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Abstract

Background: Prediction of ribonucleic acid (RNA) secondary structure remains one of the most important research
areas in bioinformatics. The Zuker algorithm is one of the most popular methods of free energy minimization for
RNA secondary structure prediction. Thus far, few studies have been reported on the acceleration of the Zuker
algorithm on general-purpose processors or on extra accelerators such as Field Programmable Gate-Array (FPGA)
and Graphics Processing Units (GPU). To the best of our knowledge, no implementation combines both CPU and
extra accelerators, such as GPUs, to accelerate the Zuker algorithm applications.

Results: In this paper, a CPU-GPU hybrid computing system that accelerates Zuker algorithm applications for RNA
secondary structure prediction is proposed. The computing tasks are allocated between CPU and GPU for parallel
cooperate execution. Performance differences between the CPU and the GPU in the task-allocation scheme are
considered to obtain workload balance. To improve the hybrid system performance, the Zuker algorithm is
optimally implemented with special methods for CPU and GPU architecture.

Conclusions: Speedup of 15.93× over optimized multi-core SIMD CPU implementation and performance
advantage of 16% over optimized GPU implementation are shown in the experimental results. More than 14% of
the sequences are executed on CPU in the hybrid system. The system combining CPU and GPU to accelerate the
Zuker algorithm is proven to be promising and can be applied to other bioinformatics applications.

Introduction
RNA is an important molecule in biological systems.
The function of RNA can be derived generally from its
secondary structure. Recently, computational and math-
ematical methods such as thermodynamic energy mini-
mization, homologous comparative sequences, and
stochastic context-free grammar methods have been
widely used to predict the RNA secondary structure.
Among these, the Zuker algorithm is the most popularly
and widely used free energy minimization algorithm for
RNA secondary structure prediction [1]. The Zuker
algorithm was first presented in 1981 by M. Zuker. Its

time complexity is O(n4) [2], and its spatial complexity
is O(n2), where N is the length of the sequence. The
optimized algorithm [3] reduces the time complexity to
O(n3) by limiting the length of interior loop size. This
algorithm is commonly used in many popular secondary
structure prediction software, such as Mfold and Vien-
naPackage. The Zuker algorithm is able to predict short
sequences because accuracy is decreased rapidly as the
sequence grows longer [1]. However, the exponential
increment of RNA sequences makes conventional com-
puters incapable of meeting the demand of multiple-
sequence processes. For instance, a single-core Intel
Xeon E5620 processor consumes 18 ms to predict the
secondary structure of a single RNA sequence with
length 120, and needs over 370s for 20000 RNA
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sequences of the same length. Execution time increases
rapidly as sequence number grows.
Recently, heterogeneous computing systems have been

broadly used in high-performance computing. Three of
the first five Top 500 supercomputers are built based on
CPU-GPU heterogeneous architecture [4]. Specifically,
Tian-1A, the first supercomputer in 2010’s Top 500, is
the first to exploit the heterogeneous system. The com-
puting method on the CPU-GPU heterogeneous system
has been proven effective in HPC, and its performance
has grown rapidly with improvements of CPU and GPU
technology.
The availability of multiple cores on a modern proces-

sor chip makes the CPU a more powerful computing
platform for general applications. Parallel programming
methods on multi-core CPUs, such as POSIX Thread
(pThread) library [5], OpenMP library [6], and Intel
Threading Building Blocks [7], effectively simplify con-
current software development on these platforms.
To date, GPUs have emerged as favorable and popular

