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Abstract

Background: We have recently identified a number of Quantitative Trait Loci (QTL) contributing to the 2-fold
muscle weight difference between the LG/J and SM/J mouse strains and refined their confidence intervals. To
facilitate nomination of the candidate genes responsible for these differences we examined the transcriptome of
the tibialis anterior (TA) muscle of each strain by RNA-Seq.

Results: 13,726 genes were expressed in mouse skeletal muscle. Intersection of a set of 1061 differentially
expressed transcripts with a mouse muscle Bayesian Network identified a coherent set of differentially expressed
genes that we term the LG/J and SM/J Regulatory Network (LSRN). The integration of the QTL, transcriptome and
the network analyses identified eight key drivers of the LSRN (Kdr, Plbd1, Mgp, Fah, Prss23, 2310014F06Rik, Grtp1,
Stk10) residing within five QTL regions, which were either polymorphic or differentially expressed between the two
strains and are strong candidates for quantitative trait genes (QTGs) underlying muscle mass. The insight gained
from network analysis including the ability to make testable predictions is illustrated by annotating the LSRN with
knowledge-based signatures and showing that the SM/J state of the network corresponds to a more oxidative
state. We validated this prediction by NADH tetrazolium reductase staining in the TA muscle revealing higher
oxidative potential of the SM/J compared to the LG/J strain (p<0.03).

Conclusion: Thus, integration of fine resolution QTL mapping, RNA-Seq transcriptome information and mouse
muscle Bayesian Network analysis provides a novel and unbiased strategy for nomination of muscle QTGs.
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Background
The aim of functional genomics is to understand the role
of specific genes in phenotypic variation. The forward gen-
etics approach has led to a large number of identified gen-
omic regions, known as quantitative trait loci (QTL),
influencing various phenotypes, including those for
muscle weight [1-4]. However, a bottle neck has developed
in the transition from QTL to their causative quantitative
trait genes (QTG) [5]. Advanced intercross line strategy
permits accumulation of recombinations and improves
resolution of QTL mapping [6], which in the case of
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muscle weight has led to major reduction in confidence
intervals [1]. Although appreciably refined, these QTL still
harbour a number of genes. Thus, further efforts are
needed to identify the QTGs that are the causative factors
in complex traits.
It has been proposed that testing for the expression

differences could identify genes underlying phenotypic
differences [7]. Implementation of such strategy led to
several nominations of QTG’s [8,9]. However, microarray
technology, used as a tool for a high throughput expres-
sion analyses, has several limitations which might have
interfered with a more productive contribution of this
approach to the nomination of the candidate genes.
Hybridization artefacts caused by SNP’s [10], non linear-
ity among probes, inability to detect splice variants and,
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importantly, the bias towards available information
(i.e. only transcripts with corresponding probes on
microarray can be examined), limit the utility of expres-
sion microarrays. Transcriptome analyses by means of a
massive parallel sequencing technology, RNA-Seq, cir-
cumvents the above-mentioned limitations [11,12], it is
highly replicable [13] and therefore a very attractive re-
search method for an unbiased identification of differen-
tially expressed genes.
Our QTL studies focused on muscle size, which is an

important variable influencing health and quality of life
particularly in the elderly which are affected by sarcope-
nia, age-related muscle wasting [14]. In addition, skeletal
muscle tissue is a major component of diet and a source
of nutrients for the growing population of the planet.
Genetic variation plays a substantial role in determining
muscle size in mammals [1-4,15,16] but the underlying
genes remain largely unknown. Muscle mass is a func-
tion of the number and size of its fibers. The number of
fibers in mouse is determined prenatally and remains
stable throughout adulthood [17], whereas cross sec-
tional area (CSA) of the fibres increases during post-
natal development [18].
The LG/J and SM/J strains, which were selected for

large and small body weight, respectively, in order to
study processes related to growth [19,20], is a promising
model system for exploration of the genetic effects on
muscle mass. These strains differ prominently in mass of
several hind limb muscles (2-fold difference between
them) and 22 QTL contributing to this difference were
mapped [1]. Subsequent analyses of the soleus muscle
found that the number of fibres in the muscle of the two
strains was similar, whereas CSA differed substantially,
LG/J > SM/J [21].
The phenotypic differences due to genetic variation are

determined by the pattern of information flow through
molecular networks [22]. A mouse muscle Bayesian Net-
work (MMBN) has been recently constructed based on
genetic and gene expression data. The MMBN provides
directional information about the relationship of gene ex-
pression and can be used as a tool for identification of the
key drivers of gene expression signatures characterising
various phenotypes [23].
The main finding of the present study is that the inte-

gration of the gene expression signature with the QTL
analysis and muscle gene network data can lead to the
identification of plausible QTGs underlying phenotypic
differences in muscle mass.

Results
Muscle weight
The tibialis anterior (TA) muscle weight (mean of the right
and left hindlimb) was 62.4 ± 2.5 mg vs 37.2 ± 1.5 mg
for males of LG/J and SM/J strains, respectively (strain
effect p<0.001), and 50.2 ± 1.8 mg vs 28.0 ± 1.7 mg
(p<0.0001) for females. These estimates are comparable
with our earlier findings at the same age [1]. A similar de-
gree of the strain difference was observed in EDL, gastro-
ncemius and soleus muscles [1].

