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Abstract

Background: Studies of toxicity and unintended side effects can lead to improved drug safety and efficacy. One
promising form of study comes from molecular systems biology in the form of “systems pharmacology”. Systems
pharmacology combines data from clinical observation and molecular biology. This approach is new, however, and
there are few examples of how it can practically predict adverse reactions (ADRs) from an experimental drug with
acceptable accuracy.

Results: We have developed a new and practical computational framework to accurately predict ADRs of trial
drugs. We combine clinical observation data with drug target data, protein-protein interaction (PPI) networks, and
gene ontology (GO) annotations. We use cardiotoxicity, one of the major causes for drug withdrawals, as a case
study to demonstrate the power of the framework. Our results show that an in silico model built on this framework
can achieve a satisfactory cardiotoxicity ADR prediction performance (median AUC = 0.771, Accuracy = 0.675,
Sensitivity = 0.632, and Specificity = 0.789). Our results also demonstrate the significance of incorporating prior
knowledge, including gene networks and gene annotations, to improve future ADR assessments.

Conclusions: Biomolecular network and gene annotation information can significantly improve the predictive
accuracy of ADR of drugs under development. The use of PPI networks can increase prediction specificity and the
use of GO annotations can increase prediction sensitivity. Using cardiotoxicity as an example, we are able to further
identify cardiotoxicity-related proteins among drug target expanding PPI networks. The systems pharmacology
approach that we developed in this study can be generally applicable to all future developmental drug ADR
assessments and predictions.

Background
Systematic and quantitative studies of adverse side
effects have become increasingly important due to rising
concerns about the cytotoxicity of drugs in development
[1]. According to the US Food and Drug Administration
(FDA), up to 90% of all experimental drug compounds
going through clinical trials fail to gain FDA approvals
due to problems such in efficacy, formulation, pharma-
cokinetics (PK), toxicology, or clinical safety. In the past
decade, concerns over drug toxicity have risen signifi-
cantly (from 10% to 20% during the decade), while
concerns over drug efficacy have remained unchanged
(25-30%) and concerns over drug PK have decreased
significantly (from 40% to less than 10%). It is time for

drug developers to design new and accurate models to
assess unwanted side effects and drug actions before
costly human clinical trials.
Recent research on the adverse side effects (ADR) [2]

of drugs in cells has drawn attention to the inadequacy
of the traditional “one drug, one target, and causal
effect” model. Modern drugs are designed to regulate
the functions of specific target proteins, or “drug tar-
gets”. Efficacious drugs can break through human bar-
riers of absorption, discretion, metabolism, and
excretion to achieve desirable “on-target” effects. How-
ever, drugs may also bind to “off-target” proteins, poten-
tially leading to unwanted side effects or ADRs, which
range from mild drowsiness to deadly cardiotoxicity [3].
More appropriate models must be developed to take
advantage of complex molecular responses of drugs in
cells, by exploiting fully the relationships between
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chemical compounds, protein targets, and side effects
observed at the physiological level [4]. The recent emer-
gence of a systems approach to drug discovery has revi-
talized research in these areas of study [5,6]. By
integrating the studies of human molecular networks,
chemical compound similarity networks, and protein-
drug association networks, systems biology researchers
have spurred the development of systems pharmacology
(also known as network pharmacology) [7][8]. By ana-
lyzing biological molecules and chemical entities in a
variety of functional network contexts, drug developers
can understand how drugs functions in a complex mole-
cular system model [9], predict drug safety issues early
[10,11], identify ADR events early [12,13], and design
diagnostic tests for tailoring drug treatments to indivi-
duals [14].
Although the importance between systems biology and

ADR had been recognized before, there had been no
published report about how to practically predict ADR
from molecular annotation data until this study [15].
Mutsumi Fukuzaki et al. used cooperative pathways and
gene expression profiles to predict ADRs [12]. Nonethe-
less, large-scale validations and performances were not
mentioned. Based on the concept of ADR similarity ana-
lysis [4], Nir Atias et al. applied canonical correlation
analysis and a network-based diffusion to predict ADRs
[16], with prediction precision at merely less than 0.5.
Chemical structure-based approaches, also mentioned in
Nir Atias’ research, were used to predict off-targets [17]
and ADRs [18]. While Andreas Bender et al. illustrated
that this type of approach is quite sensitive in predicting
ADR, the positive predictive value is generally quite low,
averaging under 0.5 [19]. Moreover, protein-protein
interaction (PPI) networks were not employed for pre-
dicting adverse drug interactions until Lucas Brouwers
et al. presented the contribution of PPI networks to
drug side-effect similarities [15]; however, the prediction
precision was too low (= 0.298) to be of practical
significance.
In this work, we propose a computational systems

pharmacology framework consisting of statistical model-
ing and machine learning to predict ADR of drugs. Our
framework is based on comprehensive integration of
systems biology data, including drugs, protein targets,
molecular annotation, and reported side effects. The
contribution of our work is the following: First, drug-
target interactions are expanded in global human PPI
networks to build drug target expanding PPI networks.
Second, drug targets are enriched by their gene ontology
(GO) annotations to build drug target expanding GO
networks. Third, ADR information for each drug is
combined with drug target expanding PPI networks and
drug target expanding GO networks. Fourth, statistics
and machine learning are applied to build ADR

classification/prediction models. Fifth, cross validation
and feature selection are used to train prediction mod-
els. Without losing generality, we applied the framework
to predict heart-related ADRs (i.e. drug cardiotoxicity),
which are leading causes for clinical drug withdrawals
[20]. The results of the cardiotoxicity prediction case
study show that the performance of our approach (med-
ian AUC = 0.771) is significantly better than all pre-
viously-reported studies. The positive contribution of
PPI networks (including both topological and biological
information) and the GO annotations (including only
biological information) for drug cardiotoxicity prediction
are also quantified for the first time.

Results
We report ADR prediction methods with cardiotoxicity
as a case study. There are many ADRs related to cardio-
toxicity, according to the index of the International
Classification of Diseases 10th Revision (ICD-10) [21].
We merge all ADRs, each of which has an index ranging
from I00 to I99 (classified as diseases of the circulatory
system), into one group, SH. The ADRs related to cardi-
otoxicity in SIDER and their ICD-10 indices are listed in
Table 1. In the ADR vs. drug target (expanding net-
work) facts (See the framework introduced in the Meth-
ods section), if any one of DSnh is 1, where Dn is drug n,
and Sh is in the group of heart-related ADR (see Table
1), then DSnH is set to 1; otherwise, DSnH is set to 0.
The mathematical details are described in the Methods.
We evaluated the performance of ADR predictions in

multiple experiments by applying standard statistical
performance-evaluation measures, i.e., AUC (area under
ROC curve), ACC (accuracy), SEN (sensitivity), and SPE
(specificity). For each evaluation experiment, we
repeated 10-fold cross validation three times and took
median values to report prediction performances. To
assess whether and how PPI networks (including both
topological and biological information) or GO annota-
tions (including only biological information) may contri-
bute to a drug’s cardiotoxicity-related ADR, we obtained
results as described below.

Use of biomolecular functional network data improves
drug ADR predictions
We examined drug ADR prediction performance by
integrating different sets of confidence-ranked PPI data
derived from the HAPPI database [22]. The database
contains comprehensive human functional and physical
protein interaction/association data, at different confi-
dence levels, from “1 Star” (low confidence, mostly func-
tional association data) to “5 Star” (high confidence,
mostly physical interaction data).
We can observe significant contributions of PPI net-

works to both prediction models, as shown in Figure 1
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(a). When SVM (red solid line) is applied, the perfor-
mance prediction goes up from AUC = 0.579 (using
“No Net”, or not PPI network data) to AUC = 0.771
(using “2 Stars UP” PPI network data). The use of PPI
data bring up prediction performances significantly, i.e.,
Accuracy = 0.675, Sensitivity = 0.632, and Specificity =
0.789. The increased AUC of the “2 Stars UP” condition
over the “No Net” condition is very significant, with p-
value = 4.93e-35 based on the t-test. If one further
includes the lowest confidence level ("1-Star” PPI net-
work data) into the drug target expanding network, the
prediction performance decreases slightly due to noise
in molecular networks. The performance curve of logis-
tic regression (blue solid line) is comparable to, yet sys-
tematically lower than, that of SVM, moving up from
AUC = 0.553 (using “No Net”) to AUC = 0.677 (using
“3 Stars UP” PPI network data). The performance of “3
Stars UP” PPI network data is lower than that of “2
Stars UP” PPI network data, at Accuracy = 0.649, Sensi-
tivity = 0.564 and Specificity = 0.789. The increased

AUC of the “3 Stars UP” condition over the “No Net”
condition is also very significant, with p-value = 6.83e-
18 based on the t-test. However, the decreased AUC
performance between “3 Stars UP” condition over the “2
Stars UP” condition is also noticeable, likely due to the
functional nature (no longer biased towards physical PPI
events) of biomolecular networks at the “2 Stars” level
reported by the HAPPI database.

Table 1 The ADRs related to cardiotoxicity in SIDER and
their ICD-10 indices

ADRs in SIDER ICD-10 Index

Valvular Heart Disease I08.8

Rheumatic Carditis I09.9

Myocardial Infarction I21

Myocardial Ischemia I25.6

Heart Disease I30-I52

Constrictive Pericarditis I31.1

Pericardial Effusion I31.3

Cardiac Tamponade I31.9

Pericarditis I32.8

Endocarditis I39.8

Myocarditis I40.8

Cardiomyopathy I42

Second Degree Heart Block I44.1

Complete Heart Block I44.2

Heart Block I45.5

Cardiac Arrest I46

Sinus Tachycardia I47

Tachycardia I47

Junctional Tachycardia I47.1

Multifocal Atrial Tachycardia I47.1

Nodal Tachycardia I47.1

Supraventricular Tachycardia I47.1

Paroxysmal Ventricular Tachycardia I47.2

Ventricular Tachycardia I47.2

Heart Failure I50

Congestive Heart Failure I50.0

Right Heart Failure I50.0

Cardiomegaly I51.7

Cardiac Abnormality I97.1 Figure 1 The performances of SVM and logistic regression in
the different confidence levels of PPIs. a) “No Net” means the
prediction models used ADR vs. drug target facts; “5 Stars” means
we used PPIs in HAPPI under the confidence of 5 stars level; “4 Stars
UP” means we used PPIs in HAPPI under the confidence of 4 to 5
stars level; and so forth. A red solid line represents the performance
with SVM, while a blue solid line shows the performance with
logistic regression. A red dotted line means we expanded the drug
target network by replacing the PPI networks with random
networks as control experiments or a base line of the performances
with SVM, while a blue dotted line illustrates the effect of using
logistic regression. AUC: area under ROC curve. ACC: accuracy. SEN:
sensitivity. SPE: specificity. b) This box plot comparisons
performances from using “2 Stars UP” PPI-expanding networks
versus SVM under different p-value criteria in the feature selection.
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In order to control for the effects of using any types
of (random) biomolecular networks and their possible
contributions to ADR predictions, we also tested the
model’s performance with the use of randomized PPI
networks which shared the same network topologies as
actual PPI networks. Figure 1(a) shows that the perfor-
mance curves using random networks slightly
increased (with AUC > 0.55), when SVM (red dotted
line) and logistic regression (blue dotted line) were
applied. This result occurs because the original rela-
tionships between drugs and drug targets are still
retained in the simulated random PPI networks. The
additional gained prediction power, however, can only
be explained by the embedded useful network informa-
tion that our prediction model automatically learned
from real biological network structures. These results
strongly suggest that the contribution of PPI network
data to drug ADR prediction is primarily due to useful
functional information embedded in biomolecular
functional association networks of drug targets and
their related proteins, whereas network topology alone
only plays a peripheral role.
We also studied whether the increase in our model’s

prediction performance may be due to the increase in the
total number of features when PPI network data are
introduced. For this purpose, we focus on the result
obtained from the use of “5 Stars” PPI network data, in
which the number of features obtained by the prediction
models becomes much smaller than that without using
any network information. We noted that the AUC of this
experimental result is better than that without using any
network information (p-value = 2.70e-8 and 8.22e-9 for
T-test, when we used SVM and logistic regression,
respectively). To further confirm the relationship
between the number of features captured in the model
and the model performance, we performed another
experiment in which we gradually decreased feature
number “2 Stars UP” PPI data in the SVM prediction
model by lowering feature selection thresholds. Figure 1
(b) showed that there is no significant (p-value = 0.469
using ANOVA) decrease of prediction performances,
when the number of features is filtered down. These
observations further support our original finding that the
contribution of PPI network for a drug’s ADR prediction
performance primarily comes from network data
themselves.

Integration of GO annotations also improves drug ADR
predictions
We also examined drug ADR prediction performance by
integrating GO annotations available for each drug’s
protein targets. In two experiments (Figure 2), we
directly incorporated into our prediction models GO
annotation labels of drug target proteins. Since each

protein-coding gene may be annotated by many GO
terms from different GO hierarchical levels, we carefully
designed experiments to eliminate potential ADR pre-
diction performance biases due to non-uniformity of
GO term hierarchical levels. Therefore, we show in Fig-
ure 2 how GO terms aggregated to different GO hier-
archical levels can contribute to prediction results based
on different thresholds, the number of GO terms satisfy-
ing each threshold, and the number of GO terms
selected into each model. Since GO hierarchical level =

Figure 2 The comparison of performances of prediction
models including drug targets’ GO term annotation. a) This
broken line graph illustrates the performances when the prediction
models used different levels of GO term annotations. A red line
represents results using SVM, while a blue means represents results
using logistic regression. The x-axis shows the different threshold
levels of the GO terms. “No Net” means the prediction models used
ADR vs. drug target facts; “LvN” means we just used a GO term
equal to or deeper than level N in the GO hierarchy (we defined
the term of “biological process” as level 1). b) The x-axis shows each
level of the GO terms. “LvN” means we replaced the GO terms
deeper than level N with their level N ancestors.
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1 is not biologically meaningful and there is insufficient
data for GO hierarchical levels from 11 to 15, results for
these categories are not shown.
In the first experiment (Figure 2(a)), the GO terms

equal to or deeper than specified threshold GO hier-
archical levels are used to annotate drug targets for
comparative drug ADR prediction performance analysis.
Our results suggest that the prediction performances
with the use of GO terms, regardless which predictive
modeling method is used and which criteria is used for
comparisons, are always better than those without the
use of GO terms. In particular, when GO term level 7
(Lv7) is chosen, a best performance can be achieved
with the use of SVM, in which we observed AUC =
0.729 and Sensitivity = 0.806; in comparison, “No Net”
(without the use of GO term information) has AUC =
0.579. The improvement in overall ADR prediction per-
formance defined by AUC is significant (p-value =
1.80e-18, based on t-test).
In the second experiment (Figure 2(b)), the GO

terms deeper than level N are replaced by their level N
GO term ancestors to annotate drug targets for com-
parative drug ADR prediction performance analysis.
We call this process a “Roll Up” and observed similar
results as in the first experiment. In particular, when
GO term Lv7 is chosen, a best performance can be
achieved with the use of SVM, in which we observed
AUC = 0.736 and Sensitivity = 0.800. The improve-
ment in overall ADR prediction performance defined
by AUC over the “No Net” experiment is also deter-
mined to be statistically significant (p-value = 7.75e-17,
based on t-test).
Based on the above two experiments using GO

terms, we can make the following conclusions. First,
the use of GO annotations can help improve a drug’s
overall ADR prediction performance. Drug ADR pre-
diction performances achieved with the best use of GO
annotation (AUC = 0.736) are almost comparable to
those achieved with the best use of PPI networks
(AUC = 0.771). Second, SVM models can help achieve
better performance than logistic regression model can
based on our case studies. Third, to achieve the best
ADR prediction performance, it is best to choose SVM
models and use GO biological process categorical
terms at sufficiently detailed term levels (e.g., level 7)
to annotate drug targets. Fourth, by evaluating detailed
prediction performances achieved with PPI networks
(SEN = 0.632, SPE = 0.789) and GO annotations (SEN
= 0.800, SPE = 0.583), we discovered that integration
of biomolecular network data can increase the specifi-
city (SPE) of ADR predictions, while the integration of
GO annotation data can increase the sensitivity (SEN)
of ADR predictions.

A good ADR prediction model is concentrated not only
on drug targets implicated with the ADR events, but also
on many non-target proteins directly linked to ADR
mechanisms
We examined further the biological network contexts
for 101 proteins selected automatically by the SVM pre-
diction model as features. We expanded these “seed pro-
teins” with “2 Stars UP” PPI interactions to build a PPI
interaction network using the nearest neighborhood
expansion method [23]. In Figure 3, we used node color
and counts (in diamond shapes) to show how much evi-
dence from PubMed might be identified in each protein.
Many selected proteins were found to have close rela-

tionships to cardiotoxicity. For example, ADRB1 (Adre-
nergic, beta-1-, receptor) mediates hormone epinephrine
and neurotransmitter norepinephrine. The polymorph-
isms of ADRB1 have been shown to be involved in drug
cardiotoxicity in heart failure [24]. Autoantibodies
against the beta-1-adrenergic receptor have also been
shown to have idiopathic dilated cardiomyopathy in
some patients [25-27]. Therefore, it gives us great com-
fort that ADRB1 as a known drug target is also a part of
the predictor.
We also observed that the drug target expanding net-

work can bring forth additional cardiotoxicity-related
non-target proteins, e.g., ERBB4 and CYP2D6. ERBB4, a
v-erb-a erythroblastic leukemia viral oncogene homolog
4, is a member of the type I receptor tyrosine kinase
subfamily and encodes a receptor for NDF/heregulin.
Targeted deletion and inhibition of ERBB4 signaling
may lead to congestive heart failure resulting from car-
diovascular defects [28,29]. CYP2D6 encodes a subunit
of the cytochrome P450 superfamily of enzymes. The
gene is specifically expressed in the right ventricle and
its genetic polymorphism is known to be associated with
cardiotoxicity, including a patient’s poor anti-arrhythmic
activity, severe cardiovascular, or dilated cardiomyopathy
[30,31].
Using all GO annotations from GO term level 7 “Roll-

ups” to build predictors with the SVM model, we devel-
oped a final list of 24 GO terms selected into the best
cardiotoxicity prediction model (See Figure 2(b)). In
Table 2, we list the 24 GO terms and their IDs. Interest-
ingly, many of these terms appear to be related to heart
disease or cardiotoxicity. There are many known litera-
ture reports linking these terms to cardiotoxicity. For
example, Avkiran et al. [32] described the MAPKKK sig-
naling cascades in heart failure; Yatani et al. [33]
showed G proteins’ roles in heart rate regulation; Plun-
kett et al. [34] examined the role of dopamine receptor
on the cardiovascular system; the GO terms of
GO:0008016 and GO:0045823 are defined as the terms
related to regulation of heart contraction; GO:0051924
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is involved in the regulation of calcium ion transport, a
critical process in cardiovascular functions; Gosalvez et
al. [35] showed evidence of the link between potassium
transport and cardiotoxicity; and so on. Apparently, the
prediction model works by integrating biologically sig-
nificant drug targets within known cardiovascular side
effects and the related non-target protein functional
partners implied in cardiovascular functions or
cardiotoxicity.

Discussion
In this work, we not only built effective ADR prediction
models, but also showed that the use of biomolecular
networks or gene annotations may independently
improve ADR prediction performances. Integrating gene

network and gene annotation allows the use of deeper
level of biological knowledge [36] to increase a model’s
prediction performance. In future work, it would be pre-
ferable to study functional relationships between pro-
teins that are not directly associated. Additional
experimentally-based genotype-phenotype information,
e.g., those derived from genome-wide association stu-
dies, may also be useful, as several recent studies of
genetic polymorphisms of cardiotoxicity-inducing
enzymes have already showed [37,38].
We developed a general conceptual framework and

demonstrated how to build practical ADR prediction
models, using cardiotoxicity as a case study. For other
drug ADR predictions, hepatotoxicity and nephrotoxicity
are also critical issues to consider in drug development.

Figure 3 Cardiotoxicity-associated PPI network. The 101 proteins that passed the feature selection in the “2 Stars UP” PPI network are used
to establish a cardiotoxicity-associated PPI network. We use light blue, deep blue, light red, and deep red lines to represent 2 to 5 stars PPIs
respectively. A node with a green and thick border means a drug target which is docked by a drug reported to have cardiotoxicity-associated
ADRs. Node color illustrates the paper number we obtained from PubMed by searching the protein name and the term of “Heart Disease”
together. The diamond shape on the top right site of a node shows the paper number we obtained from PubMed by searching the protein
name and the term of “Cardiotoxicity” together.
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Decision trees were developed and trained by others to
predict hepatotoxicity and nephrotoxicity [39], relying
on a drug’s chemical properties to predict ADRs. There-
fore, we plan to soon assess hepatotoxicity and nephro-
toxicity in a future extension of this work and compare
our performances with those of other approaches.

Conclusion
In this study, we presented a systems pharmacology
framework for predicting drugs’ ADR, using cardiotoxi-
city as an example. Our method is based on SVM and
logistic regressions, by integrating ADR information,
drug-target data, PPI networks, and GO term annota-
tions. Our results indicated that integrating functional
biomolecular association networks or detailed GO
annotation could significantly improve a drug’s ADR
prediction. Particularly, comprehensive functional bio-
molecular association networks are shown to be useful
for increasing specificity, while detailed gene annota-
tion information are shown to be useful for increasing
sensitivity. Moreover, proteins used to automatically
build the prediction models are shown to further
reveal related biological functions for cardiovascular
health and cardiotoxicity. Overall, our study described
a novel way of predicting ADRs, with comprehensive

incorporation of additional prior knowledge ADR
assessments.

Methods
A framework for ADR prediction is shown in Figure 4,
which includes drug and network information retrieval,
feature selection, cross validation, sample balancing, pre-
diction models, and performance assessment. There are
two types of data flows in the flowchart: 1) Black arrows
indicate data flows for ADR vs. drug target facts. 2)
Green arrows indicate data flows for ADR vs. drug

Table 2 GO terms that passed the feature selection in the
replaced level 7 terms

ID GO Term

GO:0000165 MAPKKK Cascade

GO:0002031 G-Protein Coupled Receptor Internalization

GO:0007194 Negative Regulation of Adenylate Cyclase Activity

GO:0007210 Serotonin Receptor Signaling Pathway

GO:0007212 Dopamine Receptor Signaling Pathway

GO:0007612 Learning

GO:0007613 Memory

GO:0008016 Regulation of Heart Contraction

GO:0009123 Nucleoside Monophosphate Metabolic Process

GO:0019935 Cyclic-Nucleotide-Mediated Signaling

GO:0043268 Positive Regulation of Potassium Ion Transport

GO:0043278 Response to Morphine

GO:0043408 Regulation of MAPKKK Cascade

GO:0045762 Positive Regulation of Adenylate Cyclase Activity

GO:0045823 Positive Regulation of Heart Contraction

GO:0045859 Regulation of Protein Kinase Activity

GO:0045893 Positive Regulation of Transcription, DNA-Dependent

GO:0046488 Phosphatidylinositol Metabolic Process

GO:0051924 Regulation of Calcium Ion Transport

GO:0051932 Synaptic Transmission, Gabaergic

GO:0051937 Catecholamine Transport

GO:0051969 Regulation of Transmission of Nerve Impulse

GO:0072511 Divalent Inorganic Cation Transport

GO:2000147 Positive Regulation of Cell Motility

Figure 4 A framework for adverse drug reaction prediction.
Black arrows indicate data flows for ADR vs. drug target facts. Green
arrows indicate data flows for ADR vs. drug target expanding
network facts. (DrugBank: Drug-Target data; SIDER: Side Effect
Resource; HAPPI: Human Annotated and Predicted Protein
Interaction; GO: Gene Ontology; ADR: adverse drug reaction; SVM:
support vector machine; Facts: multi-dimensional datasets)
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target expanding network facts, which are generated by
integrating ADR vs. drug target facts and network
information.

Drug and network information retrieval
We used three major public databases in our study.
First, the DrugBank database is exploited as a bioin-

formatics and cheminformatics resource, which contains
drug and drug target information [40]. Up to May 2011,
there were 5,461 drugs and 3,880 proteins, which
formed 13,457 unique drug-target pairs in DrugBank,
and they were extracted as main drug target information
in this study.
Second, the Side Effect Resource (SIDER) database is

also involved. This database aggregates FDA drug labels
and disperses public information on ADRs [41]. There
were 877 drugs, 1,447 kinds of ADR, and 61,824 rela-
tionships among drugs and ADRs obtained from COST-
ART and Euphoria-related ADRs in SIDER. There are
578 drugs overlapped between DrugBank and SIDER.
Third, the Human Annotated and Predicted Protein

Interactions (HAPPI) database [22] is used as a global
human PPI resource. HAPPI integrates HPRD, BIND,
MINT, STRING, and OPHID. Most importantly, HAPPI
provides a confidence star quality rating from 1 to 5 for
each interaction based on the initial data sources, data
generation methods, and number of literature references
for the interaction. Excluding self PPIs, there are
116,275 PPIs, 61,698 PPIs, 48,481 PPIs, 24,750 PPIs, and
35,752 PPIs involved in the data set from 1 star to 5
stars, respectively. This data can be used to expand the
network of drug targets.
Finally, the Gene Ontology (GO) project provides

hierarchical terms, including biological processes, cellu-
lar components, and molecular functions, to describe
the characteristics and annotations of gene product [42].
In this study, we only use biological processes, from a
general term “biological process” in level 1 to specific
terms in level 15, to expand the features in the predic-
tion models from drug targets to the GO terms in order
to investigate the biological meanings between drug tar-
gets and ADRs. There are 3,715 biological process terms
utilized for annotating the drug targets in this study.

ADR vs. drug target (expanding network) facts
By combining the drug target information in DrugBank
with the ADR information in SIDER, we obtained the
ADR vs. drug target facts. The facts follow the format
shown in Figure 5(a). If drug n has a side effect j, the
value in cell DSnj (n = 1...N, and j = 1...J) at the intersec-
tion of column Sj and row Dn is 1 or “TRUE"; otherwise,
it is 0 or “FALSE”. So does the value in cell DTnk (n =
1...N, and k = 1...K) at the intersection of column Tk and
row Dn if drug n docks to drug target k. The binary data

DSnj and DTnk, representing the ADR vs. drug target
facts, can be then used for prediction model training
and testing: each ADR Sj is prediction output (response
variable) and targets from T1 to TK are features (depen-
dent variables).
When the drug targets expand one level in a PPI net-

work or are annotated by using the GO terms, the value
in cell DTnk will be integer instead of binary, because
the association between drug n and drug target k could

Figure 5 Format of ADR vs. drug target facts and an example
of drug target expanding network. a) This figure shows the
format of ADR vs. drug target facts. Dn, Si, and Tj mean drug n, ADR
i, and target j respectively. b) This figure is an example of a drug
target expanding network. The dotted lines mean PPIs. c) This part
illustrates the process of the drug target expanding one level in PPI
network. T1, T2, and T5 are present twice in all branches of this
expanding “tree”, thus the values in cells DT11, DT12, and DT15 in
ADR vs. drug target facts are all 2; the rest, including DT13 and DT14,
are both 1.
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be repeatedly present in the drug target expanding net-
work. Figure 5b shows an example of a drug target
expanding network, and Figure 5c shows the drug target
expanding process and the repeated presences of T1, T2,
and T5. The repeat number here can be regarded as the
weight of the relationship between drug and target
under network level; moreover, this weight can be also
used to study the contribution of each target to ADRs.

Feature selection
Since thousands of features (drug targets) are required
to build prediction models, this process is exhaustive
and memory consuming. Moreover, some statistics
tools, such as R, have memory limitations [43]. Hence, it
is necessarily to filter out the features that would make
little contribution to the response variable. If the data
type of cell DTnk is binary, Fisher’s exact test will be
used; otherwise, Wilcoxon rank-sum test will be used.
In both methods, features will be selected if their p-
values are smaller than 0.05.

Sample balancing
The sample sizes of output classes are usually bias and
imbalance, especially in medical data [44]. Consequently,
the accuracy of the prediction result would be overesti-
mated. In order to prevent this problem from happening,
sample balancing method is also applied in this study.
First, we randomly separate the major class into many
parts. Each part contains a sample size close to that of the
minor class. Second, we combine every part of the major
class with the minor class as training sets. The input data
is separated into ten parts in the process of 10-fold cross
validation: nine parts are taken to do the sample balancing
and the remaining one is used to validate the prediction
models. The training sets are balanced, while the valida-
tion set is still imbalanced in the sample sizes of classes, so
the performance will be more reliable.

Prediction models
For comparisons, the prediction models in this study
include two independent procedures: 1) machine learn-
ing - support vector machines (SVM), and 2) statistical
modeling - logistic regression. A SVM package of R,
called “e1071” [45] is used in this study. For kernel
functions, we choose a nonlinear one: Gaussian radial
basis function, which is also the optimized kernel func-
tion. This SVM package provides fitted probabilities
numerically from 0 to 1, and so does the logistic regres-
sion package used in this study, named as “generalized
linear models” [46].
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