accelerator devices that keep up with the increasing
demands of the gaming industry. GPUs have developed
into more general, highly parallel, multiple-core proces-
sing architecture to keep up with the demands of the
computer games, which increase faster than processor
clock speeds. A number of libraries have been developed
to allow users to write non-graphic applications com-
puted on GPUs, which is known as General Purpose
computation on GPUs (GPGPU). The development of
GPGPU libraries, such as the NVidia CUDA [8],
BrookGPU [9], the ATI Stream SDK [10], Sh [11], and
OpenCL [12] have made GPGPU applications increas-
ingly easy to develop. With the rapidly improving com-
putational capability of CPU and GPU, exploring the
performance potentials of both systems has become a
problem. In the current heterogeneous system, CPU
plays as program controller while GPU performs most
of the computing task. The performance of CPU has
not yet been fully explored. In the present study, a
CPU-GPU hybrid system that efficiently explores both
CPU and GPU computing potentials is presented. A
part of the computing tasks of the GPU is allocated for
the CPU, reducing the performance loss from waiting
for results from the former. Speedup factor of 6.75×
over optimized multi-core SIMD CPU implementation
and performance improvement factor of 16% over opti-
mized GPU implementation are shown in the experi-
mental results. In addition, more than 14% of sequences
are computed on CPU in the hybrid system.

Related works
Accelerating or parallelizing the Zuker algorithm for
RNA secondary structure prediction on modern com-
puting platforms is not new. Tan et al. [13] reported 8

speedup on a cluster with 16 Opteron processors that
for cluster parallel computers. On shared memory paral-
lel computers, Tan et al. [14] reported 19× speedup on
a 32-processor system, DAWNING 4000. Mathuriya et
al. [15] present their parallel implementation of GTfold
on a 32-core IBM P5-570 server and 19.8 speedup is
achieved. On multi-core processor, Wu et al. [16] paral-
lelized the RNAfold program on quad-core Intel Q6600
processor to obtain 3.88 speedup. Another solution to
accelerate the Zuker algorithm is to use accelerators.
Based on the FPGA platform, Dou et al. [17] and Jacob
et al. [18] presented fine-grain parallel implementation
and one to two orders of magnitude speedup over the
general-purpose processor. Based on the GPU platform,
G. Rizk et al. [19] accelerated the Unafold application to
attain 33.1 speedup over a single-core Xeon GPU. The
problem of accelerating the Zuker algorithm or other
applications on large-scale parallel computers is that
use, maintenance, and management costs are very high.
High-performance parallel computers are too expensive
for use by many research institutes. Although specialized
coprocessing accelerators are able to achieve high per-
formance, the computing capability of CPUs in systems
where the CPU is the program controller has not been
explored. A heterogeneous hybrid CPU-GPU computing
scheme would be capable of not only exploiting the
power of accelerating device, but also of exploring the
CPU computing potential. To our best knowledge, no
parallel implementation for accelerating Zuker algorithm
on CPU-GPU hybrid system has thus far been realized.

Background
Overview of the Zuker algorithm
The Zuker algorithm predicts the most stable secondary
structure for a single RNA sequence by computing its
minimal free energy (MFE). It uses a “nearest neighbor”
model and empirical estimates of thermodynamic para-
meters for neighboring interactions and loop entropies
to score all possible structures [20]. The main idea is
that the secondary structure of an RNA sequence con-
sists of four fundamental substructures: stack, hairpin,
internal loop, and multi-branched loop. These funda-
mental substructures are independent of one another,
and the energy of a secondary structure is assumed to
be the sum of the substructure energies. With a single
RNA sequence as input, the algorithm is executed in
two steps. First, it calculates the minimal free energy of
the input RNA sequence on a group of recurrence rela-
tions, as shown in Formula (1) to (5). Second, it per-
forms a trace-back to recover the secondary structure
with the base pairs. Experiments show that the first step
consumes more than 99% of the total execution time.
Thus, computing energy matrices as quickly as possible
is critical to improve the performance.
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W(j) = min{W(j − 1),min[V(i, j) +W(i − 1)]} (1)

V(i, j) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min

⎧⎪⎪⎨
⎪⎪⎩

eH(i, j)
eS(i, j) + V(i + 1, j − 1)
VBI(i, j)
VM(i, j)

pair (i, j) is allowed

∞ pair (i, j) is not allowed

(2)

