
RESEARCH Open Access

Maximum predictive power of the microarray-
based models for clinical outcomes is limited by
correlation between endpoint and gene
expression profile
Chen Zhao1, Leming Shi2, Weida Tong2, John D Shaughnessy Jr3, André Oberthuer4, Lajos Pusztai5,
Youping Deng6, W Fraser Symmans5, Tieliu Shi1*

From BIOCOMP 2010. The 2010 International Conference on Bioinformatics and Computational Biology
Las Vegas, NV, USA. 12-15 July 2010

Abstract

Background: Microarray data have been used for gene signature selection to predict clinical outcomes. Many
studies have attempted to identify factors that affect models’ performance with only little success. Fine-tuning of
model parameters and optimizing each step of the modeling process often results in over-fitting problems without
improving performance.

Results: We propose a quantitative measurement, termed consistency degree, to detect the correlation between
disease endpoint and gene expression profile. Different endpoints were shown to have different consistency
degrees to gene expression profiles. The validity of this measurement to estimate the consistency was tested with
significance at a p-value less than 2.2e-16 for all of the studied endpoints. According to the consistency degree
score, overall survival milestone outcome of multiple myeloma was proposed to extend from 730 days to 1561
days, which is more consistent with gene expression profile.

Conclusion: For various clinical endpoints, the maximum predictive powers of different microarray-based models
are limited by the correlation between endpoint and gene expression profile of disease samples as indicated by
the consistency degree score. In addition, previous defined clinical outcomes can also be reassessed and refined
more coherent according to related disease gene expression profile. Our findings point to an entirely new
direction for assessing the microarray-based predictive models and provide important information to gene
signature based clinical applications.

Introduction
During the past several decades, scientists have been
exploring the relationship between genes and disease
[1]. The development of high-throughput gene expres-
sion analysis technologies, such as gene-chip and next
generation sequencing, has made it possible to under-
stand disease related biological mechanisms at the

genome-wide level [2]. From a statistical view, microar-
ray-based clinical applications fall into three distinct
types: 1. outcome-related gene discovery, 2. class discov-
ery approaches, and 3. supervised prediction [3]. All
these investigations are based on the simple hypothesis
that the biological behavior (= the individual phenotype)
is controlled by the expression level of specific genes
[4]. As a severe or even lethal phenotype [5], cancer and
many other diseases have drawn enormous scientific
attentions, and great efforts have been put forth to iden-
tify factors causing the disease on all the levels - from
the transcriptome, proteome and regulatory relationship
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to systems biology [2]. Alternatively, microarray-based
approaches have been applied to extract features that
can be implemented in a model that accurately predicts
various phenotypes of diseases. To this end, many differ-
ent algorithms, combined with multiple gene signature
selection methods, have been applied to generate mole-
cular classifiers [6]. In order to reach higher prediction
accuracy, related researchers have been trying to identify
different factors that affect each step in model building
processes. However, despite fine-tuning approaches and
model parameter optimizing strategies, not much signifi-
cant progress has been made to increase the predictive
power of such classifiers. In fact, these explorations
revealed considerable over-fitting problems [3].
The MAQC-II Consortium has taken great efforts in

attempting to identify factors that affect the accuracy
and the consistency of predictive models. Under rigor-
ous control, based on the performance of totally blind
external validation to all the endpoints related to human
diseases in the three datasets, none of the traditional
clinical outcomes can be predicted with outstanding
accuracy, except for estrogen-receptor status [7]. In
addition, previous published results have also shown
that many endpoints in clinical applications cannot be
predicted effectively [3].
Many studies have been done with the fundamental

assumption that a causal relationship exists between a
phenotype and gene expression profile, however, it is
very easy to recognize the uncertainty of the hypothesis.
First, a common agreement has been reached that the
overwhelming majority of intractable complex diseases,
especially tumors, are clinically heterogeneous. More-
over, the molecular phenotype may change dynamically
both in the process of disease progression and in
response to treatment. In microarray-based supervised
classification, the predicted endpoints are generally
defined by fixed observations at a given time point, such
as event-free survival or response to treatment after a
given amount of time. As a result, the definition of the
criteria to mark off the potentially changing molecular
status is entirely based on a factor that may in reality
have indefinite values or change in over time, thus
affecting prediction performance. With the continuous
development of curative techniques, the pathological
indexes are progressing synchronously [8,9]. Tradition-
ally, unsupervised hierarchical cluster of a whole expres-
sion profile is a descriptive method of the consistency
between pathological state and the whole transcriptome
state, but is not a quantitative method and far apart
from the biological interpretable hypothesis concerning
phenotype and gene expression level relationship, which
takes only several specific genes into consideration.
Here, we propose a quantitative method to describe

