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Abstract

Background: With the advent of next-generation sequencers, the growing demands to map short DNA sequences
to a genome have promoted the development of fast algorithms and tools. The tools commonly used today are
based on either a hash table or the suffix array/Burrow–Wheeler transform. These algorithms are the best suited to
finding the genome position of exactly matching short reads. However, they have limited capacity to handle the
mismatches. To find n-mismatches, they requires O(2n) times the computation time of exact matches. Therefore,
acceleration techniques are required.

Results: We propose a hash-based method for genome mapping that reduces the number of hash references for
finding mismatches without increasing the size of the hash table. The method regards DNA subsequences as
words on Galois extension field GF(22) and each word is encoded to a code word of a perfect Hamming code. The
perfect Hamming code defines equivalence classes of DNA subsequences. Each equivalence class includes
subsequence whose corresponding words on GF(22) are encoded to a corresponding code word. The code word is
used as a hash key to store these subsequences in a hash table. Specifically, it reduces by about 70% the number
of hash keys necessary for searching the genome positions of all 2-mismatches of 21-base-long DNA subsequence.

Conclusions: The paper shows perfect hamming code can reduce the number of hash references for hash-based
genome mapping. As the computation time to calculate code words is far shorter than a hash reference, our
method is effective to reduce the computation time to map short DNA sequences to genome. The amount of
data that DNA sequencers generate continues to increase and more accurate genome mappings are required.
Thus our method will be a key technology to develop faster genome mapping software.

Background
The history of bioinformatics has been dominated by
the search for faster sequence alignment methods.
Beginning with dynamic programming for protein and
genome sequence alignment, many algorithms have
been proposed. Hash tables are used in the series of
FASTA programs [1], which calculate approximate
alignments in shorter times than dynamic programming
can. BLAST tools, using automatons in their algorithms,

are the most famous and most used alignment tools [2].
These tools are fast enough to align expression sequence
tags generated by capillary electrophoresis-based DNA
sequencers to target genomes.
The emergence of next-generation sequencing tech-

nology has changed the demands for alignment speed. A
so-called next-generation sequencer can read far more
base pairs than a conventional sequencer: more than
two billion short DNA sequences in a single run. For
such a large number of the sequences, BLAST tools are
too slow to map the sequences to target genomes.
Therefore, researchers have called for a faster approach
that is focused on mapping short fragments.
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To meet this demand, more than 25 software pro-
grams designed for mapping short DNA sequences onto
genomes have been developed. These are classified into
two categories according to their algorithms, which are
either hash-based or suffix array/Burrow–Wheeler tran-
sition (BWT)-based [3], MAQ [4] and SOAPv1 [5] are
two hash-based algorithms. The former indexes short
DNA sequences and the latter indexes genome
sequences. mrsFAST is the one of the newest algorithms
that indexes both the short DNA sequences and the
genome sequences [6]. The first genome-mapping algo-
rithm based on suffix arrays was proposed in 2002 [7]
and implemented as vmatch. Currently, a BWT-based
algorithm is the fastest and is used in four tools: bowtie
[8], BWA [9], SOAPv2 [10], and segemehl [11].
These algorithms are effective for mapping short

sequences to genome positions of perfect matches and
one-base mismatches, but are inefficient for mapping to
positions for two or more-base mismatches. In general,
they require O(2n) computation time to calculate n-base
mismatches. But genome mapping that allows only one-
base mismatches is inadequate. In practice, 20 to 40% of
short sequences cannot be mapped to the genome.
Therefore, “wet” researchers require faster algorithms
for mapping short sequences to genome positions with
two or more-base mismatches. In this paper, we propose
a method that can accelerate hash-based genome map-
ping by reducing the number of hash references without
increasing the size of the hash table.
In the proposed method, DNA subsequences are

divided into equivalence classes by using a perfect Ham-
ming code. Each equivalence class includes subse-
quences whose corresponding words on GF(22) are
encoded to the corresponding code word of the perfect
Hamming code. The code word is used as a hash key to
store these subsequences in a hash table. A perfect
Hamming code is a special case of a Hamming code,
known in the field of coding theory [12], that satisfies
the Hamming bound with equality. Perfect Hamming
codes have been applied to n-gram analysis of genome
sequence [13] and multiple alignment [14].
Hash-based genome-mapping algorithms use hash

tables. A hash table is an array indexed by hash values
generated from hash keys. Thus, a hash table is an
implementation of an associative array. There are two
methods for mapping short reads onto genomes using
hash tables. One is to store subsequences of the genome
and their positions in a hash table and the other is to
store subsequences of short reads. As there is no essen-
tial difference between their hash usages, we use the for-
mer method for the following explanation.
The hash-based methods prepare a hash table whose

keys and values represent subsequences of length l cut
from a target genome and the subsequence genome

positions, respectively. To map a short sequence to the
genome, a sequence is cut into lengths l, and these are
used as keys to refer to the hash table. The methods can
find the genome position of a perfect match if the hash
table returns at least one entry. In general, when the
lengths of short sequences are longer than the length of
the hash key, the methods expand the area of alignment
from the genome position. The differences between
methods are how and when they refer to the hash table.
There are three methods to find the n-mismatch gen-