Global transcriptome
Of 36,536 genes on the reference genome mm9, reads
mapped to 22,630 genes (Additional file 1). To establish
a threshold for the reliable detection of gene expression,
we analysed Y chromosome genes in the female samples.
From the Deseq analysis we noted that reads mapped to
5 out of 14 Y chromosome genes in females of at least
one strain with the highest expression value of 8.1 for
Eif2s3y gene. Because expression of this gene is much
more robust in male samples, 323.3, we excluded possi-
bility of sample mixup. Therefore, we considered that
values equal or below the 8.1 threshold were not reliable.
Only the transcripts exceeding it in at least one strain
were flagged as expressed in skeletal muscle (Additional
file 1). There were 13,726 such genes and their tran-
scripts accounted for >99.9% of the mapped transcrip-
tome. Expression levels differed greatly among the genes
identified by these RNA-seq tests (Additional file 2); the
75 most abundantly expressed genes accounted for ap-
proximately the same fraction of the transcriptome as all
remaining genes.
The differential expression of genes between the LG/J

and SM/J strains was assessed using 3 different statistical
methods. The most conservative method, Bayesian Nega-
tive-Binomial-Method-Likelihood normalization (Bayes-
ian-NBML), found 577 differentially expressed genes at
false discovery rate (FDR) of p<0.1. The most liberal
method, Bayesian-Poisson normalization, led to 9,086
genes at p<0.1, whereas the Deseq procedure resulted in
1,184 genes at p<0.1. A list of 1061 differentially expressed
(DE) genes were identified by two out of three procedures.
The DE genes were subjected to various further analyses.

QTL – expression cross-reference
A previous study [1] found that muscle weight differ-
ences between the LG/J and SM/J strains are affected by
22 QTL (loci Skmw21 - Skmw42) located on chromo-
somes 2, 4, 5, 6, 7, 8 and 11. The cumulative genomic
length of the loci was 75.5 Mb. The overlap between a
gene’s nomination by its presence under a QTL, and its
differential expression was analysed next.

Expression differences
There were 1099 genes within the 22 QTL regions. Nearly
half of them, 459, were expressed in TA muscle which is a
1.1-fold enrichment (hypergeometric p value= 0.00037) of
expressed genes within the QTL regions. We then cross-
referenced this list of genes with 1061 DE genes between
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the LG/J and SM/J strains (Additional file 1). This analysis
identified 41 DE genes within eighteen QTL (Table 1). It
represents a 1.3-fold enrichment of DE genes within QTL
regions (hypergeometric p value = 0.018).
Analysis with DexSeq identified 319 differentially

expressed exons at FDR<0.1 (Additional file 3), nine genes
with such exons resided within QTL regions. Of those, ex-
pression of the Irak2 gene appeared to be higher in the
LG/J strains across a number of exons (Table 2). To verify
the prediction of the presence of different splice variants
we examined the expression levels of the four reported
splice variants. Transcript ENSMUST00000113024, which
corresponds to the characterised spice variant Irak2c [24],
was overrepresented in the LG/J strain compared to SM/J,
whereas the other examined variants did not differ be-
tween the strains (Figure 1).

Polymorphisms
The allelic effect could be brought about by a different
level of gene expression or by altered coding sequence.
Therefore, it was important to examine the coding poly-
morphisms captured in the transcriptome of the two
strains. A total of 7,933 (673 missense) SNPs (Additional
file 4) and 150 Indels (Additional file 5) were identified
between the LG/J and SM/J strains.
In the subsequent analysis we focused only on the

genes residing within the Skmw loci [1] . First, the Indel
data were examined revealing a three nucleotide inser-
tion (CTT) in exon 5 of alpha-kinase 3 gene, Alpk3, of
the LG/J strain. Although the gene is not within the
reported boundaries (which were determined as the re-
gion overlapped between the QTL of first principal com-
ponent extracted from 5 different muscles and EDL
weight QTL) of the Skmw33 locus (1.9 Mb proximal
from the centromeric boundary) it is well within the
QTL affecting weight of the EDL muscle [1].
We then analyzed the non-synonymous SNPs with the

PolyPhen tool which predicts possible impact of an
amino acid substitution on the structure and function of
the protein. This analysis revealed that substitution of
amino acids in 10 genes residing within the Skmw loci
might affect the function of the proteins (Table 1). Two
of those genes, Mgp and Kdr, were also differentially
expressed between the strains (Additional file 1).

Network Analysis
In addition to using differential expression and/or se-
quence differences to prioritize QTL region genes we
took advantage of an independent mouse muscle Bayes-
ian Network to identify putative regulators. The network
was constructed from gene expression and genetic data
from nine different mouse F2 crosses encompassing
>3,000 mice and nine different mouse strains. The con-
struction of mouse F2 Bayesian networks from genetic
and expression data has been described elsewhere
[25,26]. For this analysis we used muscle tissue networks
constructed from nine different mouse F2 crosses in-
cluding: BTBR ob/ob x B6 ob/ob (BTBRxB6ob) [27],
C57BL/6J x C3H/HeJ (Bxh) [28], C57BL/6J Apoe−/− x
C3H/HeJ Apoe−/− (BxHapoe) [29], C57BL/6J x A/J (Bxa
JaxS) [30], C57BL/6J x 129S1/SvImJ (Bx129_JaxS),
C57BL/6J x DBA/2J (BxD JaxS), C57BL/6J x DBA/2J
(BxD JaxL), C57BL/6J x A/J (BxA MCI) [30] and
C57BL/6J x DBA/2J (BxD PSU) [2]. We constructed
both gender specific networks and combined networks
where possible to generate a complete set of interac-
tions. For the purposes of analysis we created a union of
the 18 individual networks and included only nodes for
which probes could be clearly mapped to high confi-
dence genes. The resulting Mouse Muscle Bayesian Net-
work (MMBN) consists of 19,513 individual nodes,
corresponding to genes, and 75,092 edges, correspond-
ing to associations between genes (Additional File 6).
First we explored the distribution of DE genes between