VBI(i, j) = min
i<k<l<j

{eL(i, j, k, l) + V(k, l)} (3)

VM(i, j) = min
i<k<j

{WM(i, k) +WM(k + 1, j)} (4)

WM(i, j) = min{VM(i, j),min[WM(i + 1, j),WM(i, j − 1)],V(i, j)} (5)

Suppose r1r2...ri...rj...rn represents an RNA sequence
where i and j are the location of the nucleotides in the
sequence, and n is the sequence length. Formula (1) to
(5) describe the method for computing free energy.
Here, W(j) is the energy of an optimal structure for the
subsequence r1r2 ...... rj; V(i, j) is the energy of the opti-
mal structure of the subsequence riri+1...rj; VBI(i, j) is
the energy of the subsequence ri through rj, where rirj
closes a bulge or an internal loop; VM(i, j) is the energy
of the subsequence ri through rj, where rirj closes a
multi-branched loop; and eS(i, j), eH(i, j), and eL(i, j, k,
l) are free energy functions used to compute the energy
of stacked pair, hairpin loop, and internal loop respec-
tively. Given any subsequence ri...rj, the Zuker algorithm
calculates free energies of the four possible substruc-
tures if pair (i,j) is allowed. The results correspond to
the four items in Formula (2): eH(i, j), eS(i,j) + V(i + 1, j
- 1), VBI(i, j), and VM(i, j). The Zuker algorithm then
selects the minimum value V(i,j) among the four results.
The subsequence grows from r1, r1r2, ..., r1r2....rj-1 to
r1r2...ri...rj...rn. The lowest conformational free energy is
stored in vector W. The corresponding energy of r1 is

stored in W(1), and r1r2 is stored in W(2), and so on for
longer fragments, such as W(j-1) for r1r2r3 ...... rj-1. Once
the longest fragment (i.e., the complete sequence) is
considered, the lowest conformational free energy of
whole RNA sequence is calculated, and the energy of
the most energetically stable structure is contained in W
(n). The corresponding secondary structure is then
obtained by a trace-back procedure from the vector W,
and matrices V and WM.

Overview of CPU architecture
In recent years, the number of processing cores available
on a modern processor chip has increased steadily.
Quad-core CPUs are now the norm, and more core sys-
tems have become economically available. Figure 1
shows a typical quad-core CPU architecture. Each core
hosts one thread at a time, with a set of registers con-
taining thread state and a large functional unit devoted
to computation and management.
Multi-core CPUs make rethinking the development of

application software necessary. Application program-
mers should explicitly use concurrency to approximate
the peak performance of modern processors. To utilize
all available processing power of these processors, com-
putationally intensive tasks should be split up into sub-
tasks for execution on different cores. A number of
different approaches are available for parallel program-
ming on multi-core CPUs, ranging from low-level multi-
tasking or multi-threading such as POSIX Thread
(pThread) library [5], over high-level libraries, such as
Intel Threading Building Blocks [7], which provide cer-
tain abstractions and features attempting to simplify
concurrent software development, to programming lan-
guages or language extensions developed specifically for
concurrency, such as OpenMP [6]. Apart from multi-
threading parallelism on the multi-core platform, data

Figure 1 Quad-core CPU architecture. This figure describes the architecture of quad-core CPU. Each core owns L1 cache, and two cores
shared L2 caches.
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parallelism can be explored by SIMD vector processing
instructions. For example, Intel has an SIMD instruction
set called streaming SIMD extensions (SSE) [21]. SSE
contains 70 new instructions and 8 new 128-bit regis-
ters. SSE2 adds new arithmetic types, including maxi-
mum and minimum operations. Each 128-bit register
can be partitioned to perform four 32-bit integers, or
single-precision floating points, or eight 16-bit short
integers, or sixteen 8-bit bytes operations in parallel.