ome positions of a subsequence of length l with the
hash table.
1. Refer to all n-mismatch subsequences.
Prepare a hash table whose key length is l, and use the

subsequence and its n-mismatch subsequences as keys

to refer to the table. It requires l n
i

n
C l3

1=∑ hash refer-

ences to find all the n-mismatch genome positions.
2. Store n-mismatch positions in the hash table.
For each position of the subsequence of the genome,

store the position l n
i

n
C l3

1=∑ times. The hash keys

are the subsequence and its n-mismatch subsequences.
3. Use pigeonhole principle; combine hash table and

another method.
Generate a hash table whose key length is ⌊l/n⌋. After

getting the perfect-match genome position of length ⌊l/
n⌋ by referring to the hash table, find n-mismatch
sequences by another method, such as dynamic pro-
gramming or BWT.
Figure 1 shows examples of the three methods.
These methods are effective when l is small and n

equals 1. But they are difficult to use when n is 2 or more
because the number of 2-mismatch sequences of length l
is l(l – 1)/2 * 9 and that of 3-mismatches is l(l – 1)(l –
2)/2 * 9. The first and second methods require too many
hash references and too big a hash table, respectively.
The third method is the best, but as n becomes larger,
the ability to narrow the genome position down becomes
weaker, and so the load of the post process to find n-mis-
match sequences increases. To overcome these difficul-
ties and improve the effectiveness of using hash tables for
genome mapping, technical breakthroughs are needed.
We propose a method to reduce the number of hash

references to find the genome positions of 2 or more mis-
matches without enlarging the size of the hash table. To
realize the method, 4-ary perfect Hamming code is used.

Results
Perfect Hamming codes as hash keys
Idea
We first describe the main idea of the proposed method.
We define a graph whose nodes are all the subsequences
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of length l and edges are between pairs of subsequences
of one nucleotide difference. The graph has 4l nodes
and each node has 3l edges. Assume we divide the 4l

nodes of the graph into 4l/(3l + 1) equivalence classes
such that each class has a center node and 3l adjacent
nodes. Then, we use the center node as the hash key to
store the genome positions of 3l + 1 subsequences in a
hash table. For example, Figure 2 shows a part of the
graph of length 5. The node “AAAAA” has 15 adjacent
nodes. These comprise an equivalence class with subse-
quence“AAAAA” at its center. To store “ACAAA”,
which belongs to the equivalence class, the center word
“AAAAA” is used as a hash key.
The features of this hash table are as follows: (1) The

number of entries in the hash table does not increase
because each subsequence is stored only once. (2) Using
this hash table, we can reduce the number of hash refer-
ences to find the genome positions of subsequences of 1
or more-mismatches.
We explain the concept how to reduce the number of

hash references to find 1-mismatches by using an exam-
ple. Let the length of subsequence be 5, the hash table
be as described above, and s be a subsequence for which
we want to find the entries of 1-mismatch. There are 15
1-mismatch subsequences to be referred to. When s is

the center subsequence of the equivalence class, such as
“AAAAA” in Figure 2, using s as the hash key, one can
find all the genome positions of 1-mismatch subse-
quences. When s is not the center subsequence of its
equivalence class, seven hash keys are needed. One hash
key is the center subsequence of its equivalence class.
This leads to 3 of the 15 1-mismatch subsequences. The

Figure 1 Hash tables for three methods. Three methods to find genome positions of 1-mismatch from the subsequence AAGT. Genome
position 1000 is ACGT, which is the 1-mismatch of the subsequence. The first method refers to the hash table 16 times. The second method
refers to the table just once, but the table is 16-fold larger. The third method refers to the table three times. After getting position 1002 from
the hash table, the method elongates the alignment toward the front of the sequence.

Figure 2 Relationship among 16 subsequences. Graphical
depiction of subsequence “AAAAA” and 15 adjacent subsequences.
Each node describes a subsequence and each edge indicates that
the terminal nodes are of one nucleotide difference. The 15
subsequences are divided into five groups according to the position
of the different nucleotide.
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rest of 12 subsequences are members of six different
equivalence classes, and so the center subsequence of
these classes are used as the other six keys. Figure 3
shows the equivalence class that s=“CAAAA” belongs to
and an equivalence class containing the two adjacent
subsequences “CAAAT” and “CAAGA”. Because the
proportion of center words (nodes) to total words is 1/
16, the expected number of hash references is 1/16 * 1
+ 15/16 * 7 = 6.625, which is 41.4% of the number of
exact and 1-mismatch subsequences.
The requirements for the establishment of the equiva-

lence classes need to be determined. At a minimum, the
length of the subsequence l must satisfy the condition:

equivalence classes
words

words in a equivalence class 
=

= 4
3

l

ll + 1
 is a natural number

(1)

