alignment of short reads generated by the next
generation high-throughput sequencing technology. Ψ-RA is very fast in exact matching and also supports
rightmost approximate matching. The SSA structure that Ψ-RA is built on naturally incorporates the modern
multicore architecture and thus further speed-up can be gained. All the information, including the source code of
Ψ-RA, can be downloaded at: http://www.busillis.com/o_kulekci/PSIRA.zip.

Background
The last decade has witnessed a rapid development in
DNA sequencing by the introduction of next generation
high-throughput DNA sequencing [1] technologies. The
equipment based on that new technology produces bil-
lions of reads in a single day per machine [2]. The most
important two problems regarding the DNA sequencing
are alignment and assembly [3]. If the target specie has

not been sequenced before, a de novo DNA assembly
[4], which requires concatenation of the reads in an
optimum way, has to be performed. Otherwise, reads
are mapped against a reference genome that is the result
of a previous sequencing effort of the same specie. With
the advent of the next-generation sequencing, various
short read aligners such as Bowtie [5], PerM [6], SOAP
[7], mrs-Fast [8], and many others have been proposed
in the last three years. In a recent study, Li and Homer
[9] surveyed short read aligners in general.
Many strategies have been applied to perform the

alignment process fast and accurately. While some of the

* Correspondence: kulekci@uekae.tubitak.gov.tr
1National Research Institute of Electronics & Cryptology, 41470, Gebze,
Kocaeli, Turkey
Full list of author information is available at the end of the article

Oğuzhan Külekci et al. BMC Genomics 2011, 12(Suppl 2):S7
http://www.biomedcentral.com/1471-2164/12/S2/S7

© 2011 Oğğuzhan Külekci et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://www.busillis.com/o_kulekci/PSIRA.zip
mailto:kulekci@uekae.tubitak.gov.tr
http://creativecommons.org/licenses/by/2.0

aligners index the reference genome, some others rely on
hash tables based on q-grams or spaced seeds to perform
a quick scan. Although hash-based solutions are more
flexible in detecting approximate matches, indexing solu-
tions are faster. The dominant solution in genome index-
ing is the Burrows-Wheeler transform (BWT) [10] of the
reference sequence (e.g., [5,11]), in which the reads are
searched with the backwards search algorithm introduced
in FM-index of Ferragina and Manzini [12].
We concentrate on indexing the genome via sparse suf-

fix arrays (SSAs). Lexicographic ordering of all the suffixes
of the text forms the suffix array [13], which is a well-stu-
died data structure initially proposed to lower the space
requirement of the suffix tree. Although suffix arrays are
much more space-preserving than suffix trees, they still
require large memory space for indexing massive data
such as the whole genome of a human. The space con-
sumption of an ordinary suffix array for a given text of n
characters is O(n log n). The occurrences of a pattern of
length m characters can be found in O(m log n) time by
searching the pattern on the suffix array by binary search
procedure. This bound can further be improved to O(m +
log n) time by using auxiliary data structures [13].
It was long believed that compressing a suffix array is

not feasible since it is mainly a permutation of the num-
bers from 1 to n. Grossi and Vitter [14] refuted that belief
and showed that suffix arrays are compressible. Following
that work, compressed data structures in text indexing
gained greater focus within the community [15,16]. These
efforts resulted in showing that an index for a text can
occupy space proportional to the compressed size of the
text itself. However, if it is not possible to significantly
compress the input data, as is the case for DNA sequences,
these methods do not provide a considerable advantage.
Recently, Chien et al.[17] proposed sparsíficatíon of

the suffix array as an alternative method to compress it.
The key idea is that instead of sorting all the suffixes
beginning from each position 1 to n of the text, a sorted
list is created of the suffixes that begin at positions p,
such that p mod D = 0, for all 1 ≤ p ≤ n, where D
denotes the sparsification factor. As a result, we have a
list of n/D numbers in the sparse suffix array rather
than n numbers in the original suffix array. We interpret
the text with a new alphabet by combining each D con-
tiguous original characters into a meta-character. The
length of the text is now n/D meta-characters. Thus, the
space consumption decreases to O((n/D) log(n/D)).
The main two drawbacks of the sparse suffix arrays are

i) the necessity to run the search procedure D times, and
ii) a complicated search procedure when the queried pat-
tern length is less than D. The necessity to run the search
procedure D times comes from the fact that the queried
pattern may begin at some position s, where the value s
mod D can be any one of D different values. Thus, D

