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Abstract

Background: Microarray experiments often measure expressions of genes taken from sample tissues in the
presence of external perturbations such as medication, radiation, or disease. The external perturbation can change
the expressions of some genes directly or indirectly through gene interaction network. In this paper, we focus on
an important class of such microarray experiments that inherently have two groups of tissue samples. When such
different groups exist, the changes in expressions for some of the genes after the perturbation can be different
between the two groups. It is not only important to identify the genes that respond differently across the two
groups, but also to mine the reason behind this differential response. In this paper, we aim to identify the cause of
this differential behavior of genes, whether because of the perturbation or due to interactions with other genes.

Results: We propose a new probabilistic Bayesian method CMRF based on Markov Random Field to identify such
genes. CMRF leverages the information about gene interactions as the prior of the model. We compare the
accuracy of CMRF with SSEM and Student’s t test and our old method SMRF on semi-synthetic dataset generated
from microarray data. CMRF obtains high accuracy and outperforms all the other three methods. We also conduct
a statistical significance test using a parametric noise based experiment to evaluate the accuracy of our method. In
this experiment, CMRF generates significant regions of confidence for various parameter settings.

Conclusions: In this paper, we solved the problem of finding primarily differentially regulated genes in the
presence of external perturbations when the data is sampled from two groups. The probabilistic Bayesian method
CMRF based on Markov Random Field incorporates dependency structure of the gene networks as the prior to the
model. Experimental results on synthetic and real datasets demonstrated the superiority of CMRF compared to
other simple techniques.

Background
Microarray experiments often measure expressions of
genes taken from sample tissues in the presence of
external perturbations such as medication, radiation, or
disease [1,2]. Typically in such experiments, gene
expressions are measured before and after the applica-
tion of external perturbation, and are called control data
and non-control data, respectively. In this paper, we
focus on an important class of such microarray experi-
ments that inherently have two groups of tissue samples.

Different groups in a microarray measurement can exist
in many different ways. For instance, samples can be
taken from members of multiple closely related species
(e.g. rat versus mouse). Within the same species there
can be subgroups with different phenotypes (e.g. African
American versus Caucasian American). Another exam-
ple is when the samples have already been through sev-
eral alternative external perturbations (e.g. fasting and
not fasting). When such different groups exist, it is not
only important to observe overall changes in gene
expression, but also to observe how different groups
respond to the external perturbation. For example, Tay-
lor et al. applied medications on 36 Caucasian American
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and 33 African American patients infected with Hepati-
tis C [3]. Gene expressions were collected before and
after the medication.
In a perturbation experiment, some of the genes

respond by noticeably changing their expression values
between the control and non-control data. Genes that
change their expressions in a statistically significant way
are referred to as differentially expressed (DE), while
those that do not, are referred to as equally expressed
(EE) genes. In the context of two groups, we refer to a
gene that has the same state in both the groups, i.e.
either DE or EE for both the groups, as equally regu-
lated (ER) gene. On the contrary, if a gene is DE in one
group and EE in the other, we denote it as differentially
regulated (DR).
Genes for any organism typically interact with each

other via regulatory and signaling networks. For simpli-
city, we will refer to them as gene networks for the rest
of this paper. A small portion of an example gene net-
work can be seen in Figure 1.
Once an external perturbation is applied, a gene can

be DE in one of the two ways - as a direct effect of the
perturbation or via interaction with other DE genes
through gene networks. We denote a gene as primarily
affected DE, if it is DE due to the external perturbation.
Similarly, a gene is secondarily affected DE, if it is DE
due to another gene in the gene network. Figure 1
shows the state of the genes in the Pancreatic Cancer
pathway after a hypothetical external perturbation is
applied. In this figure, genes K-Ras, Raf and Cob42Roc
are primarily affected and MEK, Ral and RalGDS are
secondarily affected through interactions.
Recall that for a gene to be DR, it has to be EE in one