This shows that 3l + 1 must be a power of 4. For
example, l = 5 and 21 satisfies the condition.
It is not clear that the above equation is a sufficient

condition for constructing equivalence classes. Even if it
is, two problems still remain; how to construct the
equivalence classes and how to calculate the center
words from a given subsequence. Perfect Hamming
codes provide solutions to both these problems.
Perfect Hamming code
A perfect Hamming code (PHC) is a Hamming code
that satisfies the equation of the Hamming bound,

| |
( )

C
q

q

n

n
k

n

i

t≤
( ) −

=∑ 1
1

(2)

where C is a set of q–ary block code of length n, d is
the minimum Hamming distance between code words,
and t d= ⎢⎣ ⎥⎦

−1
2 . In the PHC method, all the received

words are classified into a code word or a 1-bit error. In

other words, all the words are decoded to code words
whose Hamming distance is 0 or 1.
The condition for a q-ary (n, k)-Hamming code be a

perfect code is n = qk/(q – 1). In the case of a 4-ary
code, (5,3)-Hamming code and (21,18)-Hamming code
are perfect. Their parity-check matrixes are shown in
equations (3) and (4), respectively.

H( , )5 3
1 0 1 1 1

0 1 1 2
=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟a a

(3)

H( , )21 18

1 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 1 0 1 1 1 1 0 0 1 1

0 0 1

2 2 2 2= a a a a a a a a

11 1 0 1 0 1 0 12 2 2 2 2a a a a a a a a a a

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

(4)

where (0, 1, a, a2) are the elements in the Galois field
GF(22). To get a code word x from received word z, the
syndrome s = (z – x)HT is used to determine the error
vector e = (z – x) [12]. If the syndrome s is not zero,
the column of H that is equal to or constant factor of s
indicates the error position of z. The addition and mul-
tiplication tables are shown in Table 1.
The code word is calculated from a received word as

follows.
1. Calculate the syndrome s.
2. If the syndrome s is zero, then the recieved word is

the code word.
3. Find a column c of parity-check matrix that is a

constant factor t of the syndrome.
4. Subtract t from the column c of the received word

and the result is the code word.
For example, assume the word z = (aaaa20) is

received. The code word of z is calculated as follows.
The syndrome s of z is:

s zHT= =

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

=( ) ( ).aaaa
a

a

a2

2

20

1 0

0 1

1 1

1

1

1

As sT is equal to a2 × (1 a), which is a2 times the
fourth column of H, subtract (000a20) from z:

z − = − =( ) ( ) ( ) ( )000 0 0 000 0 002 2 2a aaaa a aaa

The code word of z is (aaa00).
The (n, k)-Hamming codes are composed of the infor-

mation digits and the check digits. The information digits
are k arbitrary digits of the code and the other n – k digits
are the check digits. The generator matrix G can repro-
duce check digits from information digits. Therefore, code
words can be uniquely represented by the k digits. In this
paper, we call these representations short codes.

Figure 3 1-mismatch sequences of a non-code word sequence,
“CAAAA”. Idea behind finding 1-mismatch sequences of the
sequence “CAAAA”. The two circles indicate the equivalence classes.
The sequence “CAAAA” belongs to an equivalence class whose
center is “AAAAA” that holds 3 of the 15 1-mismatch sequences.
Two of the other sequences, “CAAAT” and “CAAGA”, belong to a
equivalence class whose center is “CAAGT”.
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PHC and DNA subsequence
DNA sequences are composed of four nucleotides, ade-
nine, cytosine, guanine and thymine. Let these corre-
spond one-to-one to the elements of Galois field GF(22).
Then, DNA sequences correspond to words on the
Galois field. Without loss of generality, let (A,C,G,T)
correspond to (0,1, a, a2). The sequence “GGGTA” is
expressed as the word (aaaa20), and the word (10000)
represents the DNA sequence “CAAAA”.
This correspondence relationship and the PHC

enables us to build the equivalence classes described in
Section Idea. Each equivalence class is composed of a
DNA subsequence that corresponds to a PHC code
word and DNA subsequences whose corresponding
words are error-corrected to the code word. Figure 2
shows an equivalence class. The DNA subsequence
“AAAAA” corresponds to word (00000) on GF(22) and
is a code word of 4-ary (5-3)-PHC. From the properties
of PHC, All the words whose Hamming distances from
the code word (00000) are 1 are error-corrected to the
code word, and they are adjacent nodes of “AAAAA”.
Additional File 1 shows correspondence table of 5-mer
subsequences and code words of 4-ary (5,3)-PHC. In the
following, we regard DNA subsequences and their cor-
responding codes on the Galois field as equivalent (i.e.,
aliases).