appropriate alignment positions should be checked one by
one (see the next section for a more detailed explanation).
When the pattern length is shorter than the sparsifica-

tion factor D, then the meta-characters, which are D
ordinary characters in length and may include the quer-
ied pattern, must be investigated first. Specified meta-
characters should then be located on the text to finalize
the actual search (see [17] for detailed analysis of the
case), which is not so elegant.
On the other hand, we have two advantages to over-

come these drawbacks, in particular for the short read
alignment problem. First, today’s multicore processor
architecture enables parallelism more than ever. We can
benefit from multicore architectures to decrease the
overhead in repeating the search procedure D times.
Second, next-generation sequencing machines have a
lower bound on the length of the reads. Short reads are
in range from 25 to 100 base pairs (bp), and it is fore-
seen that lengths will be longer in a couple of years.
Thus, if we choose the sparsification factor D less than
the minimum possible length of the input reads, we do
not need to deal with short pattern case anymore.
Recently, Khan et al.[18] proposed using sparse suffix

arrays for finding maximal matches in large sequence data
along with an application on short read alignment. Their
study considers only exact matching of the reads. Although
it is argued in some studies [19] that exact matching would
be enough for short read alignment, an approximate align-
ment of a queried pattern would help on reducing the total
number of required reads (coverage) for whole sequencing.
That is because the percentage of aligned reads will be
lower if we neglect approximate matches.
Based on the fact that errors are more probable towards

the end of the reads, we extend exact matching with
sparse suffix arrays to include any number of mismatches
by defining the rightmost mismatch criteria. We prioritize
the errors on the right-hand side of the reads, and detect
the k-mismatch alignments sorted according to their right-
most occurrences in an elegant way. When equipped with
mismatch detection capability, sparse suffix arrays serve as
a good alternative to BWT-type genome indexing, as
shown by experimentally comparing the proposed sparse
suffix arrays against BWT-type genome indexing.

Methods
Aligning with exact matches
Let G = g0g1g2 … gn–1$ be an n-base-long DNA
sequence, where each base gi is from alphabet Σ = {A,
C, G, T} and the end of the sequence is marked with a
special character $ that is lexicographically smaller than
all the characters in Σ. If we denote the n suffixes of
such a given sequence by s0 to sn–1, then the ith suffix si
will correspond to si = gigi+1…gn–1$. The lexicographical
sorting of those suffixes creates the suffix array A =

Oğuzhan Külekci et al. BMC Genomics 2011, 12(Suppl 2):S7
http://www.biomedcentral.com/1471-2164/12/S2/S7

Page 2 of 7

a0a1…an–1 such that ai is the beginning position of
the ith smallest suffix of G, for 0 ≤ i <n.
The sparse suffix array (SSA) of G includes only

those ai numbers in suffix array A that are multiples
of a specific number D; that is ai mod D = 0. In other
words, rather than sorting all the suffixes of G, we sort
only those suffixes si, where i mod D = 0 and keep
their starting positions divided by D in SSA. We refer
to D as the sparsification factor. Figure 1 depicts the
suffix array and the sparse suffix array of an example
sequence AGGTCGATTCGGGACC. The first element
of the suffix array is a0 = 13 as s13 = ACG$ is the
smallest among all suffixes of G. When we want to
sparsify that suffix array with a factor of D = 4, we
take only those points from A where ai mod 4 = 0.
We preserve their order of appearance in the original
suffix array. Thus, the sparse suffix array of the given
G is SSA = {0,1,3,2}.
The space required by a sparse suffix array of a

sequence of length n characters is O((n/D) log(n/D)).
When D = 1, this complexity converges to that of the
ordinary suffix array. The decrease in the size of the
index comes with a cost in the search complexity.
The time complexity to locate all possible occurrences

of queried pattern P on a sequence of length n using
the ordinary suffix array is O(|P| · log n). When we use
the sparse suffix array, however, the same procedure
only lets us detect those occurrences starting at posi-
tions that are multiples of D because SSA includes the
sorted list of the suffixes beginning only on those loca-
tions. We also need to consider the cases where P starts
at positions that are not divisible by D.
Given a pattern P = p0p1…pm–1, where D ≤ m ≤ n, let

head p p pi
P

i= −0 1 1 denote the initial i characters and

tail p p pi
P

i i m= + −1 1 show the rest. If we search taili
P

on G via the SSA for each 0 ≤ i <D, and then verify

whether G has the corresponding headi
P

preceding the

positions where taili
P
appears, we can locate all possible

occurrences. Algorithm 1 describes this procedure.
The time complexity of exact match via SSA is O(m

log(n/D) + (m – 1) log(n/D) + o1 · 1 + (m – 2) log(n/D)
+ o2 · 2 + … + (m – D – 1) log(n/D) + oD–1 · (D – 1)),
where oi is the number of occurrences of
tail p p pi