group and DE in another group. For such a gene, if it

happens to be DE in one group because of the external
perturbation, we call it as primarily differentially regu-
lated (PDR) gene. When it is DE in one group because
of the interaction with other DE genes in the gene net-
works, we will refer to it by secondarily differentially
regulated (SDR) gene. In this paper, we consider the pro-
blem of identifying the PDR genes in a given set of con-
trol and non-control gene expressions from two groups of
samples.
Existing methods to identify the primarily affected DE

genes using association analysis techniques [4,5], haplo-
insufficiency profiling [6-8] and chemical-genetic inter-
action mapping [9] are limited to applications where
additional information such as fitness based assays of
drug response or a library of genetic mutants is avail-
able. Bernardo et al. suggested a regression based
approach named MNI that assumes that the internal
genetic interactions are offset by the external perturba-
tion [10]. It estimates gene-gene interaction coefficients
from the control data and uses them to predict the tar-
get genes in the non-control data. Cosgrove et. al. pro-
posed a method named SSEM that is similar to MNI
[11]. SSEM models the effect of perturbation by an
explicit change of gene expression from that of the
unperturbed state.
We have also developed a method to detect the pri-

marily and secondarily affected genes in perturbation
experiments with a single data group [12]. We will call
this method SMRF (single MRF) in the rest of this
paper for it applies MRF on single group datasets. In
that paper we developed a Bayesian probabilistic method
based on Markov Random Field that leverages the infor-
mation from gene networks as the prior belief of the
model.

Figure 1 A sample gene regulatory network. Illustration of the impact of a hypothetical external perturbation on a small portion of the
Pancreatic Cancer pathway. The pathway is taken from the KEGG database. The solid rectangles denote the genes affected directly by
perturbation, the dashed rectangles indicate genes secondarily affected through the networks. The dotted rectangles denote the genes without
any change in expression. ® implies activation and ⊣ implies inhibition. In this figure, genes K-Ras, Raf and Cob42Roc are primarily affected and
MEK, Ral and RalGDS are secondarily affected through interactions.
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Though these methods analyze primary and secondary
effects of perturbation on gene expressions, they are not
directly applicable for multi-group perturbation
experiments.
Several recent studies aim to identify DE genes in

multiple groups of data points. maSigPro is a two stage
regression based method that identifies genes that
demonstrate differential gene expression profiles across
multiple experimental groups [13]. Hong et al. proposed
a functional hierarchical model for detecting temporally
differentially expressed genes between two experimental
conditions [14]. They modeled gene expressions by basis
function expansion and estimate the parameters using a
Monte Carlo EM algorithm. Tai et al. ranked DE genes
using data from replicated microarray time course
experiments, where there are multiple biological condi-
tions [15]. They derived a multisample multivariate
empirical Bayes statistic for ranking genes. Angelini et
al. proposed a Bayesian method for detecting temporally
DE genes between two experimental conditions [16].
Deun et al. developed a Bayesian method to find the
genes that are differentially expressed in a single tissue
or condition over multiple tissues or conditions [17]. All
these methods identify differentially expressed genes in
multiple groups. However, none of these methods ana-
lyzed the primary and secondary effects in a two group
perturbation experiment. In this paper, we develop a
method to solve this problem.

Our approach
In this paper, we propose a new probabilistic Bayesian
method CMRF to find the PDR genes in two group per-
turbation experiment dataset as defined above. We call
this method CMRF (Comparative MRF) for it applies
MRF on two groups of data for comparison purpose. Our
Bayesian method incorporates information about rela-
tionship from gene networks as prior beliefs. We con-
sider the gene network as a directed graph where each
node represents a gene, and a directed edge from gene gi
to gene gj represents a genetic interaction (e.g gi activates
or inhibits gj). We define two genes as neighbors of each
other if they share a directed edge. For example, in Figure
1, genes K-Ras and Raf are neighbors as K-Raf activates
Ras. We also classify a neighbor as incoming or outgoing,
if it is at the start or at the end of the directed edge
respectively. In Figure 1, Raf is an incoming neighbor of
MEK and MEK is an outgoing neighbor of Raf. When the
expression level of a gene is altered, it can affect some of
its outgoing neighbors. Thus, the gene expression can
change due to external perturbation or because of one or
more of the affected incoming neighbors.
We represent the external perturbation by a hypothe-