Overview of GPU architecture
Figure 2 depicts the GPU architecture from Nvidia.
The GPU contains a scalable array of multi-threaded
processing units known as streaming multi-processors
(SMs). Each SM contains eight scalar processor (SP)
cores that execute actual instructions. Each SM per-
forms computation independently; however, SP cores
within the single multi-processor execute instructions
synchronously. This paradigm, called “single instruc-
tion, multiple threads” (SIMT) [8], is the basic com-
puting scheme of GPU. Threads are grouped into
blocks, and multiple blocks may run in a grid of
blocks. Such structured sets of threads may be
launched on a kernel of code for data processing in
the device memory. Threads of the same block share
data on-chip memory, and coordinate through syn-
chronization points. CUDA is the most used NVIDIA
parallel programming model and software environment
for running applications on GPUs. CUDA abstracts the
architecture to parallel programmers via simple exten-
sions to C programming language. In CUDA, threads
in one block are created, managed, scheduled, and exe-
cuted in a unit called Warp using a combination of 32
threads with consecutive thread ID. Parallel

performance is improved when all threads in the same
Warp follow the same execution path.
A hierarchy of GPU memory architecture is available

for programmers to utilize. The fastest memories are
the shared memory and registers with severely limited
sizes. Registers are allocated by a compiler, whereas
shared memory is allocated by a programmer. The con-
stant, texture, and global memory are all located on the
off-chip DRAM. The texture and constant memory are
read-only and are cached. The global memory is the
slowest memory, and its access may take hundreds of
clock cycles.
Most research in GPU programming involves finding

the optimal way to solve a problem on data-parallel
architecture while best using optimizations specific to
GPU architectures. Of the many GPGPU APIs available
[8-11], the Nvidia CUDA stands out as the most devel-
oped and advanced. GPGPU API only operates on Nvi-
dia GPUs. Our development of GPGPU applications
uses CUDA API limited to Nvidia graphics cards.

CPU-GPU hybrid computing system
System architecture
A CPU-GPU hybrid Zuker accelerating system is gener-
ally composed of several CPUs and GPUs. Figure 3
depicts the hybrid system architecture with two CPUs
and two GPUs. The CPUs and GPUs communicate via
I/O Hub Chipset, and are connected to I/O Hub by a
Quick Path Interconnect Link (QPI) and PCIE. Both
CPUs and GPUs have their own storage. Each CPU has
four cores. Each core owns an L1 cache. Two cores
share one L2 cache. The GPU has several SMs each
with several SPs. The CPU is responsible for program
control, including initiating the Zuker application,

Figure 2 Nvidia GPU architecture. This figure describes the architecture of Nvidia GPU. It is composed of four streaming multi-processors, each
containing eight scalar processors. This architecture can be easily extended to contain more multi-processors.
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allocating tasks between CPU and GPU, initiating the
GPU computation, reading the result from the GPU,
and backtracking of energy matrices. The GPU is
responsible for filling energy matrices for multiple RNA
sequences. As the GPU performs computation, the CPU
simultaneously performs computing tasks, instead of
waiting for energy results from the GPU.
The hybrid accelerating system predicts secondary

structures of all RNA sequences input. Firstly, the CPU
reads all RNA sequences, and performs some preprocess
operations such as memory allocation for energy
matrices. After the task allocation, CPUs and GPUs fill
energy matrices in parallel. The CPU receives results
from the GPU device memory after energy filling is
through. Finally, the CPU executes backtrack operations,
and displays all the RNA secondary structure informa-
tion to the user.

Task-allocation and execution scheme
The proposed hybrid accelerating system fully exploits the
performance potentials of both CPU and GPU to obtain
higher system performance for the same computing task.
The key factor in the hybrid accelerating system is the task
allocation between the CPU and the GPU. Given several
RNA sequences numbered 1,2,...,N, the task allocation
obtains a boundary sequence number B. The sequences
with number below B are to be computed on the CPU.