P
i i m= + −1 1 on G. The terms beginning with oi

in the summation correspond to the verification cost.
Thus, total time may be approximated as O(Dm log(n/
D)+ Verification). Note that increasing sparsification fac-
tor D decreases the space complexity while increasing
the time complexity. This gives us the flexibility to tune
D according to the available processors and memory.

Aligning with mismatches
Reads may contain some errors. Although today’s
sequencing machines produce quality values that repre-
sent the confidence of the individual bases in each read,
these values vary greatly and require a fine-tuning step
to be integrated into the alignment process. Using these
quality values also decreases the speed of the alignment
[9]. In general, the errors are more probable towards the
end of the reads; hence, we define the rightmost criteria
to prioritize these positions and find the k-mismatch
approximate matchings of a given pattern.

Algorithm 1 : ExactMatch() P G SSA D, , ,

Reqquire :

for all do

D P

i D

head p p p

tail

i
P

i

i
P

≤
≤ <

←

←
−

1:

2: ;

3:

0

0 1 1

pp p p

R SSA tail

R

i i m

i
P

+ −

←
1 1 ;

4: SuffixRangeSearch();

{ holds th

,

ee positions on matching with , as G tail R k D k Di
P = ⋅ ⋅{ , , ,1 2 kk D

j j j

head g g gi
P

k D i k D kj j

⋅
= ≤

= ⋅ − ⋅ −

}}

5: ++

6:

for do

if

1

2

; ;

jj D

jk D i

⋅ −

⋅ −
1

7: Pattern detected at position

then

Algorithm 2 : k P G SSA D k-Mismatch() , , , ,

1:

Require :

for

D P≤
 all do

for

2: LongestPrefix();

3: d

0 ≤ <

←
=

i D

L tail SSA G

j L
i
P , ,

oown to 0

4: ; ; ++

5: ;

6:

do

for doa a a

newP P

newP j qa

= <
←

←

0 3

[] ; {{ , , []q q q P j0 1 2 and are the three bases other than }

7: add to the -list

8: ++

9:

newP j i

mm mm k mm

, ,

; ;

for do

for al

= ≤2

ll do item in -list

10: -list[];

11

i

pat mmposlist offset i

, , ←

:: LongestPrefix();

12: down to

Z tail SSA G

j Z
offset
pat←

=

, ,

for mmmposlist mm

a a a

newP pat

n

[]

; ;

−
= <

←

1

0 3

13: ++

14: ;

15:

do

for do

eewP j q

newP mmposlist j offset
a[]

,(,),

← ;

16: add to the -list

1

77: -list -list;

18: Sort -list according to rightmost cr

←
iiteria;

19: item in -list for all doi alpha

pat mmposlis20 : , tt offset i

R SSA tailoffset

, [];

,

←

←

 -list

21: SuffixRangeSearch(ppat R k D k D k D

j j j

he

); { }}

22: ++

23:

= ⋅ ⋅ ⋅

= ≤

{ , , ,

; ;

1 2

1

for do

if aad g g g

P

offset
pat

k D offset k D k Dj j j
= ⋅ − ⋅ − ⋅ − 2 1

24: de

then

ttected position with -mismatches; k D offset kj ⋅ −

Let a given pattern P = p0p1…pm–1 be aligned with the
text segment gigi+1…gi+m–1, for some i, 0 ≤ i ≤ (n – m),
and B = b0b1…bm–1 be a binary number of m bits such
that, for all j, 0 ≤ j <m, if pj = gi+j, then bj = 1, else bj =

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
G = A G G T C G A T T C G G G A C C $
A = 13 0 6 15 14 4 9 12 5 11 10 1 2 3 8 7

SSA = 0 1 3 2

Figure 1 An example DNA sequence G, suffix array of G, and sparse
suffix array of G by assuming sparsification factor D = 4.