the LG/J and SM/J strains within the network. A total of
855 DE genes mapped within the MMBN and remark-
ably, 405 genes mapped within a single coherent net-
work exclusively containing differentially expressed
genes (genes belonging to these networks are flagged in
Additional File 1). This is highly significant (p<0.001) -
we did not detect a similarly sized or larger coherent
network with 1,000 randomly selected gene sets of the
same size – and suggests that a large portion of the
genes that are differentially expressed between the LG/J
and SM/J strains are co-ordinately regulated in mouse
muscle independent of strain.
The Bayesian network is a directed network and hence

can be used to predict regulators of a particular signa-
ture or gene set [31]. An algorithm has been recently
developed, called Key Driver Analysis [23] that can be
used to search a network for genes whose downstream
children are enriched in genes of a signature of interest.
We took the signature corresponding to the LG/SM DE
genes that are contained within the network (n=855)
and ran the key driver analysis, thereby identifying 3,556
putative key drivers. Cross-reference of the 3,556 puta-
tive drivers of the differential signature with the 1099
genes in the QTL regions identified 116 genes (Add-
itional file 7). This represents a significant 1.5-fold en-
richment of the key drivers within the QTL regions
(hypergeometric p value=2.29E-6).
When combined with the 49 genes identified by differ-

ential expression or polymorphism (Table 1) this generates
a non-redundant list of 142 putative regulators. Eighteen
of these are contained within the 405 gene coherent net-
work and a further 80 are within 1-edge. Figure 2 shows a
545 gene network that contains the 405 DE genes and
their putative regulators; we refer to this as the LG/J and



Table 1 The candidate genes nominated by expression
difference and/or coding polymorphisms for skeletal
muscle weight QTL (Skmw) affecting muscle weight
between the LG/J (L) and SM/J (S) strains

Gene Chr QTL Type

BC029722 2 Skmw21 L < S

Uqcc 2 Skmw21 L > S

Adig 2 Skmw22 L < S

Ppp1r16b 2 Skmw22 L < S

Fam83d 2 Skmw22 L > S

Gm826 2 Skmw22 L < S

Chd6 2 Skmw22 L > S

Rasl11b 5 Skmw24 L < S

Kdr 5 Skmw24 L < S L1176F

Ppat 5 Skmw24 L > S

Osbpl3 6 Skmw25 L < S

Mrpl19 6 Skmw26 L < S

Htra2 6 Skmw26 T449D

Adamts9 6 Skmw27 P699A

Gm15737 6 Skmw27 L < S

Rybp 6 Skmw28 L > S

Il17re 6 Skmw29 L > S

Irak2 6 Skmw29 L > S

Sec13 6 Skmw29 K87M

Plbd1 6 Skmw31 L < S

Mgp 6 Skmw31 L<S Q55L

Rerg 6 Skmw31 L < S

Synm 7 Skmw32 R946Q P835S

Pgpep1l 7 Skmw32 L < S

Mesdc2 7 Skmw33 L < S

Fah 7 Skmw33 L > S

Nox4 7 Skmw33 L < S

Prss23 7 Skmw33 L > S

Mical2 7 Skmw34 L > S

2310014F06Rik 7 Skmw34 L < S

Arntl 7 Skmw34 L > S

Fgfr2 7 Skmw35 L > S

Irs2 8 Skmw36 L < S

Col4a1 8 Skmw36 L < S

Col4a2 8 Skmw36 L < S

Lamp1 8 Skmw36 R294H

Grtp1 8 Skmw36 L < S

Adprhl1 8 Skmw36 L > S

Tfdp1 8 Skmw36 R302H

2610019F03Rik 8 Skmw36 L > S

Snord13 8 Skmw37 L > S

Dlc1 8 Skmw37 L < S

Table 1 The candidate genes nominated by expression
difference and/or coding polymorphisms for skeletal
muscle weight QTL (Skmw) affecting muscle weight
between the LG/J (L) and SM/J (S) strains (Continued)

Lphn1 8 Skmw39 L > S

Podnl1 8 Skmw39 L > S

Adcy1 11 Skmw40 L > S

Tns3 11 Skmw40 T1067M

Rhbdf1 11 Skmw42 R42W

Hba-a2 11 Skmw42 L > S

Stk10 11 Skmw42 L < S

Type indicates whether gene is more (>) or less (<) abundant, or position and
swapped amino acids (substitutions in bold are more likely to affect protein
function than those in regular font).
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SM/J Regulatory Network (LSRN). Eight of 116 key dri-
vers (Kdr, Plbd1, Mgp, Fah, Prss23, 2310014F06Rik, Grtp1,
Stk10) residing within five QTL regions were either poly-
morphic or differentially expressed between the LG/J and
SM/J strains and therefore are strong candidates to ex-
plain the effects of these loci.
To explore properties of the LSRN further we carried