Algorithms
We propose a hash table for genome mapping whose
hash keys are code words of PHC. Then we show its
use and efficiency in finding genome positions of n-mis-
matches and n-gaps. Following is a description of the
notation used in this section.

s G

c s

: ( )

( ) :

a DNA sequence or its equivalent code on 2

 code

2

  word of  of PHC

 information digits of 

s

i s c s

E s x

( ) : ( )

( ) { |= cc x c s( ) ( )}

:

=
 a set of subsequences that belong to the same  equivalence class as 

 Hamming distance betwee1 2

s

d s sH( , ) : nn  and 

 the set of subsequences w

1 2s s

N s x d x s ii i( ) { | ( , ) }

:

= =
hhose Hamming distance from  is s i

Preparing the hash table
There are two ways to construct hash tables for map-
ping short DNA sequences onto a genome. One uses
subsequences of the genome as hash keys to store their
genome positions in a hash table. And another uses sub-
sequences of short DNA sequence as the hash key.
Because both of these use DNA subsequences as hash
keys, our method can be applied to either. In the follow-
ing, we use the former in the explanation.
The hash table of our method uses the representative

subsequence of the equivalence classes as hash keys.
The representative is the code word on PHC. Without
loss of generality, the information digits of the code
words can be used as the hash key. Given an (n, k) –
PHC on G(22), let S be a set of subsequences of the gen-
ome with length l = n. The genome positions of a sub-
sequence s Î S are stored in the hash table along with a
hash key c(s) or its information digits i(c(s)). Figure 4
shows the use of hash tables.
Searching for n-mismatches
In this section we describe how to find genome posi-
tions of 1- and 2-mismatch subsequences of a given
subsequence s given the hash table prepared as
described in section Preparing the hash table. The effi-
ciency of the method is also described.
Let s be a DNA subsequence. The set of hash keys K

required to refer to all the entries of perfect match and
1– to n–mismatches is naturally expressed as follows.

K s c x x N sn i

i

n

( ) { ( ) | ( )}= ∈
=0


Table 1 Addition and multiplication on GF(22)

+ 0 1 a a2 × 0 1 a a2

0 0 1 a a2 0 0 0 0 0

1 1 0 a2 a 1 0 1 a a2

a a a2 0 1 a 0 a a2 1

a2 a2 a 1 0 a2 0 a2 1 a

Figure 4 Proposed hash table. Entries of proposed hash tables.
Subsequence “AAAAA” is used as the key for storing the genome
positions of “ACAAA” and “AAATA” because“AAAAA” is the center of
the equivalence class that “ACAA” and“AAAT” belong to. The left
hash table uses the center subsequence itself as a hash key. The
right one uses the short code of the center subsequence as a hash
key, where the short code is the information digits of the code.
Short codes are described in Section Perfect Hamming Code.
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The number of keys |Kn(s)| is less than the number of

subsequences to be referred to, N si
i

n
( )

=∑ 0
. Specifi-

cally, when the length of s is 5 and 21, the expected
number of keys for 1-mismatch K1(s) are 6.625 and
30.25, respectively. As the number of subsequences of
perfect and 1-mismatch are 1 + 5C1 × 3, the method
reduces the number of hash keys to 41.4% (= 6.625/16)
and 47.7% (= 30.25/64), respectively. We summarize
these values in the “ratio” column of Table 2. In the fol-
lowing, we analyze the properties of the hash keys K1(s)
and K2(s).
First, we analyze K1(s) for s of length 5. The subse-

quence s is classified into two cases according to
whether s is a code word on PHC.
Case 1: s is a code word. As s is the code word, all the

1-mismatch words of s are decoded to s by PHC. That
is to say, they belong to the same equivalence class E(s).
Therefore, s is used as a hash key and it can refer to all
the 1-mismatch subsequences.
Case 2: s is not a code word. Figure 5 shows the fif-

teen 1-mismatch subsequences. As s is not a code word,
the equivalence class E(s) has three 1-mismatch subse-
quence of s. One of these three is the code word c(s).
These three differ from s at the same digit. Assume s=
“AAAAG”. Then, the code word c(s) is “AAAAA”, and
The words “AAAAC” and “AAAAT” belong to same
equivalence class, E(“AAAAG”). These differ at the fifth
digit. The hash key c(s) can refer to four sequences at
once.
The rest of 12 words belong to six equivalence classes.

Assume that word t differs at j-th digit. t is not a code
word because dH(t, c(s)) = 2 and the distance between
code words must be more than 3. The code word c(t)
and t differ at the k-th digit, where k ≠ i, j. There is a
word u that differs from s at the k-th digit and c(t) at
the j-th digit. Because c(t) belongs to the equivalence

class E(t), use c(t) as a hash key and two words t and u
can be referred to. Finally, the number of keys K1(s) to
refer to all the 1-mismatch subsequences is seven.
Because the proportions of Case 1 and Case 2 are

respectively 1/16 and 15/16, the expected number of
keys in K1(s) is 6.625 (1 * 1/16 + 7 * 15/16).
Next, we show an algorithm to calculate the set of

hash keys K1(s).
Input : s
Output : K1(s) : a set of hash keys
1. K1(s) ¬ c (s)
2. s := c (s) and return (K1 (s))
3. for t in N1(s) add c(t) to K1(s)
4. return (K1(s))
The algorithm calculates code words 16 times when s

is not a code word, where the number of the hash keys
is seven. There appears to be redundancy. There are
various ways of reducing the computation time of the
code words, but it is better not to use complicated algo-
rithms. The calculation of code words is fast because