Oğuzhan Külekci et al. BMC Genomics 2011, 12(Suppl 2):S7
http://www.biomedcentral.com/1471-2164/12/S2/S7

Page 3 of 7

0. The total number of 0-bits in B is the total number of
mismatches between P and G[i,…,i + m – 1]. Among the
possible -mismatch alignments of P onto text G, the
ones having the highest B numbers are defined as the
rightmost k-mismatch alignments of P. Figure 2 depicts
this definition.
When we search a pattern by using the suffix array,

the process returns a range R = [sp, ep] that means P
starts at text positions gA[sp], gA[sp+1], …, gA[ep]. If there
are no occurrences of P on G, then ep is one less than
sp (see suffix range search procedure in [16] for more
detail). In that case, either the G[A[sp],…, A[sp] + m –
1] or G[A[ep],…, A[ep] + m – 1] have the longest match
with P. That is because the suffix array is a sorted list of
the suffixes, and since we are running a binary search
on the suffix array, the final position is the closest point
to the pattern, if not itself exactly. We compare P[0,…,
m – 1] against both and find for each the number of
matching nucleotides from the left side until we
encounter the first mismatch. We denote the maximum
of these two numbers as L, meaning the length of the
longest matching prefix of P. That indicates P[0,…, j]
does not occur in the text for all j ≥ L, while the pre-
fixes P[0,…, i] exist for all i <L.
For example, let’s assume sample pattern AGGTC-

GATTCGGGACC does not occur in the reference gen-
ome, and we detect that the length of the longest
matching prefix is L = 10, which indicates the prefix
AGGTCGATTC exists in the text, but the longer pre-
fixes AGGTCGATTCG, AGGTCGATTCGG, …,
AGGTCGATTCGGGACC do not. If we attempt to
alter the sample pattern’s last base C to any of the A, G,
or T, none of them will report a match since we know
the nonexistence of its prefix AGGTCGATTCGGGAC.
Similarly, changing the previous base C also does not
make sense as AGGTCGATTCGGGA is absent in the
reference. The first base that has a chance to match
when altered is p10 = G preceded by the prefix AGGTC-
GATTC that occurs in the text. Thus, when looking for
the 1-mismatch alignment of the sample read, we don’t
need to spend time to check possible alternatives of the
last five bases.

Remembering the fact that k-mismatch alignments are
1-mismatch apart from the (k – 1)-mismatch align-
ments, we can generate the 2-mismatch patterns from
the 1-mismatch cases, and keep going up to k-mismatch
alignments. This procedure ensures the rightmost mis-
match criteria.
Algorithm 2 depicts the k-mismatch idea in pseudo-

code. We keep possible alterations of original P in a list
(a-list and b-list in lines 7 and 16) consisting of three
attributes. The first one is the altered pattern. The sec-
ond attribute is the list of the altered positions that are
used in sorting the alterations according to rightmost
mismatch criteria. Note that this inner list contains k
numbers for k-mismatch alterations because a k-mis-
match occurrence requires changing k positions. The
third one is the offset indicating the length of the head
of P as it is required in the sparse suffix search process.
After initializing the a-list for the 1-mismatch case
within the first for loop, we generate the possible k-mis-
match alterations of P sorted according to the rightmost
mismatch criteria by the second for loop, and then
search the exact occurrences of those altered patterns
on G by using the proposed SSA index.

Aligning in parallel
Indexing via SSAs gives users the opportunity to
decrease the size of the index according to the preferred
sparsification factor D. However, the search process
should consider the possible D offset alignments of the
queried pattern as described earlier in the proposed
method, which causes an increase in the time complex-
ity with a factor of D. The procedure to check each off-
set-i, for 0 ≤ i <D, is independent from each other and,
hence, can be executed concurrently in a multiprocessor
environment. Assuming a system with p processors, if
the sparsification factor is chosen to be D ≤ p and each
offset-i search is run separately in the dedicated proces-
sor, then the increase in the time complexity can be
reduced significantly in practice.
It is noteworthy that data level parallelism is always

possible by distributing the number of entities among
available processors. Such a multi-thread execution is
nearly supported by all aligners. On the other side, algo-
rithmic level parallelism is not that simple to achieve.
By algorithmic parallelism we mean the case that even a
single query is to be executed in parallel. The search
mechanism of SSAs serves as a good basis for algorith-
mic level parallelism due to its structure partitioning the
search process into D number of offset-i investigations.
Thus, it is possible to parallelize even a single search
query by dedicating an individual processor to each off-
set-i search. However, when the number of patterns is
large, as is the case in a DNA alignment problem, it
might be more advantageous to prefer data-level

x x x
i) 1 1 1 0 1 0 0 1

x x x
ii) 1 1 1 0 0 1 1 0

x x x
iii) 1 1 1 1 0 0 1 0

Figure 2 Positions marked with x indicate mismatch. When sorted
according to the rightmost mismatch criteria, iii) has the first
priority, followed by i) and ii) respectively.