The rest of sequences are computed on the GPU. To
achieve load balancing in the task allocation, the proces-
sing capability of the CPU and the GPU for RNA sequence
with different length is estimated beforehand.
Figure 4 demonstrates the task-allocation and execu-

tion algorithm. The input of the algorithm is N
sequences of length L, the estimated average execution
time for a single sequence on CPU and GPU. The out-
put is minimal energy and secondary structure informa-
tion of N sequences. The task allocation algorithm
comprises three steps. In Step 1, GPU vs. CPU speedup
based on the average execution time is calculated. The
boundary allocation value B is then computed in Step 2.
Finally, in Step 3, the entire hybrid computing scheme is
demonstrated. In this step, the CPU begins the comput-
ing as soon as the sequences in [B: N] are sent to the
GPU device. After the GPU is initiated, the sequences in
[1: B] are processed by multiple threads parallel on
CPU. Each thread is responsible for calculation of the
energy matrices of the sequence scheduled by the Intel
compiler for OpenMP library. After the CPU processing,
data of the energy matrices on the GPU are retrieved
after GPU processing is completed. Finally, the CPU
executes backtrack operations by reading all energy
matrices of sequences [1: N], and produces minimal
energy and structure information output for each
sequence.

Figure 3 CPU-GPU hybrid accelerating system architecture. This figure describes the architecture of our CPU-GPU hybrid accelerating system
with two CPUs and GPUs. Both CPUs and GPUs have their own storage. As the GPU performs computation, the CPU simultaneously performs
computing tasks, instead of waiting for energy results from the GPU.
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Calculation of the boundary sequence number B is
demonstrated below. The average execution time of a
single sequence on CPU and GPU are first assumed as
T1CPU and T1GPU, respectively. The entire energy filling
time will be minimal when the CPU and GPU executions
are overlapped nearly completely, satisfying equation
T1CPU · B = T1GPU · (N - B). The boundary value B then

can be computed by equation B =
1

K + 1
· N, where K

denotes the speedup of GPU vs. CPU and equals
T1CPU
T1GPU

.

The expression
1

K + 1
is called the allocation ratio.

Performance tuning schemes
Multi-core CPU implementation
erformance tuning on multi-core CPU mainly consists
of compiler optimization, SSE, and multi-thread

processing. First, compiler optimization is used by set-
ting the -O2 option to improve the performance of ori-
ginal software. SSE instruction is then utilized to
accelerate computation of the VM matrix. The element
VM(i,j) depends on the row WM(i,*) and the column
WM(*,j). Computation on VM(i,j) is divided into two
steps. In the first step, elements on the row WM(i,*) are
added to corresponding elements on the column WM(*,
j). The minimal value of the sums is then chosen to be
VM(i,j). Using SSE instructions, the four elements from
row i and column j of matrix WM are read and stored
in a 128-bit register. Two 128-bit registers are added,
such that four simultaneous additions are performed to
compute VM(i,j). The third approach for boosting per-
formance of the CPU is by OpenMP libraries that
explore parallel processing of multiple sequences.
Energy matrices computations of different sequences are
mapped onto different threads for processing by an Intel

Figure 4 Task-allocation and execution scheme between CPU and GPU. This figure describes task allocation and execution scheme of our
CPU-GPU hybrid accelerating system.
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compiler for OpenMP libraries. Each thread is responsi-
ble for the matrices computations of a single sequence
allocated onto it. Threads are working independently
from each other to access their own memory spaces,
achieving high coarse-grain parallel performance.