the consistency between endpoint definition criteria and

gene expression profiles and apply it to the three data-
sets provided by the MAQC-II Consortium. This quanti-
tative degree of consistency, termed consistency degree,
is proved to match the classification performance of the
external validation in the MAQC-II project [7], and can
be used for interpreting, testing and defining the separ-
ability of the given endpoint status with regard to gene
expression profile (Figure 1).

Results
Principle and implementation of the consistency degree
Consistency degree is proposed to be a probability mea-
sure to evaluate the degree of the coherent relationship
between the endpoint phenotype (pathological criteria)
and the gene expression profile. Generally, a microarray-
based clinical outcome classification technology is an
implementation to fit the relationship between the end-
point phenotype and the gene expression profile. This
fitness is entirely based on the hypothesis that a causal
relation exists between a phenotype and gene expression
profile. Unlike building a classifier, to construct an effec-
tive consistency measurement, one not only needs to
mine the factors most related to the phenotype, but also
needs to take into consideration the corresponding var-
iations within the data. Here, the balance of these two
mutual constrained conditions is treated as the principle
in the whole procedure. We take advantage of the
Spearman’s rank correlation coefficient to select poten-
tially phenotype related genes, which have monotonic
relation to an endpoint. Since different correlation coef-
ficients have different biases, it is too arbitrary to fix the
correlated gene set by just setting a specific p-value in
the statistical correlation test. To uncover the largest
amount of information concealed within the data in the
phenotype related direction, we maximize the variance
contribution rates of the first principle component,
where the PCA (principle component analysis) or kernel
based PCA [10] is recursively performed against a list of
genes ranked by descending the calculated correlation
coefficients, and the correlated gene set is fixed at the
same time. Next, the scores of the first principle compo-
nent are divided into two groups based on different
traits of a defined phenotype. Finally, the consistency
degree is defined as the posterior probability of a change
point existing between the different traits of a defined
phenotype. And the posterior probability is the boot-
strapped median of the change point posterior probabil-
ity calculated by Bayesian change point analysis [11]
(additional file 1).

The validity of the consistency degree
To evaluate the validity of the consistency degree, we
calculated it for all of the training datasets about human
diseases provided by the MAQC-II project, but not for
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any of the external validation datasets. We considered
the top ten MCCs of all 320 candidate models in the
external validation (additional file 2) as a representation
of the most reliable and closest relationship between
each endpoint and gene expression profile. Then we
performed Spearman’ rank and Kendall’s rank correla-
tion tests between these MCCs and the corresponding
consistency degrees (additional file 3). P-values in both
of the correlation tests are less than 2.2e-16, proving the
validity of this measurement to estimate the consistency
between pathological status and gene expression pro-
files. The consistency degrees for all the change points
are shown in additional file 3. Obviously, the consis-
tency degrees of the endpoints I and M are the smallest,
the corresponding curves show the weakest changes,
and in fact, both of these endpoints are designed to be
negative control with the actual class label randomly
assigned. In contrast, the consistency degrees of the
endpoints H and L, which are designed to be positive
control with the actual sex label of the patient assigned
[7], are the largest and the corresponding curves have
the most significant changes. Besides the endpoints H
and L, the endpoint E has the maximum consistency
degree (0.979) of the remaining endpoints. As an index

of a gene expression product, endpoint E represents the
clinical estrogen-receptor status and is easily predictable
by microarray-based models. The consistency degrees of
the endpoints K and J are in the medium level of the
ten endpoints, 0.533 and 0.443, respectively, and end-
point D is relatively lower (additional file 3). The smal-
lest consistency degrees (0.206 and 0.246, additional file
3) are found in endpoints F and G in all of the actual
pathological trait defined endpoints. The orders of the
consistency degrees for the ten endpoints are signifi-
cantly related to the average of the top ten MCC of the
independent external validation, by which the validity of
the consistency degree is distinctly identified. Thus, the
consistency degree, which is calculated solely from the
training datasets, is definitely valid for the application of
interpreting, testing and defining the gene expression
profile separability of the given pathological status.