Oğuzhan Külekci et al. BMC Genomics 2011, 12(Suppl 2):S7
http://www.biomedcentral.com/1471-2164/12/S2/S7

Page 4 of 7

parallelism and simply partition the patterns among pro-
cessors. In a scenario where a server is answering pat-
tern matching queries arriving sequentially, algorithmic
level parallelism will be more appropriate.

Implementation
We have implemented Ψ-RA in C++ language based on
the proposed method and used GNU compiler g++ with
all optimization flags turned on. The index of a refer-
ence genome in Ψ-RA has two parts. One is the
sequence itself coded in 2-bit format; the other is the
sparse suffix array of the sequence with a given spar-sifi-
cation factor. We use Yuta Mori’s implementation
(http://sites.google.com/site/yuta256/sais) of the SAIS
[20] algorithm for constructing the sparse suffix array.
Initially we run SAIS on the 2-bit coded sequence that
actually produces sparse suffix array with D = 4 as each
byte is composed of 4 bases. According to the input D
parameter, we extract the required SSA from the one
with D = 4. The input D parameter should be a multiple
of 4 in the current implementation.
As an example, the size of the whole human genome,

which has approximately three billion bases, is about
700MB in 2-bit format. If D = 8, SSA requires storing
one-eighth of the three billion positions, which is
roughly 325K numbers. Since we store each number as
a 32-bit integer, SSA for D = 8 needs approximately
1.5GB of memory. Thus, the total size of the index
becomes 2.2GB including the original sequence.
The backbone of Ψ-RA is the binary search over the

SSA. We use a trick to speed up the search process on
the suffix array. We partition the suffix array according
to an initial K = 8 bases. That is, we store the range of
each 8-gram on the SSA as a separate table that has 48

= 64K rows, where each row includes the starting and
ending positions of the corresponding item on the
SSA. When we search the pattern ACGTTG-
CAGGTCA on the SSA, as an example, we first fetch
the range of the first eight bases ACGTTGCA from
the table and then run the ordinary binary search on
that interval instead of the whole array. This trick
decreases the time complexity O(log n) of binary
search to O(log(n/4K)) along with the additional cost
of storing the table of size O(4K).
Ψ-RA supports k-mismatch search for any k value, but

having larger k values requires longer times, as in other
aligners. The difference is Ψ-RA returns the queried
number of alignments sorted in rightmost mismatch cri-
teria and guarantees to find them, as opposed to some
aligners sacrificing accuracy for speed. The implementa-
tion of the k-mismatch search is an optimized version of
the algorithm depicted in Algorithm 2. Ψ-RA software
can be downloaded from http://www.busillis.com/

o_kulekci/PSIRA.zip for academic or noncommercial
purposes.

Results
The reads used in all experiments were collected from
the SRR003078 experiment that is available from the
sequence read archive at http://www.ncbi.nlm.nih.gov/
sra. We mapped randomly selected 100K reads of var-
ious lengths from SRR003078 onto the complete human
genome GRCh37 that is available at the site of Genome
Reference Consortium (http://www.ncbi.nlm.nih.gov/
projects/ genome/assembly/grc/human/index.shtml). All
experiments were executed in a multiprocessor system
of eight Intel Xeon 2.40 Ghz processors having a shared
32GB memory. The operating system was Gentoo run-
ning the Linux kernel 2.6.24.
We created the sparse suffix array-based indexes of

the reference genome with sparsification factors of 4, 8,
12, and 16 according to the proposed methodology. The
index sizes of Ψ-RA(4), Ψ-RA(8), Ψ-RA(I2), and Ψ-RA
(I6), where Ψ-RA(D) refers to Ψ-RA with a sparsification
factor of D, are 3.4GB, 2.0GB, 1.6GB, and 1.3GB respec-
tively. Note that these values all include the 700MB
complete human genome in 2-bit format.
SSAs give us the opportunity to tune the size of the

index according to available memory by defining the
sparsification factor D. A larger D value results in a
smaller index size, but the computation cost increases
as we need to consider offsets from 0 to D – 1. Figure 3
exhibits this trade off. The same queries were executed
both with a single thread and with eight threads. It is
observed that the gain in space is directly reflected in
increased computation time, as expected. The increase
in time can be compensated for with parallel execution
of the software. Since today’s processors in general have
multiple cores, we can work with smaller-sized indexes
and receive the same performance as if using a larger
one. Sparse suffix arrays with larger sparsification factors
match the performance of the smaller ones by benefiting
from multicore architecture. For example on all cases,
eight-core running of Ψ-RA(I6) is faster than single pro-
cessor running of Ψ-RA(4) index.
Two widely used techniques in genome indexing are