Table 2 Summary of our methods for lengths 5, 21, and 10 to refer to 1- and 2-mismatch and 1- and 2-gap sequences

length condition #keys #words ratio f(s, K) when s = c(s) f(s, K) when c ≠ c(s)

5 1-mismatch 6.625 16 41.4% 1 + 15x 1 + 15x + 42x2 + 54x3

2-mismatches 27.25 106 25.7% 1 + 15 + 90x2 + 210x3 + 180x4 1 + 15 + 90x2 + 170x3 + 156x4

1-gap 3.25 4 81.3% 4 + 12x 4 + 60x

2-gaps 10 16 62.5% 16 + 36x + 108x2 – *1

21 1-mismatch 30.53 64 47.7% 1 + 63x 1 + 63x + 210x2 + 1710x3

2-mismatches 611.31 1954 31.3% 1 + 63x + 1890x2 + 4410x3 + 34020x4 1 + 63x + 1890x2 + 5650x3 + 31500x4

1-gap 3.81 4 95.3% 4 + 60x 4 + 252x

2-gaps 13.87 16 86.7% 16 + 84x + 540x2 16 + 48x + 960x2

10: Serialize 1-mismatch 12.25 31 39.5% 1 + 30x + 225x2 1 + 30x + 170x2 + 538x3 + 1089x4 + 1620x5 *2

10: Parallelize 1-mismatch 13.25 31 44.1% 1 + 30x 1 + 30x + 84x2 + 108x3 *3

*1 :s always includes one code word. *2: neither the first half nor the second half are code words. The reference formula when one of the two halves is a code
word is 1 + 30x2 + 267x2 + 684x3 + 810x4. *3: neither the first half or second half are code words. The reference formula when one of the two halves is a code
word is 1 + 30x2 + 42x2 + 54x3.

Figure 5 Fifteen 1-mismatch subsequences of s when s is not a
code word. Nodes represent subsequences and edges indicate a
Hamming distance between two nodes of 1, namely, the relation of
1-mismatch. Edge labels indicate the position of the different digit
(nucleotide). s belongs to a equivalence class of c(s), which also
contains three other words. The other 12 words belong to six
equivalence classes.
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the operations + and × on G(22) can be calculated as
binary operations.
By using the set of hash keys K1(s), not only the

entries of s and all the 1-mismatch subsequences are
referred to, but also the other entries are. For example,
when s is not a code word, 12 subsequences of 2-mis-
match belongs to the same equivalence class E(s).
Therefore, the hash key c (s) refers to these subse-
quences. To analyze the properties of these subse-
quences, we define a reference formula:

f s K axb( , ) ,= ∑
where s is a subsequence, K is a set of hash keys, and

the coefficient a represents the number of subse-
quences that are referred to by K and whose distance
from s is b.
For Case 1, because s is the code word, all the 1-mis-

match subsequences belong to E(s). Therefore, the refer-
ence formula for Case 1 is:

f s K s x( , ( )) .1 1 15= +

For Case 2, there are 7 hash keys in K1(s). Because the
equivalence class of c (s) has 12 2-mismatch subse-
quences, the reference formula of c (s) is:

f s c s x x( ,{ ( )}) .= + +1 3 12 2

Each of the equivalence classes of the other hash keys
has two 1-mismatch sequences, five 2-mismatch
sequences and nine 3-mismatch sequences. The refer-
ence formula of K1(s) – {c(s)} is:

f s K s c s x x x x x x( , ( ) { ( )} ( ) ).1
1 2 3 2 32 5 9 6 12 30 54− = + + × = + +

Finally, the reference formula for the Case 2 is:

f s K s x x x( , ( ))1
2 31 15 42 54= + + +

The reference formula shows the proposed method
searches many 2- and 3-mismatch sequences. We dis-
cuss this feature in Section Discussion.
The above algorithm and analysis can be applied to

the word length 21. The numbers of hash keys are 1
and 31 for Case 1 and Case 2, respectively. Using the
rate of occurrences of Case 1 and Case 2, 1/64 and 63/
64, respectively, the expected number of hash keys is
30.53. The reference formulas are shows in Table 2.
To refer to all the entries of 2-mismatches, our

method requires 27.25 hash keys, which is 25.5% of the
number of subsequences with 2 or fewer mismatches.
when the length of subsequences is 5. Figure 6 shows
the subsequence s and its surroundings when s is a code

word. The number of subsequences of exact 2-mis-
matches |N2(s)| is 90, and the elements of |N2(s)| are
neighbors of N1(s). Each n Î N2(s) has two neighbors of
N1(s) and each n belongs to an equivalence class that
contains other two elements of N2(s). In other words, 30
equivalence classes are required to cover N2(s). In total,
the number of required keys K2(s) is 31. The reference
formula is:

f s K x x x x

x x x x

( , ) ( )

.

