
RESEARCH Open Access

Functional complementation between
transcriptional methylation regulation and
post-transcriptional microRNA regulation in
the human genome
Zhixi Su1,2†, Junfeng Xia1†, Zhongming Zhao1,3,4*

From BIOCOMP 2010. The 2010 International Conference on Bioinformatics and Computational Biology
Las Vegas, NV, USA. 12-15 July 2010

Abstract

Background: DNA methylation in the 5’ promoter regions of genes and microRNA (miRNA) regulation at the 3’
untranslated regions (UTRs) are two major epigenetic regulation mechanisms in most eukaryotes. Both DNA methylation
and miRNA regulation can suppress gene expression and their corresponding protein product; thus, they play critical
roles in cellular processes. Although there have been numerous investigations of gene regulation by methylation
changes and miRNAs, there is no systematic genome-wide examination of their coordinated effects in any organism.

Results: In this study, we investigated the relationship between promoter methylation at the transcription level
and miRNA regulation at the post-transcription level by taking advantage of recently released human methylome
data and high quality miRNA and other gene annotation data. We found methylation level in the promoter
regions and expression level was negatively correlated. Then, we showed that miRNAs tended to target the genes
with a low DNA methylation level in their promoter regions. We further demonstrated that this observed pattern
was not attributed to the gene expression level, expression broadness, or the number of transcription factor
binding sites. Interestingly, we found miRNA target sites were significantly enriched in the genes located in
differentially methylated regions or partially methylated domains. Finally, we explored the features of DNA
methylation and miRNA regulation in cancer genes and found cancer genes tended to have low methylation level
and more miRNA target sites.

Conclusion: This is the first genome-wide investigation of the combined regulation of gene expression. Our results
supported a complementary regulation between DNA methylation (transcriptional level) and miRNA function (post-
transcriptional level) in the human genome. The results were helpful for our understanding of the evolutionary
forces towards organisms’ complexity beyond traditional sequence level investigation.

Background
Epigenetics refers to the heritable changes that modify
DNA or associated proteins without changing the DNA
sequence itself [1]. It has been commonly accepted that
both epigenetic mechanisms - DNA methylation

modification at the gene’s promoter regions (5’ of the
gene) and microRNA (miRNA) regulation at the 3’
untranslated regions (3’ UTRs) - are important in gene
expression regulation. DNA methylation has been popu-
larly investigated due to its heritable epigenetic modifi-
cations of the genome and has been implicated in the
regulation of most cellular processes. These include
embryonic development, transcription, chromatin struc-
ture, X chromosome inactivation, genomic imprinting
and chromosome stability [2-6]. Aberrant DNA
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methylation has been frequently reported to influence
gene expression and subsequently cause various human
diseases, especially cancer [7-9]. The causal relationship
between variation in promoter DNA methylation and
difference in gene regulation has been well recognized
[10,11]. Recent work [12] revealed that hypermethylation
at promoter CpG sites typically results in a lower tran-
scription level of downstream genes. When methylation
was experimentally removed from a gene’s promoter
region, its transcription level would often be higher [13].
Among the ~28 million CpG dinucleotide sites that are
susceptible to methylation in the human genome,
approximately 10% are in the promoter regions of
genes, in which they may physically obstruct the binding
of transcriptional proteins to the gene or may be indir-
ectly regulated by the recruitment of methyl-CpG-bind-
ing domain proteins through cytosine methylation
[14-16]. The repression role in gene expression regula-
tion by methylation modification in a gene’s promoter
region has been reinforced by current whole genome
bisulfite sequencing of the methylomes of more than 20
eukaryotes [17].
miRNAs are a class of small noncoding RNA mole-

cules that regulate eukaryotic gene expression at the
post-transcriptional level. They specifically bind mRNAs
in their 3’ UTRs based on sequence complementation
and lead to translational repression and gene silencing
[18]. According to release 17 (April 26, 2011) of the
miRNA database miRBase [19], there are 16,772 miRNA
gene loci in 153 species and 19,724 distinct mature
miRNA sequences [20]. Among them, the human gen-
ome encodes 1424 miRNA sequences, which may target
approximately 60% of human protein-coding genes [21].
This huge number of miRNAs discovered so far indi-
cates that many biological processes, including cell cycle
control, cell growth and differentiation, apoptosis, and
embryo development, are controlled by miRNA-
mediated gene expression regulation [22].
Although there have been many important advances

in understanding gene silencing roles at the transcrip-
tional level through DNA methylation modification
and at the post-transcriptional level through miRNA
regulation, it remains unclear how these two major
mechanisms cooperate at the genome-wide level to
influence cellular processes. Thus, a combinatory ana-
lysis of these two mechanisms is likely to reveal many
important insights into a deeper understanding of
gene regulation in cells. Considering that (1) DNA
methylation acts on a gene’s 5’ promoter region, and
transcription typically depends on demethylation of
the promoter region, and (2) miRNAs target on 3’
UTR to suppress gene’s post-transcriptional activities,
we hypothesized that there exists a functional comple-
mentation between transcriptional promoter region

methylation regulation and post-transcriptional
miRNA regulation. If this hypothesis is valid, we
would infer that (1) miRNAs preferentially target
genes with a low DNA methylation level at the pro-
moter regions; (2) genes that are controlled by more
miRNAs tend to have less promoter methylation regu-
lation. We validated our hypothesis by deeply analyz-
ing human methylome data in two cell lines. To the
best of our knowledge, this is the first report of the
complementary relationship between DNA methyla-
tion regulation and miRNA regulation in a eukaryotic
genome. Furthermore, we found that cancer genes
tended to be silenced by miRNAs and to escape from
DNA methylation suppression, thereby supporting our
hypothesis.

Methods
Gene annotation
Human and mouse gene structure data was retrieved
from the Ensembl database (version 54), including the
information of Ensembl gene ID, Ensembl transcript ID,
transcript start (bp), transcript end (bp), Ensembl pro-
tein ID, 3’ UTR start, 3’ UTR end, chromosome, and
strand. We extracted the promoter region and 3’ UTR
position information from Gene structure data. If there
are multiple transcripts for a gene, the transcription
start site (TSS) and 3’ UTR of the major transcript were
used [23]. We retained only those genes without distant
alternative TSS (> 200 bp distance from the major TSS)
and without ambiguous 3’ UTR regions to avoid the
potential inaccurate mapping of the gene expression
data and gene structures.

Analysis of DNA methylation data
The single-base resolution DNA methylation data was
retrieved from Lister et al. (2009) [15], including whole
genome bisulfite sequencing data for two human cell
lines: H1 human embryonic stem cells and IMR90 fetal
lung fibroblasts. The methylation information for each
promoter was extracted by mapping the promoter
region (in a range of -1000 to +200 bp from the TSS) to
the genome-wide methylation data from the H1/IMR90
cell line.
Based on single-base resolution bisulfite sequencing

data, we used methylation broadness to measure the
DNA methylation level in specific genome regions,
which was calculated as the proportion of methylated
CpG sites among the total CpG sites in a sequence (we
denote it as “mCG/CG” hereafter).
We also used “normalized” CpG content, the observed

over expected CpG ratio (CpGO/E) in a sequence, to
infer the pattern of DNA methylation in the human
genome. CpGO/E is a robust measure of the level of
DNA methylation on an evolutionary time scale due to
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specific mutational mechanisms of methylated cytosines
[23]. Briefly, methylated cytosines are hypermutable due
to their vulnerability to spontaneous deamination, which
causes a gradual depletion of CpG dinucleotides from
methylated regions over evolutionary time. Conse-
quently, genomic regions that are subject to strong
germline DNA methylation (hypermethylated) would
decrease the extent of CpG dinucleotide content over
time and, thus, have lower-than-expected CpGO/E. In
contrast, regions that undergo weak germline DNA
methylation (hypomethylated) maintain high CpGO/E.
This measure has been successfully used to indirectly
measure historical DNA methylation levels. In particu-
lar, the pattern of DNA methylation inferred from
CpGO/E corresponds well to the actual pattern of DNA
methylation in such diverse taxa as human and sea
squirt. CpGO/E was calculated as the frequency of CpG
sites divided by the frequency of C and G [24]. The pat-
tern of DNA methylation inferred from CpGO/E corre-
sponds well to the actual pattern of DNA methylation
in human stem cells (H1 cell line) and fetal lung fibro-
blasts (IMR90) [14,15]. Since the DNA methylation level
of two strands in any given genomics region are highly
correlated, here we used the sense strand to represent
the DNA methylation level for a given gene promoter
region. Similar results were obtained in this study when
we used the methylation level of anti-sense (data not
shown).

Compilation of miRNA targets
The miRNAs and their predicted targets were extracted
from R package RmiR.hsa [25], including miRNA target
site prediction results from 6 sources: miRBase, targetS-
can, miRanda, tarBase, mirTarget2 and PicTar. In this
study, we used the target site prediction results from
two approaches: mirTaeget2 and PicTar.

Analysis of human gene expression data
We obtained the expression data of 409 microarray
experiments from McVicker and Green (2010) [26],
which were collected from 12 studies [12,13,27-36],
representing a wide variety of germ and somatic tissues.
As these studies used two different platforms (Affyme-
trix microarrays hgu133plus2 and hgu133A), we only
considered the probe sets shared by both arrays. The
methods to process the raw intensity data and to assign
the probe sets to genes were described in McVicker and
Green (2010) [26]. In total, we assigned an expression
intensity of 9858 genes in 409 tissues. Among the 409
tissues, 64 containing germ cells were considered as
germline tissues, with the exception of germ cell tumors,
embryonic stem cells, and immortalized cell lines (see
additional file 1).

Because the above data sets are highly redundant in
terms of tissue or cell type, we only used Gene Expres-
sion Atlas data to estimate the relative expression
broadness (EB, number of tissues where a gene is
expressed). This data has been widely used to estimate
gene expression broadness. The Affymetrix raw data
was downloaded from the website of the authors in
reference [36]. It comprised 156 human (U133A/
GNF1H) microchip experiments in 79 tissues. The
expression level detected by each probe set was obtained
as the average difference (AD) value computed from
MAS 5.0 algorithm (MAS5) [37]. The AD values were
averaged among replicates. Using the annotation tables
from the original study [36,38] and the Ensembl
EnsMart tool, we mapped the probe IDs used in the
microarray experiments to Ensemble gene identifiers. In
approximately 20% of the cases, multiple probes in the
microarray targeted onto a single gene. The expression
intensities of multiple probes that corresponded to one
gene were averaged after discarding all the low-confi-
dence probe sets (indicated by a suffix of ‘’_x_at’’ or
‘’_s_at’’ in the Affymetrix IDs) [39]. In this study, we
used an AD value of 200 as the threshold to calculate
the EB, as we did in our previous work [23].
The gene expression data of two human cell lines H1

and IMR90 was obtained from reference [15]. The
expression data was generated by a whole RNA sequen-
cing (RNA-Seq) approach. The reads per kilobase of
transcript per million reads (RPKM) were used to repre-
sent the expression level of each gene.

Cancer genes
We retrieved 427 human cancer genes and their annota-
tions from the Cancer Gene Census database (CGC,
2010-03-30 version) [40]. Since a cancer gene may act
in a dominant or recessive manner [41,42], we classified
these 427 cancer genes as two groups, i.e., dominant
gene group (337 genes) and recessive gene group (85
genes), according to their annotations in the CGC data-
base. There were 5 genes with ambiguous classification
in the database and they were excluded in this analysis.

Human-specific insertion/deletion (indel) events in 3’
UTRs
We identified the human-specific indel events in 3’ UTR
regions as described in [43]. The 17-way vertebrate
alignment, i.e., multiple alignments of 16 vertebrate gen-
omes to the human genome (hg18), was obtained from
[44].
An in-house Perl script was used to extract the ortho-

logous 3’ UTR alignment information and to identify
the human-specific indel events. Human-specific inser-
tion event rate and deletion event rate in the 3’ UTR
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regions were calculated based on percent nucleotide dif-
ference. The indel rate equals to the sum of the lengths
of all indels in the aligned human sequences divided by
the total length of the aligned sequences.

Results and discussion
Correlation between gene expression level and promoter
DNA methylation
Although methylation of gene’s promoter regions has
long been considered a suppressor of gene expression
[17,45], it still remains unclear to which extent the pro-
moter’s DNA methylation contributes to the influence
of gene expression level [45,46]. For example, most pro-
moters having CpG islands (CGIs) remain unmethylated
even in cells that do not express the corresponding
gene. On the contrary, most CpG-poor promoters are
hypermethylated even in somatic cells where the genes
are expressed [47]. What is equally uncertain is the con-
tribution of promoter methylation to the tissue-specific
gene expression. Although many studies have shown the
tissue-specific differentially methylated regions (T-
DMRs) could connect to the gene expression repro-
gramming in different tissues or developmental stages,
others failed to demonstrate such a connection based on
the analysis of a small set of genes [48,49].To better
understand the relationship between DNA methylation
regulation and the gene expression regulation through
miRNA targeting, we explored to what extent promoter
methylation affects the gene expression level using the
genome-wide data set collected in this study. We used
two independent measurements, i.e., methylation broad-
ness and normalized CpG content (CpGO/E), to test the
correlation of promoter methylation and gene expres-
sion level.
First, we calculated the broadness of DNA methylation

in each gene promoter region in human H1 embryonic
stem cells and IMR90 fetal lung fibroblasts, based on
the recently published whole genome single-base resolu-
tion methylome data [15]. Methylation broadness mea-
sures the fraction of cytosine sites detected as
methylated in a given DNA segment, which is calculated
as the proportion of methylated sites over the total sites
in a sequence (termed as mCG/CG) [17]. We calculated
the pairwise correlation between promoter DNA methy-
lation and gene expression level. We found gene expres-
sion intensity was significantly and negatively correlated
with the methylation level in the promoter regions, both
in H1 cells (r = -0.468, P <10-15) and in IMR90 cells (r
= -0.473, P <10-15). Next, we used CpGO/E to approxi-
mately infer the pattern of DNA methylation in the
human genome. As a robust measurement of the level
of germline DNA methylation on an evolutionary time
scale [24], low CpGO/E and high CpGO/E reflect hyper-
methylation and hypomethylation, respectively. We

calculated the correlation between CpGO/E and gene
expression level for a wide range of tissues. As shown in
Figure 1, gene expression in most germline tissues was
positively correlated with CpGO/E. Remarkably, we
found the correlation is more significant in female
germline tissues than in male germline tissues. The
average gene expression intensity in all germline tissues
is also significantly correlated with promoter CpGO/E (r
= 0.37, P <10-15). Our results also showed either weak
correlation or even no significant correlation among
most somatic tissues (Figure 1). In summary, using dif-
ferent DNA methylation measurements, we found
methylation level in a gene’s promoter regions was
negatively correlated with expression level at the whole
genome level. It is worth noting that we found a more
significant correlation between gene promoter DNA
methylation level and gene expression level than the
previous studies [3,15]. One possible reason is that we
only used the genes with unique TSS or largely overlap-
ping promoter regions (see Methods).

miRNAs preferentially target the genes with low DNA
methylation level at the promoter regions
We next tested the hypothesis that a functional comple-
mentation exists between transcriptional promoter
region methylation regulation and post-transcriptional
microRNA regulation. We retrieved unique miRNAs
and their target sites for each human gene based on the
predicted miRNA binding sites using mirTarget2 [50]
and PicTar [51] algorithms. We chose these two

Figure 1 Pairwise correlations between gene expression and
CpGO/E ratio in the promoter regions of genes with high tissue
differentiation. Each of the 409 tissue samples is represented by a
single bar. Color indicates one of the seven tissue types. GCT: germ
cell tumors. ESC: embryonic stem cells. Bars are ordered from left to
right by the correlation coefficient value, and their vertical extent
indicates the 95% confidence interval.
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algorithms because most of the randomly selected
miRNA targets predicted by mirTarget2 and PicTar
have been validated as true targets [50,52]. Genes that
have long 3’ UTRs are likely to be regulated by more
miRNAs [53]; thus, we treated the 3’ UTR length as a
proxy of the number of miRNA target sites for an addi-
tional correlation analysis.
There were 12,730 genes that had both miRNA target

prediction by mirTarget2 and promoter methylation
measured using human H1 cells. Using this dataset, we
found a significant negative correlation between gene
promoter methylation and number of miRNA target
sites (Spearman’s r = -0.29, P < 10-15) (Table 1, Figure
2). Similarly, we found a significant negative correlation
between gene promoter methylation and number of
miRNA target sites (r = -0.26, P < 10-15) based on the
12,731 genes having both miRNA target prediction by
mirTarget2 and promoter methylation from methylome
of human IMR90 cells (Table 1, Figure 2). Moreover,
using the CpGO/E value in the promoter regions as a
proxy of the promoter methylation level in germline
cells, we found a significant positive correlation between
CpGO/E and the number of miRNA target sites (r =
0.29, P < 10-15) (Table 1, Figure 3). This positive corre-
lation between CpGO/E and the number of miRNA tar-
get sites is consistent with the negative correlations
above, because CpGO/E reversely reflects the promoter
methylation level. Finally, when we used the miRNA tar-
get site data predicted by PicTar, we had very similar
results (Table 1), indicating our findings are reliable.
We further used the 3’ UTR length to approximately

measure the number of miRNA target sites. Consistent
with the above results, we found negative correlations
between 3’ UTR length and promoter methylation level
in both human methylomes (H1 and IMR90) (Table 1).
This analysis revealed that the genes with a higher pro-
moter methylation level tended to have shorter 3’ UTRs
at the genome level.

We questioned whether the observed correlations
above are unique in the human genome. Thus, we
investigated the relationship between promoter DNA
methylation level and the number of miRNA target sites
in mice. We retrieved the corresponding gene structure
data from the ENSEMBL database. The data processes
that included the definition of TSS and estimation of 3’
UTR length were the same as in humans, as described
in the Methods section. We found a highly significant
correlation between promoter CpGO/E and 3’ UTR
length (Spearman’s r = 0.24; P < 10-15), indicating that
the negative correlation pattern between promoter
region methylation and number of miRNA target sites
still holds in mice. Since mammalian genomes share
many CpG island features in their promoter regions [4],
it is likely that the observed correlation is common in
mammals, or even in many vertebrates.

Enrichment of miRNA targets among genes with lower
promoter methylation level is not a by-product of gene
expression level, expression broadness or the number of
transcription factor binding sites
We next specifically investigated whether the above
observed enrichment of miRNA targets among genes
with a lower promoter methylation level was a by-pro-
duct of ancillary features of the analyzed gene sets. The
results from the following analyses indicated this was
not the by-product.
First, we asked whether the relationship between DNA

methylation and miRNA regulation could be explained
by the underlying gene expression levels since the DNA
methylation of a gene’s promoter regions and gene
expression level is correlated in the majority of eukar-
yotes, and gene expression level is often positively corre-
lated with the number of miRNA target sites. We
estimated partial correlations [54] between DNA methy-
lation and number of miRNA target sites after removing
the contributions of gene expression level. The

Table 1 Spearman’s rank correlation coefficients (rs) and partial correlations between gene’s promoter methylation
level and the number of microRNA target sites

Number of microRNA target sites by
mirTarget2 (Nt)

Number of microRNA target sites by
PicTar (Np)

3’ UTR length (UL)

Promoter
methylation
level (m)

Correlation
rs (m, Nt)

Partial correlation rs (m,
Nt|gene expression level)

Correlation
rs (m, Np)

Partial correlation rs (m,
Np|gene expression level)

Correlation
rs (m, UL)

Partial correlation rs (m,
UL|gene expression level)

Promoter mCG/
CG
(H1)

-0.29*** -0.19*** -0.29*** -0.22*** -0.31*** -0.22***

Promoter mCG/
CG (IMR90)

-0.26*** -0.19*** -0.28*** -0.19*** -0.29*** -0.20***

Promoter CpGO/E 0.29*** 0.16 ***† 0.28*** 0.18 ***† 0.31*** 0.19 ***†

†A germline tissue (FETAL.OVARY.14.4WK) having the most significant correlation between expression level and promoter region CpGO/E ratio was selected [30].
*** P < 10-15.
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corresponding corrections were still highly significant,
suggesting that covariance between DNA methylation
(or the number of miRNA target sites) and gene expres-
sion level could not account for the observed relation-
ships between DNA methylation and the number of
miRNA target sites. As shown in Table 1. Although the
partial correlations between DNA methylation and
miRNA regulation decreased after removing the effects
of gene expression level, they still showed high
significance
Second, broadly expressed genes tended to avoid

miRNA regulation [55,56], implying that the correlation
between promoter methylation and miRNA regulation
could have been affected by the greater chance of higher
DNA methylation level in broadly expressed genes’ pro-
moter regions.
We indeed found the promoter methylation level was

negatively correlated with gene expression broadness
(EB) (for mCG/CG using H1 methylome data, Spear-
man’s r = -0.19, P < 10-15; for CpGO/E, r = 0.22, P < 10-
15) (Figure 4a). However, no significant correlation
between the number of miRNA target sites and EB was
observed (for miRNA target sites based on MirTarget2,
r = -0.003, P = > 0.1) (Figure 4b), and only a very weak

correlation between the length of UTRs and EB (r =
0.03, P = 0.002) was observed. We had similar results
using the methylation data of IMR90 and/or using the
predicted miRNA target sites by PicTar (data not
shown). Therefore, the effect of EB on the correlation of
promoter methylation level and miRNA target sites
could be largely ruled out.
Third, recent studies found genes with more transcrip-

tion factor binding sites (TFBS) have a higher probabil-
ity to be controlled by miRNAs [57].We examined
whether the promoter methylation levels are correlated
with the number of TFBS. We extracted the TFBS data
from [58]. A total of 22,067 genes had both TFBS and
promoter methylation data. We found the correlation
between TFBS and promoter methylation was very weak
(Spearman’s r = -0.016 for TFBS and CpGOE; r = -0.07
for TFBS and mCG/CG using H1 mythylome data).
This observation suggested that the correlations between
promoter methylation level and the number of miRNA
targets was not a side effect of the correlation of TFBS
site number and the number of miRNA target sites.
Finally, a previous study found that gene evolutionary

rates were negatively correlated with the number of
their regulatory miRNAs [53]. Therefore, we speculated

Figure 2 The correlation between methylation level in promoter regions and number of microRNA target sites. The number of
microRNA target sites in each gene was predicted by mirTarget2. The methylation data was from the methylomes at base resolution of two
human cells [15].
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genes with stronger promoter methylation repression
(tend to be regulated by fewer miRNAs) might have
evolved faster in their 3’ UTRs and could have insertion
or deletion bias. A possible mechanism of the negative
correlation between promoter methylation and the num-
ber of regulatory miRNAs is that genes with hyper-
methylated promoters may in turn shorten their 3’
UTRs to reduce possible miRNA regulation. We tested
this hypothesis by the following analyses. We extracted
the human-mouse one-to-one orthologous 3’ UTR
sequences from PACdb [59] and aligned these

orthologous sequences using the computer program
Clustal W [60]. We calculated the substitution rates per
site (termed as K3u) based on the Kimura’s two-para-
meter model [61]. We found a weak positive correlation
between K3u and the promoter methylation level (Spear-
man’s r = 0.15, P < 10-15 between K3u and mCG/CG
using H1 mythylome data; r = -0.1, P < 10-10 between
K3u and CpGO/E), indicating promoter hypermethylated
genes tended to evolve faster in their 3’ UTRs. We iden-
tified the human-specific insertion rate and deletion rate
for the 3’ UTRs of all genes (see Methods). However,
there was no evidence to show that promoter hyper-
methylated genes tended to shorten their 3’ UTR length
(P > 0.1). Further studies of promoter methylation and
3’ UTR evolution will be needed to uncover the underly-
ing mechanisms of the connection between promoter
methylation level and the number of miRNA target sites.

miRNA targets are significantly enriched in genes located
in differentially methylated regions or partially
methylated domains
Some genes may belong to a specific group of genes that
are preferentially regulated by miRNAs or promoter
region methylation. It is interesting to investigate the
functional complementation between transcriptional
promoter methylation and post-transcriptional miRNA
regulation in such groups of genes. Specifically, we iden-
tified the genes located in differentially methylated
regions (DMRs) and partially methylated domains
(PMDs) using the data from Lister et al. [15]. According
to Lister et al. [15], the DMRs were identified as the
regions of the genome enriched for sites of higher levels
of DNA methylation in IMR90 relative to H1 by Fisher’s

Figure 4 Distribution of promoter methylation level and number of microRNA target sites in genes by their expression broadness. (a)
Negative correlation between promoter methylation level (mCG/CG) in human cell H1 and expression broadness. (b) microRNAs preferentially
target the genes with intermediate expression broadness.

Figure 3 The correlation between CpGO/E ratio in promoter
regions and number of microRNA target sites. The number of
miRNA target sites in each gene was predicted by mirTarget2.
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Exact Test. There were 491 regions considered as DMRs
using the methylome data from H1 and IMR90 cell
lines. For the genes located at either DMRs or other
genomic regions, we calculated the average number of
miRNA target sites and average value of promoter
methylation level, respectively. Using the H1 methylome
data, on average, genes located at the DMRs and other
regions had mCG/CG ratios of 0.26 and 0.44 (P < 10-15,
Mann-Whitney U test) (Figure 5a), and 17.2 and 14.3
miRNA targets sites (P < 10-6, Mann-Whitney U test)
(Figure 5b), respectively. These findings indicate that
genes located in DMRs tended to maintain a low methy-
lation level, whereas they might be regulated by more
miRNAs. Therefore, there exists a negative correlation
between DNA methylation level and the number of
miRNA target sites.
Lister et al. showed a trend of decreased level of

methylation level in PMDs (partially methylated
domains in IMR90 cell line, contiguous regions with an

average methylation level less than 70%). We calculated
the average number of miRNA target sites in PMDs and
other genomic regions. As expected, genes located in
PMDs had a lower promoter methylation level (P < 10-
4) and were regulated by more miRNAs (P < 10-6) (Fig-
ure 6). This result again demonstrated a negative corre-
lation existed between promoter methylation level and
the number of miRNA target sites.

DNA methylation and miRNA regulation in cancer genes
Cancer is a common complex disease, and many genes
have been reported as involved in the development of
cancer. Since cancer genes have been extensively studied
and often found to be regulated by miRNAs, it is inter-
esting to examine whether the cancer genes are more
likely to have low methylation in accordance with our
hypothesis and our observations above. To test this
hypothesis, we retrieved human cancer genes and their
annotations from the CGC database and compared the

Figure 5 Genes located in differentially methylated regions (DMRs) tend to have low methylation level measured by promoter mCG/
CG and more microRNA target sites. Error bar: standard error.

Figure 6 Genes located in partially methylated domains (PMDs) tend to have low methylation level measured by promoter mCG/CG
and more microRNA target sites. Error bar: standard error.
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cancer genes and other genes by their numbers of
miRNA target sites, normalized methylation level, CpGO/

E and number of CGIs in the promoter regions. Table 2
summarizes the results of these analyses. We found that
cancer genes tended to have more miRNA target sites
than other genes (average 18.60 miRNA target sites for
cancer genes versus 14.34 for other genes, P < 10-15,
Mann-Whitney U-test). On the contrary, cancer genes
had lower methylation levels than other genes, regardless
of whether the methylation level was measured by
methylation broadness (mCG/CG), normalized CpG con-
tent (CpGO/E), or number of CGIs in the promoter
regions (Table 2). For example, the normalized methyla-
tion level in cancer genes’ promoter regions was lower
than other genes (average 0.33 for cancer genes versus
0.53 for other genes, P < 10-15, Mann-Whitney U-test).
We next compared the features in two major groups of

cancer genes: dominant and recessive cancer genes.
Among the 427 cancer genes, there were 337 dominant
cancer genes and 85 recessive cancer genes based on
their annotations in the CGC database. We analyzed
their DNA methylation levels and number of miRNA tar-
get sites. For a normalized methylation level and CpGO/E,
no significant difference was detected between the domi-
nant and recessive cancer genes. However, the number of
miRNA target sites in the dominant cancer genes (19.18)
was larger than that of recessive cancer genes (16.16).
Finally, the number of CGIs in the promoter regions of
the dominant cancer genes (0.73) was significantly smal-
ler than that of the recessive cancer genes (0.87, c2 test,
P<10-15). These comparisons suggested the different
inheritable mechanisms of the dominant and recessive
cancer genes in cancer, as we recently examined in the
protein-protein interaction level [62].
Collectively, we observed that the promoter region

methylation level in cancer genes was negatively corre-
lated with their number of miRNA target sites. This
observation still held after filtering the potential con-
founding effects from gene expression level or expres-
sion broadness. This analysis indicated that the cancer
genes tended to be silenced by miRNA genes but could
escape from DNA methylation suppression.

Conclusion
To understand how DNA methylation and miRNA reg-
ulate the expression of their target genes, many previous
exploratory studies have been reported, but all of them
focused on the effect of each mechanism on the expres-
sion of target genes. In this study, we investigated the
relationship between promoter methylation and miRNA
regulation at the genome level by taking advantage of
recently released human methylome data and high qual-
ity miRNA and other gene annotation data. Our results
suggested that there is a functional complementation
between promoter methylation regulation at the tran-
scription level and miRNA regulation at the post-tran-
scriptional level. Specifically, the genes that are under
stronger promoter DNA methylation control tend to
avoid miRNA regulation by having fewer miRNA target
sites, and vice versa.
From an evolutionary perspective, both recruitment of

DNA methylation in a gene’s promoter region and the
advent of new miRNA genes during the transition from
invertebrate to vertebrate contributed to the high com-
plexity of vertebrate organisms and cell types [63-65].
Although many recent studies have greatly improved
our understanding of the evolutionary adaptations and
conservation of DNA methylation and miRNA regula-
tion, the relationship between DNA methylation and
miRNA regulation, and how these two mechanisms
dynamically influence each other’s evolution and func-
tion, remain poorly understood. The results supporting
complementary regulation between DNA methylation
and miRNA function in this study provided the first
attempt to uncover such an important and complex reg-
ulation system, which will help us understand the evolu-
tionary forces towards organisms’ complexity beyond
traditional sequence level investigation.

Additional material

Additional file 1: The gene expression intensities in germline
tissues. Totally 6569 genes can be assigned the expression intensities in
64 tissues. CpGO/E was calculated for the promoter region (-1000 bp to
+200 bp relative to the TSS) of each gene.

Table 2 Summary of microRNA target sites and methylation data in gene’s promoter regions

Gene
categories

Mean of microRNA target sites
(gene number)

Mean of mCG/CG (gene
number*)

Mean of CpGO/E (gene
number)

CGI number in promoter region
(gene number)

Cancer
genes

18.60 (379) 0.33 (381) 0.62 (381) 0.76 (412)

Dominant 19.18 (302) 0.33 (299) 0.61 (299) 0.73 (327)

Recessive 16.16 (76) 0.32 (80) 0.66 (80) 0.87 (84)

Others 14.34 (14,315) 0.53 (20,359) 0.48 (20,359) 0.53 (21,767)

CGI: CpG island. Dominant and Recessive genes are two major cancer gene categories.

*Those genes with CpG reads in their promoter region less than 3 were excluded.
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