Burrows-Wheeler transform and seed-based hash tables.
We compared Ψ-RA with Bowtie [5] and SOAP2 [21],
as the two successful representatives of BWT genre, and
with PerM [6] and mrsFast [8], which are based on
spaced seeds and ordinary q-grams respectively. The
index sizes of those aligners are 2.3GB (Bowtie), 6.1GB
(SOAP2), 12.4GB (PerM), and 19.5GB (mrsFast). The
exact matching performances of the tested aligners on
mapping 100K reads against complete human genome
are shown in Figure 4. The speed of the mrsFast was

Oğuzhan Külekci et al. BMC Genomics 2011, 12(Suppl 2):S7
http://www.biomedcentral.com/1471-2164/12/S2/S7

Page 5 of 7

http://sites.google.com/site/yuta256/sais
http://www.busillis.com/o_kulekci/PSIRA.zip
http://www.busillis.com/o_kulekci/PSIRA.zip
http://www.ncbi.nlm.nih.gov/sra
http://www.ncbi.nlm.nih.gov/sra
http://www.ncbi.nlm.nih.gov/projects/
http://www.ncbi.nlm.nih.gov/projects/

not competitive with the other aligners and hence it is
not plotted.
Short read aligners have different strategies and hence

different parameters to perform matching. Although it is
very difficult to make a fair benchmark, we compare the
speed of Ψ-RA against Bowtie [5], which is one of the
fastest aligners, to provide a comparison on the exact
and also approximate matching performance. Figure 5
shows the results of the comparison. On exact matching
and 3-mismatch, Ψ-RA(4) represents a better perfor-
mance, where Bowtie is faster on 1- and 2-mismatch
cases. We should note that although Bowtie does not

guarantee the results for the 2- and 3-mismatch cases,
Ψ-RA finds all occurrences.

Conclusion
Indexing DNA sequences requires much memory. It is
not possible to benefit much from the compressed
indexes because of the random structure of the DNA
sequences. As an alternative method of generating small
size indexes of biological data, we focused on sparse suf-
fix arrays and developed an aligner named Ψ-RA.
Ψ-RA is very fast on exact matching because of its

cache-friendly structure. In addition to the speed caught
in exact matching, we also integrated an elegant k-mis-
match alignment capability by defining the rightmost
mismatch criteria. The k-mismatch alignments of a
queried read are reported according to the position of
the mismatches, where being on the right is prioritized
because the sequencing machines tend to generate erro-
neous bases particularly toward the end of the reads.
The size of a sparse suffix array changes with the cho-

sen sparsification factor D, such that larger values result
in smaller sized indexes. On the other hand, large spar-
sification factors worsen the time complexity of the pro-
cessing. We showed experimentally that by applying
parallelism in contemporary processor architectures,
small-size indexes having large D match the perfor-
mance of the large size indexes that have smaller D
values. Ψ-RA gives users the flexibility to tune the size
of the index according to the available resources. The

30 40 50 60 70 80 90 100 200 300 400
2

4

6

8

10

12

14

Read Length

E
la

ps
ed

 ti
m

e
in

 s
ec

on
ds

Ψ−RA(16)
Ψ−RA(12)
Ψ−RA(8)
Ψ−RA(4)

30 40 50 60 70 80 90 100 200 300 400
0

20

40

60

80

100

120

140

160

Read Length

E
la

ps
ed

 ti
m

e
in

 s
ec

on
ds

30 40 50 60 70 80 90 100 200 300 400
0

100

200

300

400

500

600

700

800

Read Length

E
la

ps
ed

 ti
m

e
in

 s
ec

on
ds

a) Exact match (Single core) b) 1-mismatch (Single core) c) 3-mismatch (Single core)

30 40 50 60 70 80 90 100 200 300 400
0.5

1

1.5

2

2.5

3

Read Length

E
la

ps
ed

 ti
m

e
in

 s
ec

on
ds

Ψ−RA(16)
Ψ−RA(12)
Ψ−RA(8)
Ψ−RA(4)