tical gene (i.e. metagene) g0 in the gene network. We
add an edge from the metagene to all the other genes

because the external perturbation has the potential to
affect all the other genes. So, g0 is an incoming neighbor
to all the other genes. We call the resulting network the
extended gene network. CMRF estimates the probability
that a gene gj is DR due to an alteration in the activity
of gene gi(∀gi ∈ G ∪ {g0}, gj ∈ G) if there is an edge
from gi to gj in the extended network. We use a Baye-
sian model in our solution with the help of Markov
Random Field (MRF) [18] to capture the dependency
between the genes in the extended gene network. We
define feature functions that encapsulate the domain
knowledge available from gene networks and gene
expression data. CMRF optimizes the joint posterior dis-
tribution over the random variables in the MRF using
Iterated Conditional Modes (ICM) [19]. The optimiza-
tion provides the state of the genes, the regulation of
the genes and the probabilistic estimate of pairwise
interactions between the genes including the metagene.
Given this, we can rank the genes according to the data
likelihood that a gene is DR because of the metagene g0,
and obtain a list of possible PDR genes.
Figure 2 illustrates different components of CMRF and

the connectivity between them. Note that, (C) corre-
sponds to the Bayesian prior based on MRF.
We compare the accuracy of CMRF with that of

SSEM and Students t test on semi-synthetic dataset gen-
erated from microarray data in Cosgrove et al [11]. We
also compare CMRF with our old method SMRF that
we developed to identify the primarily affected DE genes
in a single group perturbation data [12]. CMRF obtains
high accuracy and outperforms all the other three meth-
ods. Also, we conduct a statistical significance test using
a parametric noise based experiment to evaluate the
accuracy of CMRF. In this experiment our model
demonstrates reasonable confidence regions for various
values of the parameters.
The rest of the paper is organized as follows. Section

Results and discussion presents the results of our
experiments. Section Methods describes our methods in
detail. Section Conclusions concludes our discussion.

Results and discussion
In this section we discuss the experiments we conducted
to evaluate the quality of CMRF. We implemented
CMRF in MATLAB and Java. We obtained the code for
Differential Evolution from http://www.icsi.berkeley.edu/
~storn/code.html. We compared CMRF with SSEM as
SSEM is one of the most recent methods that considers
identifying primarily affected genes in a perturbation
experiments [11].
We obtained SSEM from http://gardnerlab.bu.edu/

SSEMLasso. We executed our code on a Quad-Core
AMD Opteron 2 Ghz workstation with 32 GB of
memory.
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Dataset
We used four different sets of data to conduct the
experiments in this paper.

• Dataset 1. The first dataset was collected by Smir-
nov et al. [20]. This dataset was generated using 10
Gy ionizing radiation over immortalized B cells
obtained from 155 members of 15 Centre d’tude du
Polymorphisme Humain (CEPH) Utah pedigrees
[21]. Microarray snapshots were obtained before (at
zeroth hour) and after (at second and sixth hours)
the application of radiation.
• Dataset 2. The second dataset corresponds to a
drug response experiment conducted by Taylor et al
[3]. Medications were applied on 36 Caucasian
American and 33 African American patients infected
with Hepatitis C. Gene expressions were collected
before the medication was started and at 1, 2, 7, 14,
28 days after the medication was administered.

Both dataset 1 and 2 are microarray time series data
with more than two time points. We adapted these two

time series data two create control and non-control data
suitable for our experiments. We used the data before
perturbation as control data. For the non-control data
we calculated the expected expression of a gene at each
points after the perturbation. We selected the one with
highest absolute difference from the expected expression
of control data for that gene.