= + + × + +

= + + + +

1 15 30 3 7 6

1 15 90 210 180

2 3 4

2 3 4

In Case 2, s is not a code word and Figure 7 shows 2-
mismatch sequences of s. The equivalence classes 2-mis-
match subsequences belong to are classified into four
types.
Type 1: 2-mismatch subssequences belong to this type

are neighbors of c(s).
Type 2: for some t such that dH(t, s) = 1 and c(t) ≠ c

(s), 2-mismatch subsequences are neighbors of t belong-
ing to c(t).
Type 3: for some t such that dH(t, s) = 1 and c(t) ≠ c

(s), they are neighbors of t not belonging to c(t).
Type 4: for some u such that dH(u, s) = 1 and c(u) = c

(s), they are neighbors of u not belonging to c(s).
Types 1 and 2 are included in K1(s) and the numbers

of subsequences are 12 and 30, respectively. The equiva-
lence classes of Type 3 are the right-most circles in Fig-
ure 7. Similar to subsequences of 2-mismatches in
Figure 6, three 2-mismatch subsequences belong to each
equivalence class. The number of equivalence classes is
eight and they includes 24 2-mismatch subsequences.
The bottom-left circle in Figure 7 represents Type 4.
The relation between of Types 4 and 1 looks similar to
that between Types 2 and 1. In fact, Type 4 is a union
of K1(u) – c(s) for over each possible u. As the size of u
is 2, Type 4 has 12 equivalence classes. In total, the
number of hash keys to refer to 2-mismatch subse-
quences is 27 (= 1 + 6 + 8 + 12). The reference formula

Figure 6 Two-mismatch subsequences of s when s is a code
word. Dark-gray nodes are 2-mismatches whose Hamming distance
from s is 2. Each belongs to an equivalence class that has other two
2-mismatche subsequences.
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is as follows:

f s K s x x x x x x x x x( , ( )) ( ) ( ) ( ) (2
2 2 3 2 3 4 21 3 12 6 2 5 9 8 3 7 6 12 2= + + + + + + + + + ++ +

= + + + +

5 9

1 15 90 170 156

3 4

2 3 4

x x

x x x x

)

In the same manner, we can analyze the hash keys K2

(s) for the subsequence of length of 21. In this case, the
reference formula when s = c(s) becomes:

f s K s x x x

x x x

( , ( )) ( )2
2

2 3

1 63 630 3 7 54

1 63 1890 4410 34020

= + + × + +

= + + + + xx4,

and the formula when s ≠ c(s) is:

f s K s x x

x x x

x

( , ( )) :

( ) :

(

2
2

2 3

2

1 3 60 1

30 2 5 57 2

520 3 7

= + +

+ + +

+ +

Type

Type

xx x

x x x

x x x

3 4

2 3 4

2 3

54 3

60 2 5 57 4

1 63 1890 5650

+

+ + +

= + + +

) :

( ) :

Type

Type

++ 31500 4x .

Search n-gaps
To align DNA subsequence and a genome, there are
three types of gaps. These are gaps in short DNA
sequence, gaps in genome sequence, and gaps in both.
Our method can reduce the number of hash keys to
refer to gaps in short DNA sequences. Given a subse-
quence with gaps s, hash keys to refer to the genome
positions are a set of code words of subsequences which
with the gaps of s are substituted with nucleotides. The
expected numbers of hash keys are 3.25 and 3.84 when
the length of a subsequence with one gap is 5 and 21
respectively.

Let s be a subsequence with one-gap, such as “AA-
AA”, and S be a set of subsequences for which a gap in
s is substituted with a nucleotide, in this case the set
comprising “AAAAA”, “AACAA”, “AAGAA”, and
“AATAA”. To find the genome position that matches s,
we need to refer to entries that correspond to S.
When a subsequence t Î S is a code word, all the sub-

sequences in S belong to the same equivalence class.
Therefore, by using c(t) as a hash key, all the entries
correspond to gapped subsequence s can be referred to
from. In this case, the reference formula becomes 4 +
12x, where the index number of x represents the mini-
mum distance from the four subsequences in S.
If no t Î S is a code word, the four subsequences

belong to different equivalence classes. Therefore, four
hash keys are required and the reference formula is 4 +
60x. The proportion for which one member of S is a
code word is |s|/# of words in a equivalence class = 4/
16 = 1/4, and so the expected number of hash keys is
3 1 1 4 4 4 31

4 ( / / )= × + × .
In the same way, when the length is 21, the expected

number of hash keys is 3 1 1 16 4 15 1613
16 ( / / )= × + ∗ .