30 40 50 60 70 80 90 100 200 300 400
0

5

10

15

20

25

30

Read Length

E
la

ps
ed

 ti
m

e
in

 s
ec

on
ds

30 40 50 60 70 80 90 100 200 300 400
0

20

40

60

80

100

120

Read Length

E
la

ps
ed

 ti
m

e
in

 s
ec

on
ds

d) Exact match (8-core) e) 1-mismatch (8-core) f) 3-mismatch (8-core)

Figure 3 The effect of the sparsification factor D on single thread versus eight-thread executions.

 1

 10

 100

 20 30 40 50 60 70 80 90 100 110

E
la

ps
ed

 ti
m

e
in

 s
ec

on
ds

Read Length

PERM
SOAP2

BOWTIE
Ψ-RA(16)
Ψ-RA(12)

Ψ-RA(8)
Ψ-RA(4)

Figure 4 Exact matching comparison with some aligners.

Oğuzhan Külekci et al. BMC Genomics 2011, 12(Suppl 2):S7
http://www.biomedcentral.com/1471-2164/12/S2/S7

Page 6 of 7

index will fit in the main memory at the cost of
increased computation time. That increase can be
avoided up to some level in practice by benefiting from
multicore processors.

Authors contributions
Drs. M. Oğuzhan Külekci and Bojian Xu drafted the
manuscript. The implementation and experiments were
done by Dr. M. Oğuzhan Külekci. All authors contribu-
ted to the technical content of the study, including the
algorithms for exact matching. Drs. Jeffrey Scott Vitter,
M. Oğuzhan Külekci, and Bojian Xu worked on approxi-
mate matching. All authors read and approved the final
manuscript.

Acknowledgments
Thanks to the authors of Bowtie, SOAP2, PerM, and mrsFast for providing
the source code or executables of their softwares. Part of this work was
done while Drs. Külekci, Vitter, and Xu were at Texas A&M University.
Support for Dr. M. Oğuzhan Külekci was provided in part by U.S. National
Science Foundation research grant CCF-0621457 and the Turkey TUBITAK-
BIDEB 2219 programme. Support for Dr. Wing-Kai Hon was provided in part
by Taiwan NSC Grant 99-2221-E-007-123. Support for Drs. Rahul Shah, Jeffrey
Vitter, and Bojian Xu was provided in part by U.S. National Science
Foundation research grants CCF-0621457 and CCF-1017623. The preliminary
version of this article has been published in the Proceedings of the IEEE
International Conference on Bioinformatics & Biomedicine, Hong Kong, China,
2010.
This article has been published as part of BMC Genomics Volume 12
Supplement 2, 2011: Selected articles from the IEEE International Conference
on Bioinformatics and Biomedicine 2010. The full contents of the
supplement are available online at http://www.biomedcentral.com/1471-
2164/12?issue=S2.

Author details
1National Research Institute of Electronics & Cryptology, 41470, Gebze,
Kocaeli, Turkey. 2Department of Computer Science, National Tsing Hua
University, Hsinchu, Taiwan 30013, R.O.C. 3Department of Computer Science,
Louisiana State University, Baton Rouge, LA 70810, U.S.A. 4Department of
Electrical Engineering and Computer Science, The University of Kansas,
Lawrence, KS 66045, U.S.A.

Competing interests
The authors declare no competing interests.

Published: 27 July 2011

References
1. Shendure J, Ji H: Next-generation DNA sequencing. Nature Biotechnology

2008, 26(10):1135-1145.
2. Metzker M: Sequencing technologies — the next generation. Nature

Reviews Genetics 2010, 11:31-46.
3. Flicek P, Birney E: Sense from sequence reads: methods for alignment

and assembly. Nature Methods 2009, 6(11):S6-S12.
4. Miller JR, Koren S, Sutton G: Assembly algorithms for next-generation

sequencing data. Genomics 2010, 95:315-327.
5. Langmead B, Trapnell C, Pop M, Salzberg S: Ultra-fast and memory-

efficient alignment of short DNA sequences to the human genome.
Genome Biology 2009, 10(3).

6. Chen Y, Souaiaia T, Chen T: PerM: efficient mapping of short sequencing
reads with periodic full sensitive spaced seeds. Bioinformatics 2009,
25(19):2514-2521.