GPU implementation
Several parallel schemes are used to improve the Zuker
algorithm performance on GPU. Basically, hierarchy par-
allelism is adopted. The first layer utilizes kernel-level
parallelism for execution of multiple concurrent kernels.
In Figure 5, the GPU device consists of two kernels, ♯1
and ♯2, executing concurrently for W vector and V
matrix computations. The second layer employs
sequence-level parallelism, where sequences are pro-
cessed by different blocks in the same kernel. One block
can hold multiple sequences when the length of the
sequence is sufficiently short. In Figure 5, the ♯2 kernel
contains several blocks, with each block responsible for
V matrix computation of one or more sequences. The
last layer uses parallel execution of diagonal elements in
a single sequence. In Figure 5, elements in the diagonal
of V matrix are mapped onto different threads in a
block for parallel execution.
Next, memory optimizations are adopted to fully use

limited device memory. Data type transformation,
immediate assignment, and redundant data cutting

schemes are used to reduce parameters storage require-
ment in the device memory. To improve the memory
access performance, column data of the matrix are
stored in a consecutive memory address array. Sequence
data and energy matrices are stored in shared memory
and global memory respectively. A data reuse scheme is
implemented by storing partly energy matrices in shared
memory. Mediating data in the computation is partly
stored in shared memory and registers to improve mem-
ory access and memory bandwidth.
Computation of the energy elements in the diagonal is

mapped to the threads in a warp to explore fine-grain
parallelism. Element computation in the V matrix is
divided in two situations based on whether or not the
ith and the jth nucleotide become a pair. Hence, execu-
tion path of the threads in the same warp may differ. In
the proposed hybrid system, the matrix elements with
the same execution path are mapped to the threads in a
warp with consecutive thread ID to effectively improve
the parallel efficiency.
Finally, tiling method is used to accelerate computa-

tion of the VM matrix of each sequence. Figure 6 illus-
trates the computation of the VM matrix tiled into
small blocks. The VM matrix elements in the diagonal
are parallel computed in different threads. The comput-
ing direction is moving from the principal diagonal to
the top-right. The shadow area represents the already

Figure 5 Optimization scheme of hierarchy parallelism on GPU. This figure describes the hierarchy parallelism optimization scheme on GPU.
The hierarchy parallelism is composed of kernel-level, sequence-level and element-level respectively.
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known VM and WM matrix elements (shown in the
same matrix). The VM(i,j) in a tile block, which depends
on the elements in row WM(i,*) and column WM(*,j), is
divided into three parts with different colors. From the
already known WM matrix data (blue in the shadowed
area), the blue portion of the VM(i,j) computation is cal-
culated ahead of time and stored into the shared mem-
ory for fast access. All blue portions of VM elements in
the tile blocks (border with blue color) are calculated
ahead of time. When the computing diagonal moves
from T1 to T2, the pre-calculated blue portion results
are read directly from the shared memory to accelerate
the computation of the elements in the diagonal of T2.

Experiments and results
Experimental environment
In general, the hybrid accelerating system is composed
of multiple CPUs and GPUs. For ease, the proposed
prototype system for performance evaluation only con-
sists of a host PC and a GPU card. The host in the
testbed is equipped with an Intel Xeon E5620 Quad 2.4
GHz CPU, 24 GB memory, and ASUS Z8PE-D12
Motherboard (Intel 5520 chipset running Windows 7
with Visual Studio 2010 development environment).
Geforce GTX580 with CUDA toolkit 4.0 is utilized as
the GPU experimental platform. The Zuker algorithm
program RNAfold is derived from the software package
ViennaRNA-1.8.4 [22].

CPU performance
Four groups (A, B, C, D) of randomly generated RNA
sequences are chosen. Each group consists of 1024
sequences of same length. The average execution time
per sequence is measured by calculating energy matrices
of all sequences in each group when performance-tun-
ing method is adopted gradually from O2 compiler opti-
mization, SSE, to multi-thread processing. The results
are shown in Table 1.
An average 1.90× speedup over the naive implementa-

tion on single Xeon E5620 core can be achieved in the
O2 optimization. The SSE2 method is awkward for the
first three groups of sequences, the control penalty
induced is over the original VM decomposition opera-
tions for short sequence processes. After the multi-

Figure 6 Tiling scheme for VM matrix computations. This figure describes the tiling scheme for VM matrix computations on GPU. All blue
portions of VM elements in the tile blocks (border with blue color) are calculated ahead of time.