• Dataset 3. We created dataset 3 using dataset 1.
We used the control group of dataset 1 as the con-
trol group of dataset 3. Then, we changed the
expression values of some of the randomly selected
genes to model the primary effect of external pertur-
bation. From that perturbed dataset, we simulated
the secondary effects using the sigmoid method
described in Garg et al. [22]. We denote the para-
meter for primary perturbation effect by deviation.
Deviation is the ratio of the change of expression
value Δx of a gene to its original expression value x
(i.e. derivation = �x

x ) which is normalized between
zero and one. We tuned the other parameters of the

Figure 2 Illustration of different components of CMRF and connectivity between them. (A) obtains an initial estimates of state variables
using Student’s t test. (B) estimates parameters in a way that maximizes data likelihood. (C) estimates parameters in order to maximize prior
density. Both (B) and (C) use a global optimization technique called Differential Evolution. (D) employs Iterated Conditional Modes to maximize the
pseudo-likelihood. (B), (C) and (D) consist of an alternating optimization technique. These three steps (B), (C) and (D) are repeated till the
algorithm meets a criteria for completion. Finally, once the optimization is complete, the DR genes are sorted in decreasing order of their
likelihood with respect to the metagene g0. The genes at the top of the list are declared PDR.
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method to create a meaningful dataset as follows;
alpha = 1, b = 0.01, kac = 1.0, kin = 1, h = 0.1.
• Dataset 4. We create this dataset from dataset 1 in
two steps as follows.

- Selection of genes. In order to carry out experi-
ments on larger scale data with known PDR
genes, we generated data in the presence of a
hypothetical perturbation from the real datasets
as follows. We first select three sets of genes.
Each set consists of some primarily affected
genes and a higher number of secondarily
affected genes. Here, we describe how we con-
struct each of the three sets of affected genes.
We first select a random gene from the network
and label it as a primarily affected DE gene. We
then traverse its outgoing neighbors in a breadth
first search manner. As we visit a gene during
traversal, we label it as a secondarily affected DE
gene with a probability of 1 − (1 − q)h, where h
is the number of incoming DE neighbors. Here q
is the probability that a gene is DE due to a DE
predecessor (0.4 in our experiments). We repeat
these steps to create the desired number of pri-
marily affected genes.
After we obtain the three set of genes, we assign
one set to both DA and DB groups. We assign
the other two sets of genes to different groups.
These two set of genes are differentially regu-
lated as they are affected in only one group and
not in the other. The three groups can contain
different number of primarily and secondarily
affected genes. We call these three sets of genes
as primarily differentially regulated, secondarily
differentially regulated and equally regulated
genes.
- Generation of gene expression. Once we iden-
tify these three sets of genes in the two groups,
we create control and non-control data for DA

and DB over N samples. We use the control part
of the real dataset in Smirnov et al. as the con-
trol part of our synthetic dataset in both DA and
DB [20]. To generate the non-control dataset, we
traverse each of the genes that participate in the
gene networks. Consider a gene gi with mean
and standard deviation of expression in the con-
trol dataset given by µi and si respectively.
If the gene is EE we generate its non-control
data points from the a normal distribution given
by the parameters (µi, σ 2

i ). If the gene is DE, we
use the same variance but different mean as that
of the control group. For the primarily and sec-
ondarily affected genes we use µi ± dp and µi ±
ds respectively, where dp >ds.

To summarize, we used the same variance in the
non-control group as that in the control group.
However, for an affected gene we changed the value
of the mean in the non-control group from that in
the control group. For a primarily affected gene we
applied a higher deviation of mean than that of the
secondarily affected genes.

Regulatory networks
We collected 24,663 genetic interactions from the 105
regulatory and signaling pathways of KEGG database
[23]. Overall 2,335 genes belong to at least one pathway
in KEGG. In our model, we considered only the genes
that take part in the gene networks.