The reference formulas are shown in Table 2.
Next, we consider a subsequence with two gaps. Let s

be a subsequence of length 5 with two gaps such as “A-
A-A” and S be the set of 16 sequences for which the
gaps in s are replaced with nucleotides. The number of
information digits in (5, 3)-PHC is 3, and so one of 16
words in S is a code word t. The code word t is the
only code word in S because the maximum Hamming
distance among words in S is 2, which equals the

Figure 7 Two-mismatch subsequences of s when s is not a code word. The equivalence classes they belong to are classified into four types.
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number of gaps, and the minimum Hamming distance
between code words is 3. The equivalence class E(t)
includes seven subsequences of S; let U be the remain-
ing subsequences (U = S – N1(t)). Because u Î U is not
a code word and dH(u, t) = 2, the distance between t
and the code word c(u) is 3 (dH(c(u),t) = 3). This implies
that c(u) and t differ at a non-gapped position in t.
Therefore, for all u, v Î U, u ≠ v and d(c(u), v) = d(u, v)
+ 1 ≥ 2. Thus, all the subsequences in U belong to dif-
ferent equivalence classes and nine (=|U|) hash keys are
required to refer to 2-gap subsequences.
For example, if s=“A-A-A”, S includes a code word t

=“AAAAA” and t can refer to 7 sequences: “AAAAA”,
“ACAAA”, “AGAAA”, “ATAAA”, “AAACA”, “AAAGA”,
and “AAATA”. The set of remaining subsequences are
U = {“ACACA”, “ACAGA”, “ACATA”, “AGACA”,
“AGAGA”, “AGATA”, “ATACA”, “ATAGA”, “ATAGA”
}. Let u Î U = “ACACA”. The code cord c(u) is
“ACACC” and Hamming distance from the rest of U
are two or three. Therefore, all subsequences in U
belong to different equivalence classes.
Length of subsequence
The code length of the PHC is restricted to 5 or 21 in
practice. This is inconvenient. Therefore, we next
explain ways to elongate the code length. There are four
ways to elongate the code length. The first way is to
simply add nucleotides before or/and after the code
words. Two other ways are serialization and paralleliza-
tion of PHCs. The former method serializes more than
two PHCs and serialized code words are used as the
hash key. The latter one uses more than two hash tables
for the parallelization and is a way to utilize the pigeon-
hole principle where pigeons are mismatches or gaps
and holes are the regions without mismatches and gaps.
The fourth way is a combination of the three. Figure 8
shows the concepts behind each. In the following, we
show a serialized code and a parallelized code, both of
length 10.
Let s = s1s2 be a sequence of length 10 and s1 and s2

be the subsequences of length 5. The hash key used in
the serialization to store s is c(s1)c(s2). In this case, each

equivalence class holds 256 subsequences. To refer to
the entry of a sequence s = s1s2 and the 30 1-mismatch
sequences, the set of hash keys is:

K s tu t K s u K s1 1 1 1 2( ) { | ( ), ( )},= ∈ ∈

and the expected number of hash keys is 12.25. To
prove this, we consider four cases:
Case 1 s1 and s2 are both code words.
Case 2 s1 is a code word, but s2 is not.
Case 3 s2 is a code word, but s1 is not.
Case 4 neither s1 nor s2 is a code word.
In Case 1, Use s1s2 as a hash key; this can refer to all

the 1-mismatches. The reference formula in this case is
the square of the reference formula of length 5, (1 +
15x)(1 + 15x) = 1 + 30x + 225x2.
In Case 2, we need to consider two subcases based on

the position of the 1-mismatch. When the position is in
the first half of s, the hash key s1s2 can refer to all of
them. When the position is in the second half, the sec-
ond half of the hash keys becomes one of the seven
words in K1(s2). Therefore, a set of hash keys is:

K s s t t K s1 1 1 2( ) { | ( )}.= ∈

Because s2 Î K1(s2), the hash keys in the second sub-
case include the hash keys in the first subcase. There-
fore, the number of hash keys |K1(s)| is 7. The reference
formula is:

( )( )

.

1 15 1 15 42 54

1 30 267 684 810

2 3

2 2 3 4

+ + + +

= + + + +

x x x x

x x x x

In Case 3, similar to in Case2, the set of hash keys is:

K s ts t K s1 2 1 1( ) { | ( )},= ∈

and the reference formula is same as that of Case 2.
In Case 4, the set of hash keys is the union of {s1t|t Î

K1(s2)} and {ts2|t Î K1(s1)}, which correspond to 1-mis-
match in the first half and 1-mismatch in the second
half, respectively. Because both of these include c(s1)c
(s2), the number of hash keys is 13 (= 7 + 7 – 1). The
reference formula is:

( )( ) ( )1 3 15 1 15 42 54 2 1 3 15

1 30 170 53

2 2 3 2 2

2

+ + + + + × − + +

= + + +

x x x x x x x

x x 88 1089 16203 4 5x x x+ +

The proportions of cases 1 through 4 of 1/256, 15/
256, 15/256, and 225/256, respectively, and so the
expected number of hash keys is 12.25.
The parallelization requires two hash tables and each

subsequence is stored in both hash tables. Therefore,
the total size of the hash tables is twice that of serializa-
tion. The hash keys are c(s1)s2: the first haf is PHC, andFigure 8 Three ways to elongate the length of subsequences.
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s1c(s2): the second half is PHC. Consequently, two types
of equivalence classes are used in the parallelization and
each equivalence class holds 16 subsequences. The set
of hash keys for 1-mismatch sequences is:

K s ts t K s s t K s1 2 1 1 1 1 2( ) { | ( )} { ( )},= ∈ ∪ ∈

where each set corresponds to one of the two hash
tables. The expectation number of keys is 13.25.
Let us consider the four cases, which are the same as

those for serialization. In case 1, use s1s2 as the hash key
for two hash tables and all the entries of 1-mismatch
are referred to. In this case, the reference formula is (1
+ 15x) + (1 + 15x) – 1 = 1 + 30x. As a subsequence s1s2
is stored in both hash tables, one is subtracted in the
formula. Though the number of hash keys appears to be
one, it is used twice. Thus the number of hash keys |K1

(s)| is two.
In Case 2, the hash keys are:

K s s s s t t K s1 1 2 1 1 2( ) { } { | ( )}.= ∪ ∈

The total number hash keys is 8 and the reference for-
mula is:

( ) ( )

.

1 15 1 15 42 54

1 30 42 54

2 3

2 3

+ + + + +

= + + +

x x x x

x x x

Case 3 is similar to Case 2. In this case the hash keys
are:

K s ts t K s s s1 2 1 1 1 2( ) { | ( )} { }= ∈ ∪

In Case 4, The hash keys when the first half includes
the mismatch are {ts2|t Î K1(s1)} and that for the second
half are {s1t|t Î K1(s2)}. The number of hash keys is 14
and the reference formula is:

( )

.

1 15 42 54 2 1

1 30 84 108

2 3

2 3

+ + + × −

= + + +

x x x

x x x

The proportions of the cases are same as for serializa-
tion, and the expected number of hash keys is 13.25.

Discussion
To search genome positions of n-mismatches and n-gaps
with our method, Table 2 shows it also searches some
positions of n+a-mismatch. For example, our method
searches not only 1 perfect match and 63 1-mismatch
subsequences, but also 210 2-mismatches and 1710 3-
mismatches as byproducts 11.1%(= 210/1890) and 4.8%(=
1710/35910) of all 2- and 3-mismatches, respectively.
This proportion increases to 46.7%(= 42/90), 20% (= 54/
270) when l = 5. These byproducts are, in fact, effective.
One reason for the current low mapping ratios from

DNA sequencers of short reads to a genome is the small
number of mismatches and gaps that the employed map-
ping method can find. Therefore, increasing the numbers
of mismatches and gaps will contribute to increasing the
mapping ratio and subsequent biological analyses, even if
the method is probabilistic.
The increasing demand to map massive amounts of

short DNA sequences to genomes is inevitable. Because
the number of short sequences is enormous, it is diffi-
cult to ensure finding all genome positions of 1-mis-
matches in a practical computation time. Therefore,
faster methods are required and the proposed method is
a step in that direction. We have shown that the pro-
posed method can reduce the number of keys necessary
to find the genome positions of n-mismatches. The
main idea behind the method is to classify the subse-
quences into equivalence classes using PHC. Because
equivalence classes contain multiple subsequences, our
method can increase the density of the hash table over
those using in the usual method. That is to say, our
method can use longer subsequences.
For example, the size of human genome is about 3G

bases long. When this is stored it with subsequences of
length 21 in usual way, the density of the hash table is 3
× 1012/421 ≈ 0.07%. On the other hand, the hash table
using our proposed method using (21,18)-PHC, the den-
sity is 3 × 1012/[# of equivalence classes] = 3 × 1012/418

≈ 4.7%. That is to say, our method can use longer sub-
sequences. The length of subsequence is sensitive to the
efficiency of the genome-mapping programs, and the
longer the better, for a given density of hash table.
Therefore, the proposed method has an advantage from
this point of view.
We consider the computation time for code words is

far shorter than a hash reference when we describe the
effectiveness of the proposed method. In practice, the
calculation of the syndrome using the parity-check
matrix of the Hamming code is very short, even if on
GF(22), and so it is easy to calculate the code word from
a subsequence. Also, the calculation is small enough to
be executed within a CPU cache. On the other hand,
the size of hash table is larger than the size of CPU
caches. Some exceeds the size of memory because the
number of entries is almost equal to the length of the
target genome. The hash reference is apparently slower
than the calculation of the code word. Therefore, the
advantage of reducing the hash references exceeds the
disadvantage of additional tasks to calculate code words.
With these advantages, our method will help to imple-
ment faster genome mapping programs.

Conclusions
The paper shows perfect hamming code can reduce the
number of hash references for hash-based genome
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mapping. The method encodes subsequences to perfect
hamming codes on GF(22) and use them as hash keys. It
can reduce by about 70% the number of hash keys
necessary for searching the genome positions of all 2-
mismatches of 21-base-long DNA subsequence. As the
amount of data that DNA sequencers generates con-
tinues to increase and more accurate genome mappings
are required, our method will help to develop faster
genome mapping software.

Additional material

Additional file 1: DNA sequences and their code words. All the 5-
mer DNA sequences and their code words on 4-ary (5,3)-perfect
Hamming codes.
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