7. Li R, Li Y, Kristiansen K, Wang J: SOAP: short oligonucleotide alignment
program. Bioinformatics 2008, 24(5):713-714.

8. Alkan C, Kidd JM, Marques-Bonet T, Aksay G, An-tonacci F, Hormozdiari F,
Kitzman JO, Baker C, Ma-lig M, Mutlu O, Sahinalp SC, Gibbs RA, Eichler EE:
Personalized copy number and segmental duplication maps using next-
generation sequencing. Nature Genetics 2009, 41(10):1061-1067.

9. Li H, Homer N: A survey of sequence alignment algorithms for next-
generation sequencing. Briefings in Bioinformatics 2010.

10. Burrows M, Wheeler D: A block sorting lossless data compression
algorithm. Tech. Rep. 124 Digital Equipment Corporation; 1994.

11. Li H, Durbin R: Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 2009, 25(14):1754-1760.

12. Ferragina P, Manzini G: Opportunistic Data Structures with Applications.
Proceedings of 51st Annual IEEE Symposium on Foundations of Computer
Science (FOCS) 2000, 390-398.

13. Manber U, Myers G: Suffix Arrays: A New Method for On-Line String
Searches. Proceedings of the First Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA) 1990, 319-327.

14. Grossi R, Vitter JS: Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. SIAM Journal on
Computing 2005, 35(2):378-407, Also in STOC’2000.

15. Hon WK, Shah R, Vitter JS: Compression, Indexing, and Retrieval for
Massive String Data. Proceedings of the 21stAnnual Symposium on
Combinatorial Pattern Matching (CPM) 2010, 260-274.

16. Navarro G, Mäkinen V: Compressed Full-Text Indexes. ACM Computing
Surveys 2007, 39.

17. Chien YF, Hon WK, Shah R, Vitter JS: Geometric Burrows-Wheeler
Transform: Linking Range Searching and Text Indexing. Proceedings of the
Data Compression Conference (DCC) 2008, 252-261.

18. Khan Z, Bloom J, Kruglyak L, Singh M: A practical algorithm for finding
maximal exact matches in large sequence datasets using sparse suffix
arrays. Bioinformatics 2009, 25(13).

19. Rivals E, Salmela L, Kiiskinen P, Kalsi P, Tarhio J: MPscan: Fast Localisation
of Multiple Reads in Genomes. Proceedings of the 9th Workshop on
Algorithms in Bioinformatics (WABI) 2009, 246-260.

20. Nong G, Zhang S, Chan WH: Linear Suffix Array Construction by Almost
Pure Induced-Sorting. Proceedings of Data Compression Conference (DCC)
2009, 193-202.

21. Li R, Yu C, Li Y, Lam TW, Yiu S, Kristiansen K, Wang J: SOAP2: an improved
ultrafast tool for short read alignment. Bioinformatics 2009,
25(15):1966-1967.

doi:10.1186/1471-2164-12-S2-S7
Cite this article as: Oğuzhan Külekci et al.: Ψ-RA: a parallel sparse index
for genomic read alignment. BMC Genomics 2011 12(Suppl 2):S7.

 1

 10

 100

 1000

30 40 50 60 70 80 90 100 200 300 400

E
la

ps
ed

 ti
m

e
in

 s
ec

on
ds

Read Length

0-mismatch

1-mismatch

2-mismatch

3-mismatch
Ψ-RA(4)
BOWTIE
Ψ-RA(4)
BOWTIE
Ψ-RA(4)
BOWTIE
Ψ-RA(4)
BOWTIE

Figure 5 Performance comparison of Ψ-RA versus Bowtie on exact
matching, 1-mismatch, 2-mismatch, and 3-mismatch alignments.

Oğuzhan Külekci et al. BMC Genomics 2011, 12(Suppl 2):S7
http://www.biomedcentral.com/1471-2164/12/S2/S7

Page 7 of 7

http://www.biomedcentral.com/1471-2164/12?issue=S2
http://www.biomedcentral.com/1471-2164/12?issue=S2
http://www.ncbi.nlm.nih.gov/pubmed/18846087?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19997069?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19844229?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19844229?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20211242?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20211242?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19675096?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19675096?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18227114?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18227114?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19718026?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19718026?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19451168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19451168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19497933?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19497933?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Aligning with exact matches
	Aligning with mismatches
	Aligning in parallel
	Implementation

	Results
	Conclusion
	Authors contributions
	Acknowledgments
	Author details
	Competing interests
	References