Table 1 Average execution time (ms) per sequence, and
speedup (Sp) for four groups of sequences when
different performance tuning method is adopted
gradually on CPU

Opt. methods A (L = 68) B (L = 120) C (L = 154) D (L = 221)

Time Sp. Time Sp. Time Sp. Time Sp.

None 7.449 1 35.282 1 66.270 1 155.954 1

O2 3.930 1.90 18.631 1.89 34.795 1.90 82.266 1.90

SSE2 4.052 1.84 19.164 1.84 34.901 1.90 80.177 1.95

Multi-thread 1.081 6.89 4.737 7.45 8.424 7.87 19.059 8.18
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thread processing, the highest performance has been
obtained for each group.

GPU performance
Table 2 shows the average execution time per RNA
sequence for different groups when different perfor-
mance tuning methods are adopted gradually on GPU.
Sequences in the groups A, B, C, D are randomly gener-
ated with 1200 sequences of similar length. Hierarchy
parallelism execution on GPU is chosen as the baseline.
For each group, gradual adoption of the different opti-
mization methods significantly improves the
performance.
After thread scheduling and tiling, the optimal average

execution time for each sequence of the corresponding
group is available. The average execution time for the
sequence with length 120 on a single GTX 280 card is
inferred as 0.473 ms [19]; however, it is 0.293 ms on the
proposed method. Thus, a 1.61× speedup can be
achieved over single GTX 280 card implementation.

Hybrid system performance
Four groups of randomly generated RNA sequences are
tested on our hybrid system. Each group contains 20000
sequences of similar length. Sequence lengths in the
four groups are 68, 120, 154, and 221 respectively. The
average estimated execution time for single sequence of
each group is demonstrated in Tables 1 and 2. For each
group, GPU vs. CPU speedup is calculated from the
average execution time on CPU and GPU. The alloca-
tion ratio is further calculated by GPU vs. CPU speedup.
The results are shown in Table 3.
Allocation scheme evaluation
Hybrid system execution time measurements for differ-
ent allocation ratios ranging from 2% to 30% with 2%
increasing step are shown in Figure 7. The optimal allo-
cation ratios for minimal execution time in the groups
A, B, C, and D are approximately 4%, 4%, 6%, and 14%,
respectively. The estimated allocation ratio of the groups
A, B, and C are slightly far from the real optimal value,
mainly because the average CPU and GPU execution
time is not estimated accurately. The error is acceptable
because for short sequences, the execution time is very
close to that of the optimal allocation ratio. For the
group D with longer sequence, the optimal allocation

ratio is very close to the estimated one. It can be
inferred that our allocation method based on the aver-
age CPU or GPU execution time is reasonable. In group
D, over 14% of computation task is allocated for CPU
processing, which utilizes the CPU processing ability a
lot.
Hybrid system speedup
Hybrid system execution time is measured for each
group. To compare with CPU-only and GPU-only
implementations, execution time on the CPU and GPU
platforms where all computation tasks are loaded onto
these devices is also obtained. The execution time and
speedup are listed in Table 4. For the sequences in the
group of B, speedup of 15.42× and 15.93× over the
same optimized quad-core CPU implementation is
achieved for the GPU and the hybrid system respec-
tively. Speedup of over 50× over single Xeon E5620 core
can also be achieved for this group. For group D,
speedup of 5.83× and 6.75× over CPU-only implementa-
tion is achieved for both systems, showing the hybrid
system to be 1.16× faster than that of GPU-only imple-
mentation. It means that our hybrid system can have
16% performance advantage over GPU-only implemen-
tation for Zuker algorithm applications for this group of
sequences.