out gene annotation enrichment analysis using two on-
line bioinformatics tools; DAVID [32] and NextBio [32].
DAVID revealed a significant enrichment for GO-Terms
relevant to muscle structure, function and bioenergetics.
Indeed these GO-terms are very similar to those
obtained with the full DE gene set (Table 3) suggesting
that the LSRN is a relevant subset of DE genes. A
complete set of DAVID analysis results is presented in
Additional File 8. Aside from GO-terms related to
muscle structural components analysis of the LSRN and
DE genes identified a number of mitochondrial gene set
enrichments suggesting potential metabolic difference
between the LG/J and SM/J muscles. We explored this
further by mining a larger set of internally curated signa-
tures as well as those from NextBio. The most signifi-
cant experiments identified through this analysis
included signatures of expression in mouse quadriceps
muscle subjected to AMPK and PPARδ agonists [33,34]
and in gastrocnemius of mice subjected to hindlimb sus-
pension [35]; 11.2-fold, p=3.25e-11 and 2.2-fold, p=4.7e-
17 respectively enrichment in the LSRN relative to the
whole network. These treatments are known to have
profound effects on the metabolic state of the muscle
leading us to bolster our hypothesis that the differences
between LG/J and SM/J may at least in part be due to
fundamental metabolic variation; overlay of the expres-
sion differences with the TA muscle of the LG/J and
SM/J mice strongly predicts that the SM/J strain has a
more oxidative profile than the LG/J strain.
This prediction was tested and confirmed by NADH

tetrazolium reductase staining (Figure 3). The TA of the



Table 2 Exon-specific DexSeq analysis of expression of Irak2 gene

DexSeq-exonID Irak2 exon Normalised Mean Count comparison DexSeq Statistical Results

LG/J mean SM/J mean log2fold
(S/L) Calculated
from normlalised
mean counts

P value Disp
Before
Sharing

Disp
Fitted

dispersion log2 fold
(S/L) DexSeq
calculated

padjust

E001 1 0.21 0 0 0.3632 NA NA NA NA NA

E002 1 1.26 1 0 0.6956 0 2.04 2.04 2.13 1

E003 1 7.24 9.28 0.35 0.5647 0.4 0.2 0.4 2.83 0

E004 2 13.77 11.67 −0.02 0.9647 0.09 0.2 0.2 2.54 0

E005 3 6.33 3.3 −0.57 0.3403 0.17 0.48 0.48 2 0.8

E006 4 0.82 2.22 1.24 0.0819 0.47 1.41 1.41 3.75 0.76

E007 4 10.59 0.49 −4.03 0.0001 0.17 0.31 0.31 −1.75 1

E008 4 45.28 3.16 −3.48 0.0067 0.09 0.13 0.13 −0.91 1

E009 5 51.11 8.5 −2.67 0.0002 0.05 0.11 0.11 −0.24 1

E010 5 27.25 3.97 −2.53 0.0198 0.16 0.19 0.19 −0.14 1

E011 6 18.98 1.62 −2.94 0.017 0.12 0.23 0.23 −0.51 1

E012 7 2.67 0.24 −1.42 0.0424 0.3 1.59 1.59 −1.57 1

E013 8 17.32 2.33 −2.83 0.0019 0.18 0.21 0.21 −0.32 1

E014 9 11.27 0.62 −3.54 0.0041 0 0.41 0.41 −1.42 1

E015 10 39.58 2.95 −3.65 0.0009 0.06 0.14 0.14 −1.18 0.69

E016 11 31.23 4.41 −2.84 0.017 0.28 0.18 0.28 −0.41 1

E017 12 48.16 9.62 −2.4 0.001 0.03 0.12 0.12 0.03 1

E018 12 1.25 1.22 −1 0.2566 1.07 1.59 1.59 1.1 1

E019 13 0.8 0.49 0 0.4139 0.14 3.09 3.09 1.38 1

E020 13 3.13 0.24 −2.01 0.0004 0 1.07 1.07 −1.27 1

E021 13 39.8 4.41 −2.46 0.0021 0.16 0.13 0.16 0.06 1

The pattern of exons with the higher expression of normalised counts in LG/J samples (bold) corresponds to Irak2c splice variant. Irak2 foldchanges calculated
from normalised mean counts show overexpression of exon-bins 7–17, 20 and 21 in the Irak2 gene model which standard DexSeq analysis failed to detect.
DexSeq-exonID – exon bins used by DexSeq; LG/J mean and SM/J mean – normalized count of reads per bin; Irak2 exons – Ensembl based exons, some exons
were partitioned into several DexSeq bins; P-values – nominal p value of t-test between the LG/J and SM/J samples.
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SM/J strain exhibited greater oxidative potential particu-
larly in the deep portion of the muscle (p<0.03).

Discussion
We integrated a mouse muscle Bayesian Network and
transcriptome data from the muscle of two inbred
strains, LG/J and SM/J, with the results of QTL mapping
of muscle weights in an advanced intercross [1] to nom-
inate genes contributing to a 2-fold difference in muscle
mass. The analyses based on three independent sources
of information converged on a set of eight genes (Kdr,
Plbd1, Mgp, Fah, Prss23, 2310014F06Rik, Grtp1, Stk10)
as the most likely QTGs residing within five QTL
regions. An additional phenotypic analysis confirmed the
predictive power of the gene network analysis.