Comparison to other methods
Our method provides us a list of differentially regulated
genes. We sort the list of those genes as follows. Con-
sider a DR gene gi, which is DE in DA and EE in DB.
We calculate the likelihood of being EE in DA and DE
in DB for that gene. We can interpret this step as the
probability of being DR, but in a reverse way. We could
instead use the probability that the gene is DE in DA

and EE in DB. However, according to our observation,
the earlier metric provides a much better accuracy. We
sort all the DR genes with increasing order of that
likelihood.
As per our knowledge, no other method exists that

differentiates between the primary and secondary effects
in a two-group perturbation experiment. There exist
some studies in identifying primarily affected genes in
single group datasets. We compared the accuracy of
CMRF to three such methods namely, SMRF, Student’s
t test and SSEM.
Experimental setup
Given an input dataset, using each of the four methods,
we ranked all the genes. Highly ranked genes have
higher chance of being a PDR according to each
method. However, as other three methods are not tai-
lored to solve this problem, we created separate ranking
on DA and DB. Then, out of those two ranks, we created
a unified rank of differentially regulated genes. We shall
elaborate on this unified rank creation later. We, first,
explain how we create ranks on individual groups DA

and DB for other three methods.

• SMRF. We apply the SMRF to each group sepa-
rately and obtain a set of differentially expressed
genes. We sort the genes in decreasing order of joint
likelihood with the metagene. A higher joint likeli-
hood implies a higher chance of being primarily
affected.
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• SSEM. We train SSEM on the control dataset,
where it learns the correlation between the genes.
We test SSEM on the non-control dataset of each
group, where it produces a rank for each single data
point.
• Student’s t test. We use the function called ttest2
from MATLAB. We apply it on every individual
gene, where it takes control and non-control dataset
as input and produces a p-value as output. We
assume that the null hypothesis corresponds that the
gene is EE. So a substantially lower p-value implies a
higher chance of being primarily affected. We per-
form the test on all the genes and rank them accord-
ing the increasing order of p-values.

Now we describe how we create an unified ranking of
differentially regulated genes for these three methods.
We denote the ranks from data group DA and DB by RA

and RB respectively. The unified rank is defined by RU .
We denote the number of genes in each rank to be ωA

and ωB respectively. We scan both the ranks simulta-
neously from first position to ω = min(ωA, ωB). While
scanning at the kth position, we denote the equally
regulated set obtained till that position by Λk = RA (1: k)
∩ RB (1: k). We include RT (k) to the unified rank RU if
RT (k) ∉ Λk, T Î {A, B}. For SSEM we obtain a separate
RU for each data point. We average the accuracies over
all these ranks.
Results
In this experiment we used dataset 3, that we have just
described. To observe the accuracy of CMRF at varying
degree of difficulties, we conducted experiments with
four different values of deviation, namely, {0.5, 0.6, 0.7,
0.8}. However, we discuss only two of them in this
paper (see Figure 3) since for other two parameters the
results are similar. The results we discuss correspond to
the cases when deviation = {0.6, 0.8}.

Figures 3(a) and 3(b) show the sensitivity of the four
methods with the two deviation settings. The former
one corresponds to the computationally harder case as
the difference between the non-control groups of pri-
marily and secondarily affected genes is small. As the
deviation increases identifying primarily affected genes
becomes easier. Form the figure, we observe that CMRF
is significantly more accurate than the other three meth-
ods for all datasets consistently. It reaches almost 50%
sensitivity (i.e., it can find around 15-18 primarily
affected genes out of 30) in the top 50 ranked genes,
when the deviation is 0.6. On the other hand, its
achieves a sensitivity of 0.6 when the deviation is 0.8.
We obtained similar results for other deviations, which
we do not discuss here. The method in SMRF reaches
to 30% and 40% accuracy, however at a slower pace.
The t-test reaches around 25% and 30% sensitivity at
ranking position 50 for these two cases respectively.
SSEM’s sensitivity is below 0.1 for all experiments even
within the top 50 positions.
We believe that there are three major factors for the

success of our method over the other competing methods.
First, the other methods do not simultaneously handle two
groups of datasets and are not able to generate an unified
ranking of differentially regulated genes. CMRF encom-
passes both groups in a single model and probabilistically
determines the PDR genes. Hence, it is more shielded
against the false positives introduced during the unifica-
tion of ranking. Second, CMRF can successfully incorpo-
rate the gene interactions using MRFs while others ignore
this information. