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Abstract

Background: Recent studies suggest that many proteins or regions of proteins lack 3D structure. Defined as
intrinsically disordered proteins, these proteins/peptides are functionally important. Recent advances in next
generation sequencing technologies enable genome-wide identification of novel nucleotide variations in a specific
population or cohort.

Results: Using the exonic single nucleotide variations (SNVs) identified in the 1,000 Genomes Project and
distributed by the Genetic Analysis Workshop 17, we systematically analysed the genetic and predicted disorder
potential features of the non-synonymous variations. The result of experiments suggests that a significant change
in the tendency of a protein region to be structured or disordered caused by SNVs may lead to malfunction of
such a protein and contribute to disease risk.

Conclusions: After validation with functional SNVs on the traits distributed by GAW17, we conclude that it is
valuable to consider structure/disorder tendencies while prioritizing and predicting mechanistic effects arising from
novel genetic variations.

Background
“Sequence ® Structure ® Function” is the traditional
view that amino acid sequences determine the structure
of a protein molecule and that a definite protein struc-
ture is a prerequisite to biological function. This view
has been amended by the finding that more and more
proteins possess no definite ordered three-dimensional
structure but are still involved in key biological pro-
cesses, including cell cycle and gene regulation, molecu-
lar recognition, assembly of complexes, and signalling in
general [1,2]. Indeed, over 33% of eukaryotic proteins
contain structure-lacking regions. This kind of protein is
often named “intrinsically disordered proteins” (IDPs).
Several studies have shown a strong correlation between
disease-associated proteins and proteins containing

significant amounts of intrinsic disorder [3], leading to
the D2 concept of “disorder in disease” [4]. Complex
diseases such as cancer, neurodegenerative diseases, car-
diovascular diseases, and diabetes are often associated
with IDPs [3], likely because errors in signalling and reg-
ulation arising from IDPs are important for these dis-
ease associations. It was found that mutations that cause
disorder tendencies to flip to structure tendencies are
the most likely mutations in disordered regions to be
disease-causing [5].
Recent advances in genetic studies enabled the discov-

ery of many genetic regions linked or associated to com-
plex diseases, using array-based genotyping technology,
or more recently, next generation sequencing technol-
ogy. Many known or novel single nucleotide variations
have been identified, and their potential roles on disease
pathogenesis are unknown. Many bioinformatics tools
including FastSNP [6], Panther [7], PolyPhen2 [8], SIFT
[9], SNPs3D [10] and SPOT [11], have been developed;
many of them prioritize the SNV functions based on
their roles in affecting protein structures.
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Of particular interest here is that one study reported
that 114 out of 122 (93%) single amino acid polymorph-
isms (SAPs) located in disordered regions are associated
with disease. Thus SAPs occurring in disordered regions
are highly likely to affect the functions of the proteins
and be associated with disease [12].
In the present study, we systematically evaluate the

potential disease risk on the SNVs whose resultant
amino acid changes, SAPs, can change their structure/
disorder tendencies, based on the single nucleotide var-
iants derived from the 1,000 Genome Project and dis-
tributed by the Genetic Analysis Workshop (GAW17).

Methods
The overall analysis workflow includes three major steps
(Figure 1): 1. retrieving protein sequences for the genes
of interest; 2. mapping genetic variations in nucleotide
level into proteomic variations in amino acid level; and
3. assessing the capability of a genetic variation to
change the disorder/structured tendencies. This work-
flow integrates different levels of bioinformatics
approaches, and allows understanding how single
nucleotide variations can change the predicted struc-
ture/disorder estimate of the stability of the protein
structures, and how these changes affect disease risk.

Dataset
SNV genotypes for 697 individuals were obtained from
the sequence alignment files identified in the 1,000 Gen-
omes Project and distributed by the Genetic Analysis
Workshop (GAW17). A total of 24,487 exonic SNVs
within 3205 autosomal genes were included in the data,
regardless whether they are synonymous or non-synon-
ymous. In this study, we focus our analysis on the mis-
sense non-synonymous variations that can cause single
amino acid polymorphisms.
Three quantitative phenotypes (i.e. Q1, Q2, Q4) are

generated for each of the unrelated individuals, and a
total of 200 simulations are available to us. The disease

model of Q1 includes 39 SNPs in 9 genes from VEGF
pathway; Q2 is influenced by 72 SNPs in 13 genes
related to cardiovascular risk and inflammation; Q4 is
not affected by any of the available SNPs. Liability to
disease is defined as latent liability+Q1+Q2-Q4, where
latent liability is determined by 51 SNPs in 15 genes
involved in the VEGF pathway.

Retrieving protein sequences
Since UniProtKB/Swiss-Prot is a high quality manually
annotated and non-redundant protein sequence database
[13], we choose UniProtKB/Swiss-Prot to retrieve pro-
tein sequences. Furthermore, for every gene in the list,
we retrieved both the canonical sequence and isoform
data, downloaded from UniProtKB/Swiss-Prot database.
We used the gene symbol in the GAW17 data set as the
query to search for the amino acid sequences. Among
the 3,205 genes provided in the data set, amino acid
sequences of 2,893 genes were available in the Uni-
ProtKB/Swiss-Prot database, and retrieved for further
analysis. Among the 24,487 SNVs provided in the GAW
17 data, 18,075 SNVs were mapped in the UniProtKB/
Swiss-Prot database [13]. We exclude synonymous and
nonsense non-synonymous mutations from further ana-
lysis, since the former causes no change in disorder
score and the latter leads to truncation of the protein.

Converting genetic variation to proteomic variation
In order to map the single nucleotide variations into the
appropriate amino acid sequences, we used BLASTX
algorithm [14] downloaded from the National Center
for Biotechnology Information. BLASTX program trans-
lates the query nucleotide sequences in all six possible
reading frames and provides combined significance sta-
tistics for hits to different frames. The nucleotide
sequences from human genome build 36 (hg18) were
used to retrieve the nucleotide query for each gene, and
the reference sequences were the amino acid sequences
from UniProtKB/Swiss-Prot. For ~10% of the genes, one
segment of amino acid sequence may be mapped to dif-
ferent parts of nucleotide coding regions. To ensure the
accuracy of the mapping, we further confirmed that
paired segments in the query nucleotide sequence and
the resultant amino acid sequences are in the same
sequential order. We found this dramatically increase
the mapping accuracy.

Assessing the capability of a genetic variation to change
disorder/structured status
To evaluate the potential of an SNV to alter the disor-
der or structure tendency, we first predict the disorder
score for a SNV in the specific sequence. In this study,
the per-residue disorder predictor PONDR-VSL2 [15]
was used. VSL2 is composed of a set of support vector

Figure 1 Schematics of the workflow.
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machines trained on datasets containing structured and
disordered regions of various lengths. VSL2 provides
one disorder prediction score between 0 and 1 for each
residual. A score above or below 0.5 indicates that the
target amino acid is located in a predicted region of dis-
order or structure, respectively. Overall, VSL2 achieves
accuracy close to 80% correct and is one of the more
accurate disorder predictors currently available.
Although PONDR-VSL2 used in our study is one of the
most accurate protein disorder predictors. There still
exist two sources of uncertainty in disorder prediction,
one is model uncertainty, and the other one is data
uncertainty. Such work has been discussed in recent
study [16].
We then use the following strategy to calculate the

ability of one SNV to change the tendency of a local
sequence region to form disorder or structure:

�DS = DSmin −DSmaj (1)

where DSmin and DSmaj represent the SNV’s disorder
scores for minor allele and major allele, respectively. A
positive or negative ΔDS value indicates that the minor
allele will be associated with an increased or decreased
disorder potential, respectively.

Results and discussion
Disorder- and Structure-potential in SNVs
The hypothesis that we want to test is that SNVs that
cause changes in the structure/disorder tendency are
deleterious. Destabilization of a structured protein
domain by a mutation is often harmful [17]. A positive
ΔDS in a structured protein corresponds to this case. As
indicated above 114/122 mutations in disordered regions
were associated with disease [12], so we also need to
consider the possibility that SNVs causing negative ΔDS
might also be deleterious. Of course for a mutation, it
would likely be the change in the structure ¬® disor-
der tendency,, ΔDS that would be important, not neces-
sarily the absolute value.

Context-dependence of ΔDS values
Using the VSL2 software [15], we evaluated how a given
amino acid change alters the potential for protein disor-
der by calculating the ΔDS as described above. The out-
put of the VSL2 software depends not only on the
amino acid at a given position but also on the amino
acids surrounding that position. Thus, a particular ΔDS
value will depend both on the amino acid change and
also on the sequence context of the given amino acid
change. Here we will compare two scenarios: when the
same amino acid substitution occurs in two isoforms of
related proteins and when the same amino acid substi-
tution occurs in unrelated proteins.

To determine context-dependence for different iso-
forms, we identified SNVs in 1,170 genes that have iso-
form records in UniProtKB/Swiss-Prot database. In total
1,082 SNVs were found to potentially exist in 3,229 dif-
ferent isoforms. Pair wise comparison of all of the
related isoforms yields a distribution showing how much
each ΔDS value changes as the sequence-context
changes in a different isoform. This distribution shows a
very strong peak very close to a shift of 0.0003 in the
ΔDS value followed by an extended tail, giving a average
of ~ 0.01 for the data. Such a small context-dependent
change for most of the sequences likely results from the
very similar amino acid sequences of the different iso-
forms. Given such a small context-dependent change, it
is not surprizing that only 0.2% of these amino acid sub-
stitutions lead to a change in the sign of the ΔDS value.
Determining the context dependence for the same

amino acid change in different sequences is more
involved than the comparison of isoforms. Overall, there
are 380 possible non-synonymous amino acid changes.
However, if only one base change is allowed per codon,
then there are only150 possible changes. These 150 pos-
sible changes were all observed in the dataset. The aver-
age ΔDS values, determined from the multiple instances
of the same amino acid change, range from close to
zero to slightly more than 0.16 (Figure 2).
The amino changes giving the 10 largest values for +

or - average ΔDS are given in Tables 1, 2, while the

Figure 2 Comparisons of average ΔDS scores changes. The ΔDS
values the same amino acid change in the different proteins were
collected and averaged. Shown are the results for all 150 different
amino acid changes.

Hu et al. BMC Genomics 2011, 12(Suppl 5):S2
http://www.biomedcentral.com/1752-0509-5-S3-S2

Page 3 of 7



codon changes are given in Tables 3, 4. An amino
change might have one or more than one codon
changes. The changes with large + average ΔDS corre-
spond to mutating a large, hydrophobic residue (such as
W, F, I, Y) into a hydrophilic one (S, N) or even into
one with an electrical charge (R, D, K). This would cer-
tainly cause a shift towards a greater tendency to be dis-
ordered. On the other hand, the changes with large -
ΔDS correspond to just the reverse, with a charged (K,
E, R, D) or hydrophilic (S, G) residue mutating into a
structure-promoting one (I, W, V, F, Y or C). This sort
of change identifies a shift towards a greater structure
tendency. The rather large standard deviations indicate
significant contributions from the surrounding
sequences.
As expected from the large standard deviations in

Tables 1, 2, pairwise comparisons of the same amino
acid changes in different sequences give a very broad
distribution. This distribution has a very weak peak near
0.006 and mean value of ~ 0.036. Large sequence differ-
ences for unrelated proteins accounts for these much
more significant context-dependent changes here for the
ΔDS values for a particular type of amino acid change

as compared to the much smaller changes observed for
the protein isoform data as discussed above.

Minor allele frequencies and ΔDS
To illustrate the disorder/structured potential of SNVs,
we focused our analysis on 10,254 missense non-synon-
ymous SNVs, with4,345 and 5,909 showing positive and
negative, ΔDS respectively.
Small values of ΔDS are expected to be less important,

so partitioning the data into subsets having larger and
smaller ΔDS values should be helpful. Examination of
Figure 2 suggests that a threshold of |ΔDS| ≥ 0.04
would eliminate most of the small peaks in the figure.
This value is also slightly larger than the mean value of
~ 0.036 for the context-dependent shifts of the ΔDS dis-
tribution as mentioned above. So, for both of these rea-
sons, 0.04 was chosen as a threshold for our initial
studies.
The positive and negative ΔDS sets were divided into

subsets according to the magnitude of the ΔDS values
(Table 5). As indicated, there are 1,572 SNVs with ΔDS
≥ +0.04 and 2,629 SNVs with ΔDS ≤ -0.04 (Table 5).
The subsets with }ΔDS} ≥ 0.04 contain [(1,572 + 2,629)/
10,254] ®40% the data.
Next, the differences of the minor allele frequency

(MAF) were compared for various subsets partitioned by

Table 1 Rank of top 10 amino acid (AA) changes with +
mean ΔDS

AA changes Mean ΔDS STD

W ® S 0.17 ± 0.08

F® S 0.15 ± 0.07

W® R 0.14 ± 0.07

I® S 0.14 ± 0.08

Y® S 0.13 ± 0.07

V ® D 0.13 ± 0.02

L® S 0.13 ± 0.06

I® K 0.13 ± 0.07

Y® D 0.12 ± 0.03

Y® N 0.12 ± 0.03

Table 2 Rank of top 10 amino acid (AA) changes with -
mean

AA changes Mean ΔDS STD

K®I -0.17 ± 0.03

S®W -0.16 ± 0.08

G®W -0.15 ± 0.07

E®V -0.15 ± 0.05

R®W -0.15 ± 0.07

S®C -0.14 ± 0.06

S®F -0.13 ± 0.07

D®Y -0.12 ± 0.06

S®I -0.12 ± 0.07

S®Y -0.11 ± 0.07

Table 3 Rank of top 10 codon changes with + mean ΔDS

Codon changes Mean ΔDS STD

TGG® AGG 0.23 ± 0.002

ATT ®AGT 0.18 ± 0.038

TAC® AAC 0.17 ± 0.073

TGG®TCG 0.17 ± 0.079

TTT® TCT 0.16 ± 0.086

TTA® TCA 0.15 ± 0.059

GTA® GAA 0.15 ± 0.080

TGC® AGC 0.14 ± 0.168

TAT® TCT 0.14 ± 0.065

TTC® TCC 0.14 ± 0.060

Table 4 Rank of top 10 codon changes with - mean ΔDS

Codon changes Mean STD

AGT®TGT -0.20 ± 0.040

AAA®ATA -0.17 ± 0.034

GAA®GTA -0.17 ± 0.034

TCG®TGG -0.16 ± 0.081

TCT®TAT -0.16 ± 0.044

AGG®TGG -0.16 ± 0.070

AGT ®ATT -0.16 ± 0.064

GGG®TGG -0.15 ± 0.070

CGG®TGG -0.15 ± 0.073

GAG®GTG -0.14 ± 0.055
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their ΔDS scores. The MAF is the frequency of the
SNV’s less frequent allele in a given population. When
ΔDS values are positive or negative but close to zero
(Figure 3A), the two populations show similar MAF
values as expected. The two populations are distinguish-
able, but just barely (with a p-value of only 0.163). On
the other hand, as the ΔDS values become larger (Figure
3B), the MAFs of the two populations become more
clearly distinct (p-value 1.58 × 10-4). To observe this sig-
nificant change in the two populations for such a small
change in ΔDS threshold value is remarkable and sug-
gests that a change in the structure/disorder potential is
indeed an important variable with regard to evaluating
single amino acid changes in proteins.

The effect of disorder/structured potential SNVs to
protein and disease
Three traits namely Q1, Q2 and disease liability distrib-
uted by GAW17 are simulated to be affected by a parti-
cular set of non-synonymous SNVs within 9, 13 and 15
genes [18]. We further checked whether these genes

also have SNVs that give significant changes (e.g. with |
ΔDS| ≥ 0.04). Two, seven and six SNVs are found to
have significant changes in the structure/disorder poten-
tial in trait Q1, Q2 and disease liability, respectively
(Table 6).
The details for these 2 + 7 + 6 = 15 examples are

given in Table 7. In addition to the ΔDS values, also
included are the reported amino change and the predic-
tion score for the major allele.
In a previous study of deleterious mutations in struc-

tured proteins, energy calculations on 3-D structures
showed that the deleterious mutations were those that
destabilized the structure [17]. A + ΔDS for a region of
protein predicted to be structured (e.g. with a prediction
score < 0.5) would correspond to the potential destabili-
zation of a region 3-D structure. Interestingly, 6/7 of the
examples with + ΔDS values have scores < 0.5, with the
remaining example having a score = 0.51. It would be
interesting to try this approach on real data to deter-
mine if this approach could substitute for that described
previously [17] for the identification of deleterious
mutations in structured proteins. The advantage here is
that the 3-D structures would not be needed.
Of the 15 examples, 8 involved - ΔDS values. Five of

these corresponded to regions likely to be structured (e.
g. score < 0.5), so from the energetic point of view
described above it is not clear how these changes could
affect structure. On the other hand, the observed
changes (P®L, D®Y and S®L) could certainly lead to
protein malfunction.
The last three examples involved amino acid

changes that would increase the structural tendency

Table 5 Number of SNVs in synonymous/non-
synonymous region

Missense
Non-synonymous

Synonymous |ΔDS| > 0.04 |ΔDS| > 0 Nonsense
Non-synonymous

+ΔDS
ΔDS

– 1,572 4,345 –

– 2,629 5,909 –

Total 7,511 – 10,254 310

Figure 3 Average MAFs for SNVs with different ΔDS values. (A) Comparison of average MAFs for SNVs with |ΔDS| smaller than 0.04. (B)
Comparison of average MAFs for SNVs with |ΔDS| greater than 0.04. *** stands for p-value<0.001
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within a region of disorder. Interestingly, recent work
suggests that mutations causing disorder tendencies to
change to structure tendencies occur much more
often than the reverse [5,19]. Furthermore, a very high
fraction of disease-associated mutations mapping to
regions of disorder exhibit such tendencies [5] while a
significant fraction of these mutations are also asso-
ciated with the loss of sites of posttranslational modi-
fication [20]. Note that posttranslational modifications
very commonly occur in disordered regions [1], per-
haps much more often than in ordered regions, espe-
cially those modifications involving phosphorylation
[21,22].
Also note the earlier work cited above indicating that

114/122 mutations in disordered regions proved to be
deleterious [12]. Thus, it would be worthwhile to obtain
these data and determine the disorder prediction thresh-
old with the best identification of these harmful muta-
tions. Such a new result could then be included in any
future work.

Conclusions
The use of mutation-induced changes in disorder pre-
diction scores, called ΔDS, has been studied here. The
overall idea is that a significant change in the tendency
of a protein region to be structured or disordered could
lead to malfunction of such a protein. The initial find-
ings on the data provided by GAW17 give insight with
regard to the directions to explore on real data. For
example, with real data one could explore whether some
particular threshold for ΔDS would give significant
separation of harmless versus harmful mutations. If the
data of reference [18] turns out to be a general finding,
or even if only applicable to certain diseases, this obser-
vation, the discovery of which came out of this work,
certainly points towards important new directions to try.
There are some limitations for the study. Single SNV

may not change the disorder properties too much, since
changes of disorder score depend more on changes of a
segment than an individual mutation. So in our further
work, we would try to investigate the combination or
pattern of SNVs nearby the high ΔDS spot.
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Table 6 Summary of results on GAW17 simulated data

Trait # of genes # of SNVs with
|ΔDS| > 0.04

# of SNVs with |ΔDS| > 0.04 in the answer sheet # of SNVs in the answer sheet

Q1 9 8 2 39

Q2 13 12 7 72

disease liability 15 10 6 51

Table 7 SNVs with |ΔDS |>0.04 in Q1, Q2 and disease
liability

trait SNV
name

Gene
name

AA
changes

ΔDS Major Allele
Score

Q1 C19S4815 HIF3A R®C -0.10 0.81

Q1 C4S1879 KDR V ®M 0.04 0.11

Q2 C9S377 VLDLR W® C 0.18 0.51

Q2 C9S444 VLDLR D® Y -0.16 0.36

Q2 C10S3050 SIRT1 P ® L -0.16 0.33

Q2 C8S476 LPL I®S 0.15 0.17

Q2 C8S530 LPL V® G 0.13 0.32

Q2 C6S5446 VNN3 V® I -0.05 0.44

Q2 C8S442 LPL D®N -0.04 0.29

disease
Liability

C17S4581 PRKCA V ® E 0.19 0.37

disease
Liability

C18S2492 PIK3C3 V® G 0.13 0.32

disease
Liability

C1S9266 PIK3C2B S ® F -0.13 0.77

disease
Liability

C8S900 PTK2B S ® L -0.13 0.38

disease
Liability

C2S2307 BCL2L11 M ® R 0.07 0.44

disease
Liability

C1S9267 PIK3C2B P ® L -0.06 0.83
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