Discussion
According to the results of Table 4, the speedup over
CPU-only implementation achieved for the hybrid sys-
tem for the group B is larger than the rest of the groups.
It can be inferred that the the efficiency of the hybrid
system can be exploited well for sequences in this
group. For longer sequences, the speedup is decreasing.
It is mainly because that different portions of the Zuker
algorithm have different computational complexity and
GPU efficiency [19]. For longer sequences in group D,
the GPU efficiency is becoming lower. The speedup of
GPU over CPU in group D is 5.83×, lower than that of
the rest of groups. We can infer that although the main
idea of the proposed hybrid system is to exploit CPU
computing ability, the performance of the hybrid system
is still limited to that of GPU. In group D, a majority of
sequences (over 85%) are still processed on GPU, which
is the primary computing platform in the hybrid system.
The key point of the hybrid system is the task allocation

Table 2 Average execution time (ms) per sequence and speedup (Sp) for four sequence groups when different
performance tuning methods are adopted gradually on GPU

Opt. methods A (L = 68) B (L = 120) C (L = 154) D (L = 221)

Time Sp. Time Sp. Time Sp. Time Sp.

Hierarchy parallelism 0.452 1 2.402 1 3.530 1 20.067 1

Memory optimization 0.199 2.27 0.855 2.81 1.561 2.26 8.876 2.26

Thread scheduling and tiling 0.068 6.65 0.293 8.20 0.754 4.68 3.270 6.14
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between the CPU and GPU. The proposed task alloca-
tion scheme may only be used to multiple sequences
with same or similar length. For these sequences, we
measure the estimated average execution time of each
sequence on both CPU and GPU platform to calculate
the speedup of GPU over CPU. The speedup then can
be used to estimated the boundary value B for allocation
of tasks between CPU and GPU. According to the
boundary value B, the input numbered sequences are
divided into two parts which are sent to CPU and GPU
for parallel processing respectively. Although we only
evaluated the hybrid accelerating method in the testbed
with one CPU and one GPU, the proposed method can
be easily employed to hardware platforms with multiple
CPUs and GPUs. In these systems, the performance of
multiple CPUs and GPUs must be estimated to instruct
the task allocation, which will become a little compli-
cated. Take the hardware system with two CPUs and
GPUs for example, there may be three boundary values

to be calculated to determine how many sequences will
be sent to multiple CPUs and GPUs respectively.

Conclusions
The Zuker algorithm is widely used for RNA secondary
structure prediction. Based on careful investigation of
the CPU and the GPU architecture, a novel CPU-GPU
hybrid accelerating system for Zuker algorithm applica-
tions is proposed in the current study. Performance dif-
ferences of CPU and GPU in the task allocation scheme
is considered to obtain the workload balance. To
improve the hybrid system performance, implementa-
tions of the Zuker algorithm on both the CPU and GPU
platforms are optimized. The experimental results show
that the hybrid accelerating system achieves a speedup
factor of 15.93× and 16% performance advantages over
optimized multi-core CPU and GPU implementations
respectively. Moreover, more than 14% computation
task is executed on CPU. The method combining CPU

Figure 7 Experimental results of execution time of hybrid system for four different sequence groups. This figure describes the
experimental results of execution time of hybrid system for four different sequence groups when task allocation ration increases from 2% to
30%. According to this figure, the minimal execution time of the hybrid system and the corresponding optimal allocation ratio are indicated.

Table 3 Experimental results of the estimated task allocation ratio for different sequence groups

A (L = 68) B (L = 120) C (L = 154) D (L = 221)

Avg. CPU exe. time 1.081 4.737 8.424 19.059

Avg. GPU exe. time 0.068 0.293 0.754 3.270

Speedup GPU vs. CPU 15.90 16.17 11.17 5.83

Estimated allocation ratio 5.92% 5.83% 8.22% 14.64%

Lei et al. BMC Genomics 2012, 13(Suppl 1):S14
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and GPU to accelerate the Zuker algorithm is proven to
be promising and can also be employed to other bioin-
formatics applications.
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