Redefining the pathological criterion based on gene
expression
Besides testing the correlation between each endpoint
and gene expression profile, we calculated the consis-
tency degree for any possible cutoff and redefined the
pathological criterion for each endpoint to make it as

Figure 1 Overview of analysis flow chart. 1). All the analysis is based on the hypothesis that a causal relation exists between expression levels
of specific genes and an endpoint phenotype. 2) The strength of the relation is calculated by the proposed consistency degree, which is valid
with the performance of thousands of models. 3) By maximizing the consistency degree, the endpoint phenotype can be redefined to be most
consistent with gene expression levels. 4) Last, traditional and redefined endpoints are compared by the ranges of phenotype variance and the
positions of unpredictable samples in gene expression levels.
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consistent as possible to the gene expression status by
iterative reusing the method we proposed. Four end-
points F, G, J and K were redefined here according to
the results of our analysis (additional file 4). The end-
points F and G refer to overall survival milestone out-
come (OS) and event-free survival milestone outcome
(EFS) of multiple myeloma (MM) data set, respectively,
whose cutoffs are both set up as 730 (2*365) days. The
endpoints J and K, correspond to the outcomes of neu-
roblastoma (NB), whose cutoffs are both offered as 900
days [7]. According to our algorithm, the resulting cut-
offs of G, J and K are close to the given values defined
by the MAQC-II project, which are 690, 1,029 and 862
days, respectively, while the cutoff of endpoint F is 1,561
days, which is much larger than the current given cutoff,
and all the enrichment p-value of the four cutoffs are
less than 2.2e-16 (see methods).
To evaluate the significance of the new endpoint cut-

offs, the bootstrap cutoffs are resampling 1,000 times.
Because relationship between cutoffs and gene expres-
sion profile is neither simply linear nor continuous, the
new cutoffs were not given as in interval estimate, and
instead an enrichment test is constructed based on
binomial distribution. Furthermore, Kaplan-Meier survi-
val analysis were performed to test the significance of

the new endpoint cutoffs, and the result confirms signif-
icant difference between OS and EFS outcomes (Figure
2B), the 75 percents survival quantile milestone, purely
depending on the clinical data, is quite similar with our
non-survival period, which are 729, 1280 days for EFS
and OS endpoints respectively (additional file 2). Thus,
certain consistence exists between the microarray-based
refined endpoints and clinical data, the discrepancy of
microarray-based refined endpoints from clinical data
can provide potential new reference for reevaluating
clinical features on systems level.
Different from the original same given cutoffs, the

redefined cutoffs of OS are larger than the cutoffs of
EFS in both MM and NB datasets, implying OS days to
be a more comprehensive index of samples, which inte-
grate ages, habitus and other factors, while EFS days are
more pertinent to the investigated disease. Therefore,
the OS is not only larger in the value per se, a larger
cutoff of OS can also reflect some other features of a
sample [12]. As the result shows, the lesser variance in
the overall survival samples indicates that the new cut-
offs, which is different from the given criterion, offers us
a more coherent gene expression mechanism in the
redefined overall survival samples and the larger poster-
ior probability illustrates that the two corresponding

Figure 2 Change point comparison between the given and redefined cutoffs for endpoint F. A. Change point comparison. Two parts in
the figure; the upper one is for posterior mean, and the lower part for the posterior probability. In the upper part, the blue solid lines and the
translucent skew ellipses refer to the change point chart of the cutoff 730 days (2*365) given by MAQC-II project, while the others refer to the
change point chart with the redefined cutoff 1,561. Posterior mean for the given cutoff is linear scaled to the range of that for the redefined
cutoff. The boxplot in the left side of the change point charts represent the ranges of the first component values of the OS negative samples.
The larger points represent the unpredictable samples. The skew elliptical ones in purple and the circle ones in orange represent the
corresponding positions in the charts with given cutoff and redefined cutoff, respectively. In the posterior probability part of the figure, the
dashed lines are the reference lines of the maximum posterior probability values. B. Kaplan-Meier survival curve. Six Kaplan-Meier survival
curves are shown in the figure for six datasets, including training, test and training-test combined dataset for both EFS and OS endpoint. Three
EFS associated curves (blue, green, wheat) are more sloping than OS associated curves (purple, yellow, red) and underneath the OS associated
curves.
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traits have a stronger separability based on the gene
expression profiles (Figure 2A).

Significant properties and proposed solution of the
unpredictability
To validate our methodology and results, we also used
our approaches to analyze those consistently mispre-
diced samples in the MAQC-II independent validation
datasets collected from the reported outcome of each
team, and found that unpredictability can be explained
by the consistency degree score.
In the consistent misclassification cases of dataset

MM, three significant discoveries emerge from our ana-
lysis result. First, there is a substantial correlation
between the unpredictability of the endpoint F (OS,
Overall Survival) and the endpoint G (EFS, Event Free
Survival). In other words, the unpredictable samples in
the endpoint F are also difficult to be predicted in the
endpoint G and visa versa (Figure 3). Second, the differ-
ence between OS times and EFS times is significantly
smaller in the unpredictable samples than that of other
samples by the one sided Wilcoxon rank-sum test (p
value < 0.05), which indicates that it is difficult to pre-
dict those samples that have suffered from severer dis-
ease with quick deterioration. Third, for endpoint F, all
unpredictable samples (error rate larger than 0.97) were
falsely predicted as OS survivors by almost all the pre-
dictive models but presented less that 730 days of over-
all survival. These findings strongly indicate that the
clinical standard in defining non-survival in the original
endpoint F is too stringent. Although the stringent stan-
dard allows for an accurate identification of the non-

survival condition (high specificity, top ten average spe-
cificity 0.89), meanwhile, it results in misclassifying par-
tial death samples as survival (low sensitivity, top ten
average sensitivity 0.31) (additional file 3). Obviously,
since the uniformly mispredicted samples are OS posi-
tive, the intuitionistic solution for them is to extend the
time scale for the non-survival standard and simulta-
neously narrow the time scale for the survival standard.
This is correlated to the result we got based on the cor-
relation from gene expression profile that extends the
cutoff of non-survival period from 730 days to 1,561
days.
Next, we adopted the PCA change point method (see

methods) to carry out the analysis for those unpredict-
able samples (see methods) and try to get a deeper
insight into the phenomenon of the OS positive uni-
formly misprediction and the effect of the intuitionistic
understandable solution mentioned above. Compared
with the given cutoff 730 days, extending the survival
time scale to 1,561 days can effectively increase the con-
sistence of survival samples based on the gene expres-
sion profile, thereby improving the performance of OS
positive (death) prediction (Figure 2A). For the 730 days
cutoff given by the MAQC-II project, the first principle
component scores of eight out of the nine unpredictable
samples are larger than the posterior mean of the scores
of the OS positive samples, and fall into the center
region of the first component score of the OS negative
samples, which is a visible evidence for us to understand
the unpredictability (Figure 2A). Relatively, when the
cutoff is redefined as 1,561 days, the consistency of the
OS negative sample is much more convergent than that

Figure 3 Unpredictability relationship between endpoint F and G. A) the cutoff of the error rate to select OS (Endpoint F) unpredictable
samples is set to 0.9, and the height of the height of bars represent the probability densities of the samples in corresponding EFS (Endpoint G)
prediction error, gray bars for all the samples and red for the OS unpredictable samples with error rate larger than 0.9. Obviously, the OS
unpredictable samples tend to have high EFS prediction error rate. B) The same situation presents in the EFS unpredictable samples.
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of the original given cutoff (the boxplots in the left
upper side in Figure 2A). Along with the redefined cut-
off, the first principle component scores of six out of
the nine unpredictable samples are less than the poster-
ior mean of the score of the OS negative samples, and
almost beyond the visibly narrowed dense region of the
OS negative samples. This indicates that the redefined
cutoff makes it possible to improve the true positive
rate for these unpredictable positive samples. From the
comparison of the two different cutoffs, it can be
derived that the consistency in gene expression profile is
not good for the deceased patients’ samples (OS = 1). In
contrast, the gene expression profiles reach good con-
cordance for the survival samples according to the
extended cutoff. At the same time, the re-defined
extended cutoff strengthens the correlation between the
re-defined endpoint and gene expression profile signifi-
cantly, thereby providing a solid fundament for building
a classifier with higher performance.

Discussion
The microarray-based technology has drawn more and
more attention in the biomedical researches. Numerous
experiments have focused on the gene expression profil-
ing generated with microarray technology to better
understand the biological mechanisms of disease patho-
genesis. Meanwhile, gene signatures selected through
microarray data analysis, have been used to predict clini-
cal response, disease stages or subtypes. A lot of investi-
gators have already discussed different aspects of gene
signature selection including classification algorithm,
producing process, cross-platform comparison, valida-
tion, best signature selection.
Feature selection and classifier selection are two core

steps in gene expression microarray-based clinical out-
come classification for disease. Based on the hypothesis
that a causal relation exists between a disease-specific phe-
notype and corresponding gene expression profile, the fea-
ture selection step is considered an exploration of the
potential molecular mechanism of endpoints, which is
often a time-consuming process. Because of the ambiguity
and changeability of disease states under certain criteria,
the consistency between phenotype and transcriptome
state is instable and may weaken the microarray-based dis-
ease related prediction. Furthermore, some pathological
standards are defined empirically and restricted to con-
temporary diagnostic techniques. Since there may be no
consistent gene expression profile mechanism underlying
a given endpoint phenotype, this indicates that the rela-
tionship between a phenotype and gene expression profile
should be evaluated prior to exploring a microarray-based
predictive model for pathological classification.
Therefore, instead of a priori assuming an association

between endpoint phenotype and gene expression

profile, we propose to first compute the consistency
degree to test and evaluate this association. Based on
the performances of thousands of classifiers from the
MAQC-II project, the validity of the consistency degree
was explicitly identified by our study. For example, for
the endpoints G, J and K, our results show that the initi-
ally attributed cutoff criterion for each endpoint was
close to our redefined one, thus indicating a relative
consistency between clinical phenotypes and gene
expression profiles. However, based on the given cri-
teria, the predictive power of models for those endpoints
are still insufficient. This can be reflected by the consis-
tency degree (additional file 3). Since the consistency
degrees cannot be increased any more by iterating all of
the possible cutoffs, it indicates that there are weak rela-
tionships between the pathological traits and gene
expression profiles for those three endpoints.
In all of the six actual tested endpoints, endpoint E,

refers to estrogen-receptor status, is the only one that
can be predicted relatively accurately (average top ten
MCC, 0.76, additional file 3). ER is phenotype defined
based on the activity of estrogen receptor on the tumor
[13] and has clear related molecular mechanism, the
consistency degree between this endpoint phenotype
and gene expression profile is relative high. The high
consistency degree of the endpoint E is a good example
to confirm the predictability of the microarray-based
models for a pathological endpoint, and is a positive evi-
dence for the existence of the causal relation between
gene expression profiles and a pathological endpoint.
However, for low predictable endpoints, such as pCR,
OS, EFS (additional file 3), which reflect more compli-
cated clinical outcomes resulting from complex clinical
treatments, no explicit molecular mechanisms has been
elucidated to date. The lower predictive ability of micro-
array-based model for those complex endpoint pheno-
types indicates that the characteristics of those endpoint
phenotypes cannot easily be captured by the snapshot of
gene expression profile. Therefore, the consistency
degree between the phenotype and gene expression pro-
file for those endpoints is much lower. These results
imply that there are still wide gaps between complex
endpoints and gene expression profile that need to be
filled up and the current defined cutoffs for those end-
points need to be further evaluated comprehensively
and defined accurately before applying the microarray-
based models during clinical applications.
Above all, our results demonstrate that cautions

should be taken during the development of microarray-
based predictive model and that most importantly, the
pathological status need to be carefully examined and
defined. Otherwise, enormous effects made by the statis-
tical approach eventually may end up with failure of
reaching the ultimate goal, since the maximum
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predictive power of the models is limited by the correla-
tion between clinical phenotype status and gene expres-
sion profile. Based on our findings, we conclude that the
consistency degree score is an important index that
should be determined before building predictive models
based on microarray measurements. Ultimatively, calcu-
lating the consistency degree will help to build more
reliable classification models.

Materials and methods
Datasets
Three of the six datasets and ten of the thirteen end-
points provided by MAQC-II Consortium are used here,
including the breast cancer dataset [13], the multiple
myeloma dataset t [14], the neuroblastoma datasets [15]
and all of the related endpoints of the three datasets [7].
In order to keep the independency between the external
validation performance and the consistency degree,
none of the external validation data sets are used here.

Consistency degree of gene expression profile and
pathological index
The consistency degree is defined to measure the con-
sistency between endpoint criteria and gene expression
profiles. According to the principle, which is the balance
of fitting the correlation and keeping the variation, we
propose an algorithm which integrate two measure-
ments, the Spearman’s rank correlation rho and the
contribution rate of the first principle component in
PCA, corresponding to the correlation between the gene
expression profile and pathological index and the varia-
tion consisted in gene expression profile, respectively.
An outline of the algorithm is described in additional
file 1. According to the algorithm, the consistency
degree is represented as the posterior probability of a
change point existing between the different traits of a
phenotype, calculated by a Bayesian change point analy-
sis [11,16]. Although it is a more simple change point
problem in the binary partition situation here, we also
perform the fast Bayesian change point analysis [16,17]
to obtain a global result. Following Barry and Hartigan
[11,16,17], the posterior probability of a change point at
position i+1 is defined as:

pi = P(Ui = 1|X,Uj, j �= i)

and the odds of a change point at a particular position
in the partition i+1 is:

pi
1 − pi

=
P(Ui = 1|X,Uj, j �= i)

P(Ui = 0|X,Uj, j �= i)

where Ui is an indicator function to indicate where a
change point existed in position i, and X is the data. All
the associated parameters are the default values [16].

After the odds are maximized, two vectors are esti-
mated, containing the posterior means and the posterior
probabilities of a change point at each position. Because
the change point problem only contains binary partition
situations, and the samples within a partition are ran-
domly ordered, the posterior probability at the position
of the boundary between the two types of a phenotype
is defined as bootstrapped median of the change point
posterior probability calculated by Bayesian change
point analysis. The bootstrap resampling was simulated
10,000 times for all the cases here.

Cutoff selection and endpoint redefinition
Generally, pathological criteria are fixed by statistic ana-
lysis of clinical observations, such as TNM staging and
so on. Consistent with the motivation of microarray
based classification, but more in depth, the most feasible
gene expression related cutoff can be found by maximiz-
ing the consistency degree. For an orderable pathologi-
cal index, any value among the range of such an index
can be treated as a possible cutoff, and then the corre-
sponding consistency degree can be figured out. Here,
the cutoff with the maximum consistency degree is
selected as the cutoff to redefine the endpoint and the
classes, which the samples belong to.
To estimate the significance of the redefined end-

points, an enrichment test is constructed based on bino-
mial distribution, but not with an interval estimate due
to the nonlinear, and discrete relationship between cut-
offs and gene expression profile. The significant level s
is defined as:

s × p = 1 − F(k;n, p) = 1 −
|x|∑
i=0

(
n
i

)
pi(1 − p)n−i p = 1/N,

where n (n = 1,000) is the recalculated times of the
redefined endpoints, k is the recurrence times of a give
cutoff, N is the number of all the possible cutoffs.

Unpredictable samples
The list of the prediction error rate for each sample is
provided by MAQC-II Consortium. Because none of the
external validation data sets are used, all of the samples
analyzed here only come from the swap prediction error
rate list (additional file 5). In the error rate list, the
error rate of the samples, predicted by less than 50 clas-
sifiers, are set to be 0.5.
Two error rate cutoffs are fixed to identify the unpre-

dictable samples for the following two different targets.
To illustrate the trend of the error rate relationship
between the endpoints F and G, the cutoff is set to 0.9
to keep the sample sizes larger than 20. In contrast,
when unpredictability is considered, only the best classi-
fiers should be treated as the ones that can reflect the
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most accuracy relationship between pathological criteria
and gene expression profiles, at the point of which, we
choose the top ten MCCs to calculate the correlation
between the consistency degree and pathological
indexes, and only the samples with error predicted num-
bers less than 20 and with the top ten error rate are
selected. The corresponding error rate cutoff is 0.97.

Statistical analysis
To evaluate the validity of the consistency degree,
Spearman’ rank and Kendall’s rank correlation tests
were performed in R [18] with the alternative hypothesis
choiced as “greater”. One sided Wilcoxon rank-sum test
was also performed in the same software to detect the
significance of the difference between OS (overall survi-
val milestone outcome) times and EFS (event-free survi-
val milestone outcome) times in the unpredictable
samples.

Additional material

Additional file 1: Algorithm of the consistency degree.

Additional file 2: Performances of the candidate models in MAQC
external validation.

Additional file 3: MCCs and the corresponding consistency degrees.

Additional file 4: Change Point Redefined Classification Endpoints.

Additional file 5: Prediction error sample list.
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