Transcriptome
The present study identified 13,726 genes expressed in
mouse skeletal muscle, which approximately doubles the
number reported earlier in a microarray based study
[36]. An expansion of the muscle transcriptome was
expected based on the recent comparison between the
microarray and RNA-Seq methods in brain tissue [37],
and illustrates the superior sensitivity of RNA-Seq. This
set of data, therefore, provides a benchmark of expres-
sion levels of different genes within mouse muscle tissue,
something that was not possible to obtain reliably with
microarrays because of variation in sensitivity of
hybridization among the probes [10].
The procedure of mapping of sequenced transcrip-

tome fragments on to the reference sequence allows a
defined number of mismatches [38]. This provision is
particularly important for identification of polymorph-
isms. However, a side effect of it might be a background
noise resulting from the mapping of some of the frag-
ments (likely those originating from homologues) to the
genes which in fact are not expressed in the tissue. It is
possible to assess the level of such noise empirically by
examining expression of the Y chromosome genes in
females. The highest level of expression of these genes
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Figure 1 Splice variants of Irak2 gene in TA muscle from LG/J and SM/J strains. (A) Dexseq analysis identified differential expression of a
number of exons between the LG/J (red line) and SM/J (blue line) strains. The pattern of differential expression overlapped with
ENSMUST00000113024 transcript (outlined in red at the bottom) which corresponds to Irak2c splice variant [24]. (B) Abundance of the splice-
specific PCR amplicones was compared between the strains (red – LG/J, blue – SM/J). Mean ± SD of six samples per strain (representative gels
presented above corresponding bars).
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found in females indicates the threshold below which a
reliable assessment of transcript abundance is not pos-
sible. Application of this threshold reduced the esti-
mated number of expressed genes by >30%.
A plethora of mouse models divergently selected for

various phenotypes have been generated over the dec-
ades. These models captured increasing and decreasing
alleles of relevant genes and provide a rich resource for
studying of the mechanisms underlying variation in spe-
cific trait. However, as the genomic sequence of many of
these strains is not available yet, utilization of these
resources has been hampered. We demonstrated here
that the high throughput transcriptome analysis by
RNA-Seq provides an effective way for utilizing the po-
tential of selected strains.

Validation of network analysis prediction
The expression network analysis and integration of the
information from the independent datasets provides
additional leverage for prioritization of the candidate
genes for further interrogation. However, it is important
to assess the reliability of prediction. The analyses of
gene expression data in rodent muscles indicated that
expression pattern of a number of genes in the TA
muscle of the SM/J strain is indicative of a more oxida-
tive phenotype compared that of the LG/J strain. Initially
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this appeared to conflict with our results obtained in the
soleus muscle of these strains [21]. The SM/J strain
exhibited lower proportion of oxidative type 1 fibers
compared to the LG/J strain (e.g., in females 41% vs
58%, respectively). The examination of the TA muscle
however confirmed the predicted prevalence of the oxi-
dative phenotype in the SM/J muscle supporting the pre-
dictive power of the network analysis (Figure 3). The
reversal of the oxidative profile between the soleus and
TA muscles could be explained by the distinct compos-
ition of muscle fibers constituting these two muscles in
mice; soleus is mainly composed of the fibers expressing
type 1 and type 2a myosin heavy chains, coded by Myh7
and Myh2 genes, respectively. The TA muscle, on the
other hand contains very few Myh7 expressing fibers but
is dominated instead by the fibers expressing type 2a, 2x



Table 3 Gene ontology (GO) terms enriched in LSRN and DE sets of genes expressed in LG/J and SM/J strain tibialis anterior muscle

GO-Terms enriched DE genes LSRN genes

Category Go-Term Go-Description Count % PValue Fold
Enrichment

Benjamini Count % PValue Fold
Enrichment

Benjamini

GOTERM_CC_FAT GO:0043292 contractile
fiber

18 1.83 1.87E-06 4.01 9.10E-05 16 3.02 7.06E-08 5.88 6.99E-06

GOTERM_CC_FAT GO:0044449 contractile
fiber part

17 1.73 2.20E-06 4.18 9.36E-05 15 2.84 1.31E-07 6.09 9.70E-06

GOTERM_CC_FAT GO:0030016 myofibril 18 1.83 9.98E-07 4.18 5.67E-05 16 3.02 3.89E-08 6.14 1.16E-05

GOTERM_CC_FAT GO:0044429 mitochondrial
part

49 4.99 7.64E-06 1.98 2.61E-04 36 6.81 2.55E-06 2.40 1.51E-04

GOTERM_CC_FAT GO:0016460 myosin II
complex

6 0.61 1.38E-04 10.58 3.36E-03 6 1.13 1.24E-05 17.46 6.13E-04

GOTERM_CC_FAT GO:0005759 mitochondrial
matrix

21 2.14 8.33E-05 2.73 2.36E-03 17 3.21 1.70E-05 3.64 7.23E-04

GOTERM_CC_FAT GO:0031980 mitochondrial
lumen

21 2.14 8.33E-05 2.73 2.36E-03 17 3.21 1.70E-05 3.64 7.23E-04

GOTERM_CC_FAT GO:0032982 myosin
filament

6 0.61 4.65E-04 8.46 9.87E-03 6 1.13 4.37E-05 13.97 1.62E-03

GOTERM_CC_FAT GO:0016459 myosin
complex

11 1.12 5.18E-04 3.82 1.03E-02 10 1.89 5.33E-05 5.73 1.76E-03

GOTERM_CC_FAT GO:0005859 muscle
myosin
complex

5 0.51 8.20E-04 10.58 1.26E-02 5 0.95 1.20E-04 17.46 2.73E-03

GOTERM_CC_FAT GO:0005739 mitochondrion 94 9.58 4.62E-05 1.50 1.43E-03 62 11.72 1.02E-04 1.64 2.75E-03

GOTERM_CC_FAT GO:0005740 mitochondrial
envelope

34 3.47 8.90E-04 1.84 1.31E-02 24 4.54 8.65E-04 2.14 1.50E-02

GOTERM_MF_FAT GO:0017076 purine
nucleotide
binding

117 11.93 1.90E-04 1.38 4.57E-02 80 15.12 6.56E-05 1.54 1.85E-02

GOTERM_CC_FAT GO:0005863 striated
muscle
thick
filament

4 0.41 4.90E-03 10.58 6.24E-02 4 0.76 1.16E-03 17.46 1.90E-02

GOTERM_CC_FAT GO:0044421 extracellular
region part

65 6.63 6.92E-06 1.78 2.62E-04 38 7.18 1.42E-03 1.71 2.20E-02

GOTERM_CC_FAT GO:0005743 mitochondrial
inner
membrane

28 2.85 8.09E-04 2.00 1.31E-02 19 3.59 2.12E-03 2.24 2.96E-02

GOTERM_CC_FAT GO:0031966 mitochondrial
membrane

31 3.16 2.53E-03 1.78 3.39E-02 22 4.16 2.04E-03 2.09 2.98E-02

Count – number of genes from the list involved in term; % - percentage of all genes in the list; PValue – modified Fisher Exact p-Value for enrichment; Benjamini – false discovery rate corrected P-values.
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(Myh1) and 2b (Myh4) myosin heavy chains [39]. From
this set of data it appears that the proportion of type 1
vs type 2a fibers in the soleus is determined by different
mechanisms than the proportion of type 2a, 2x and 2b
fibers in TA muscle.

Candidate genes in the QTL regions
It has been suggested that variation in gene expression is
important contributor to the genetic architecture of
complex traits [7]. Integration of the gene expression
profiling by microarrays and QTL screening in classical
mapping populations (backcross or F2) has led to identi-
fication of QTGs underlying allergic asthma [8] and
bone mineral density [9], and to nomination of the can-
didate genes underlying adipose tissue [40] just to men-
tion some of the successful attempts to identify QTGs.
An improvement in the mapping resolution afforded by
an advanced intercross population and enhanced sensi-
tivity of the transcriptome analysis by RNA-Seq provides
further incentives for application of this strategy.
Integration of RNA-Seq data with results of QTL map-

ping from an advanced intercross reduced the number
of positional candidates from 1099 genes residing
throughout QTL regions to 49 candidate genes differen-
tially expressed or with the coding polymorphisms (with
likely functional consequences) between the two strains.
These genes were spread across thirteen QTL. Three of
those loci, Skmw25, Skmw26 and Skmw34, harboured
only one candidate gene (Table 1). The candidacy of
Htra2 gene (Skmw26) was supported by the mnd2 model
demonstrating a severe muscle wasting phenotype and
abnormality of motor neurons resulting from the muta-
tion in the gene [41,42]. The serine peptidase coded by
Htra2 gene is located in the mitochondrial intermem-
brane space. It activates proapoptotic proteins upon re-
lease into the cytosol from damaged mitochondria [43].
Interestingly, in addition to the T449D polymorphism,
the transcript abundance of the gene tended to be higher
in the SM/J strain (p=0.13; Additional file 1). There is
no information on the possible effects of the two genes
that are located in single-gene loci (Osbpl3 in Skmw25
and 2310014F06Rik in Skmw34). The latter gene is not
translated into a protein (www.ensembl.org). However, it
possesses the properties of the long intergenic non-

http://www.ensembl.org
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coding RNA, lincRNA [44], which have been implicated
in such biological processes as imprinting [45] and
trans-gene regulation [46].
The remaining ten loci (ranging in size from 1.2 Mb to

5.0 Mb) harboured 2 or 3 candidates. From these results it
appears that either the trait is truly polygenic, with more
than one gene contributing to a QTL even when the latter
had been refined to few Mb, or some of these genes are
not causative. Validation studies will be required to ad-
dress this question.
The ability of RNA-Seq to capture splice variants

resulted in an interesting candidate gene for Skmw29
locus. Irak2 codes for Interleukin-1 receptor-associated
kinase 2 which is involved in immune response and is im-
portant for activation of NFĸB pathway. Four splice var-
iants of the gene with antagonistic effects were identified
in mouse; overexpression of Irak2a and Irak2b potentiated
activation of NFĸB pathway, whereas Irak2c and Irak2d
variants inhibited it [24]. The overexpression of Irak2 in
LG/J strain muscles compared to SM/J strain (Additional
file 1) was primarily due to Irak2c as the levels of three
other variants were similar (Figure 1B). It has been
demonstrated that persistent activation of NFĸB pathway
caused muscle wasting [47]. Thus, there is a mechanistic
link between the levels of expression in Irak2c and muscle
mass which identifies the gene as a strong candidate to ex-
plain the effect of Skmw29 locus. Overexpression of Irak2c
might have contributed to larger muscle mass in LG/J
strain by inhibiting NFĸB activation.
The Kdr gene in the Skmw24 locus, encodes for one of

the vascular endothelial growth factor receptors and is
involved in the development of skeletal muscle tissue
[48]. Furthermore, it has been shown that an acute re-
sponse of the skeletal muscle to resistance exercise
involves upregulation of its expression [49]. Resistance
exercise is a well known muscle mass increasing stimu-
lus, thus it is plausible that the L117F polymorphism in
an evolutionarily conserved region might be contributing
to the muscle weight difference between the LG/J and
SM/J strains.
The gene coding for matrix GLA protein (Mgp,

Skmw31) was shown to be a suppressor of tissue calcifica-
tion [50]. Mutation of the MGP gene in humans causes
Keutel syndrome [51]. A higher level of expression of this
gene in skeletal muscle was associated with intramuscular
fat infiltration known as marbling in cattle [52].
Several of the identified genes are involved in cell signal-

ling (e.g. the genes coding for the regulatory inhibitor sub-
unit 16B of protein phosphatase 1, Ppp1r16b, (Skmw22),
and serine/threonine-protein kinase 10, Stk10, (Skmw42)),
respond to the growth stimulus (growth hormone regu-
lated TBC protein 1, Grtp1 [53]) or are involved in regula-
tion of transcription (the Tfdp1 gene encodes for a
transcription factor involved in regulation of the cell cycle
[54]). Thus, in addition to being differentially expressed or
polymorphic these genes also represent the functional
candidates which potentially can modify the abundance of
muscle tissue.
In addition to the genes discussed above, the Alpk3 gene

in the LG/J strain carries an insertion in exon 5 compared
to the SM/J allele. The insertion, CTT, results in additional
amino acid, leucine (following the 212 position of the
reference sequence), distally of the I-set domain. Func-
tional differences between the two Alpk3 variants have not
been reported.

QTL lacking candidate genes
Our approach did not suggest any robust candidates for
4 earlier identified QTL. Interestingly, some of those loci
had a substantial effect size on muscle mass (i.e.
Skmw23, Skmw30, Skmw38 and Skmw41). Collectively
these observations imply that the underlying cause of
these loci rest beyond the gene expression patterns in
muscle tissue or polymorphisms within the genes. For
instance, systemic factors such as hormones can affect
muscle tissue. It is also conceivable that the causative
genes were expressed during development which might
have influenced the number of muscle fibers. In either of
those instances no footprint of the influence in muscle
transcriptome would be detected.
Only ~4% of differentially expressed genes reside

within QTL regions. This observation raises a question
about the role of the remaining majority in relation to
muscle mass. It can be speculated that secondary
changes in gene expression pattern are triggered in the
network associated with the QTL causing genes, and
genes encoding transcriptional regulators are particularly
good candidates. It is also plausible that the systemic
factors influencing muscle size are contributing to differ-
ential expression between strains. Finally, some of these
genes might be involved in other phenotypes and pro-
cesses which are contrasting between the strains but
which are not reflected in muscle weight (e.g. variation
in proportion of different fiber types). Integration of the
expression data in various tissues at different develop-
mental stages, under different environmental conditions,
and profiling of the systemic hormones and growth fac-
tors could help understanding of some relationships in
gene expression patterns.

Conclusions
We presented a snapshot of the transcriptome in skeletal
muscle from two mouse strains diverging in muscle
mass. Furthermore, we showed that overlaying the tran-
scriptome data with the refined genetic architecture of
the trait and cross-referencing that with the gene expres-
sion network data in skeletal muscle yielded an unbiased
list of candidate genes which might affect muscle mass.
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This integrative approach will facilitate the transition
from QTL to detection of their underlying QTGs.

Materials and methods
The LG/J and SM/J mice (3 males and 3 females of each
strain) were purchased from the Jackson laboratory. At
the age of 92 days animals were sacrificed and tibialis
anterior (TA) muscle was dissected bilaterally, weighed
and snap-frozen in isopentane chilled with liquid nitro-
gen. All procedures were approved by the Institutional
Animal Care and Use Committee of the Pennsylvania
State University.

RNA preparation
Total RNA from the TA muscle was extracted using TRI-
zol (Invitrogen Life Technologies, Carlsbad, CA). Approxi-
mately 10 μg of RNA from male and female samples were
then submitted for transcriptome sequencing using RNA-
Seq technology: SOLEXA/Illumina (The Gene Pool, http//
genepool.bio.ed.ac.uk) or HiSeq 2000 (Genome Enterprise
Limited; www.genome-enterprise.com) platforms.

RNA-seq
Illumina/ SOLEXA GA II
To prepare Illumina RNAseq libraries 3 μg of total RNA
were subjected to one round of poly-A selection on oligo
(dT) (Serabeads) and resultant mRNA was fragmented to
an average size of 100bp following manufacturer’s recom-
mended protocol (Illumina mRNAseq kits Cat no. RS-
100-0801). Then, 1st strand cDNA synthesis was carried
out using Superscript III reverse transcriptase (Invitrogen
cat no.18080051) with the modification of 3μg random
primers (Illumina mRNAseq kits Cat no. RS-100-0801).
The second strand cDNA and RNAseq libraries were pre-
pared according to the manufacturer’s recommended
protocol (Illumina, San Diego, CA, USA). Briefly, the
cDNA fragments were blunt ended, A-tailed followed by
ligation of Illumina paired end oligo adapters. The adapter
ligated fragments were size selected (50 nucleotides) on a
2% agarose gel, and then subjected to 18 cycles of PCR; at
this stage modified indexed Illumina primers were used to
introduce unique barcodes to each sample. The fragment
size, and concentration of resultant libraries were assessed
by Qubit (Invitrogen QuantIT HS).), and on a Bioanalyser
High Sensitivity Chip. All samples were diluted to 10 nmol
in EB/0.1% tween and were de-natured, clustered and
sequenced at a density of 1/GA2X lane to yield at least
15M reads/sample.

HiSeq2000
The Illumina TruSeq RNA Sample preparation kit (Illu-
mina Inc.) was used according to the manufacturer’s
protocol. In brief, poly-A containing mRNA molecules
were purified from 0.5 μg total RNA using poly-T oligo
attached magnetic beads using two rounds of purifica-
tion. The purified mRNA was fragmented by addition of
5x fragmentation buffer (Illumina, Hayward, CA) and
was heated at 94°C in a thermocycler for 8 minutes. The
fragmentation yields fragments of ~250 bp. First strand
cDNA was synthesised using random hexamers to elim-
inate the general bias towards the 3’ end of the tran-
scripts. Second strand cDNA synthesis was done by
adding GEX second strand buffer (Illumina, Hayward,
CA), dNTPs, RNaseH and DNA polymerase I followed
by incubation for 2.5 h at 16°C. Second strand cDNA
was further subjected to end repair, A-tailing, and
adapter ligation with barcoded adapters in accordance
with the manufacturer supplied protocols. Purified
cDNA templates were enriched by 15 cycles of PCR for
10 s at 98°C, 30 s at 60°C, and 30 s at 72°C using PCR
Primer Mix Cocktail and PCR Master Mix (Illumina,
Hayward, CA). The samples were cleaned using AMPure
XP Beads and eluted in 30 μl Resuspension Buffer as per
manufacturer's instructions (QIAGEN, CA). Purified
cDNA libraries were quantified using Bioanalyzer DNA
100 Chip (Agilent Technology 2100 Bioanalyzer). The li-
braries were normalised to 10 nM and pooled equimo-
larly in pools of 2 samples per pool.

Bioinformatics
Sequencing reads were aligned to the reference mouse
genome (UCSC assembly mm9) using tophat v 1.3.1 [38]
allowing 1 alignment per read and mapping to known
exon-exon junctions of known Ensemble genes. The
number of reads mapping to each Ensemble gene was
counted with htseq (http://www-huber.embl.de/users/
anders/HTSeq/doc/overview.html). Statistical analysis
was performed in R using the bioconductor package
Deseq, based on the negative binomial distribution, with
variance and mean linked by local regression [55] and
baySeq, which uses an empirical Bayes approach [56].
Variant analysis was performed with samtools 0.1.14
[57], annotation of variants was performed with seqgene
v 2.3 [58]. SNPs and Indels with Variant and Mapping
quality >20 and present in all replicate samples were
marked as potentially significant. Dexseq was used for
analysis of differentially expressed exons, visualization
and exploration for identification of differentially
expressed splice variants [59]. To overcome some of the
limitations of DexSeq with respect to correct identifica-
tion of all differentially expressed exon-bins when many
exon-bins in one gene model are affected, we used both
DexSeq statistics and visualisation of normalised counts
and, in addition, we calculated strain mean and fold
change between strains for interpretation of the results
as exemplified for Irak2 (Table 2).
The PolyPhen web based tool [60] was utilized to pre-

dict the possible effects of amino acid substitution on

http://www.genome-enterprise.com
http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
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the function of a protein (http://genetics.bwh.harvard.
edu/pph/). These predictions are based on multiple se-
quence alignments, and functional and structural
characterization of the substitution site.

RT PCR
Expression of splice variants of the Irak2 gene were
examined using combinations of Irak2-1 (forward, F)
and Irak2-3 (reverse, R; for Irak2a and Irak2b variants),
and Irak2-7 (F), Irak2-3 (R; for Irak2d) primers reported
by Hardy and O’Neill [24]; and a pair of primers for
Irak2c (F, 5’-GCACTGACTGAGGGAAAAGG-3’; R, 5’-
CCAAAAGCCTTTCTTGCTTG-3’).
The RT PCR procedure has been described in detail

[61]. The images of the PCR products were quantified
using ImageJ software (NIH – version 1.43).

F2 cross data for network analyses
Six of the nine crosses reported in this paper
(BTBRxB6ob, BxH, BxHapoe, BxA_JaxS, BxA_MCI and
BxD_PSU) have been previously published [2,27,28,29,30].
Of the remaining three crosses, two (Bx129_JaxS and
BxD_JaxS) are from the same experimental design as
BxA_JaxS but are from Bx129 and BxD backgrounds, re-
spectively. The third cross, BxD_JaxL, is also a BxD back-
ground but rather than a 20 week design (JaxS) the mice
were aged for 64 weeks (JaxL).

Statistical analyses
Unless otherwise stated, statistical comparisons were carried
out using a t-test, and the data presented as mean ± SD.

Additional files

Additional file 1: Contains RNA-Seq results.

Additional file 2: Contains scatter plot of the transcriptome of the
TA muscle. X axis, mean expression level, Y axis, log of fold difference
between LG/J and SM/J strains. Red dots represent differentially
expressed genes at p<0.1.

Additional file 3: Contains DexSeq analysis results.

Additional file 4: Contains identified SNPs.

Additional file 5: Contains identified Indels.

Additional file 6: Contains genes of Mouse Muscle Bayesian
Network (MMBN).

Additional file 7: Contains Key Driver network analysis results.

Additional file 8: Contains DAVID analyses results in DE and LSRN
gene sets.
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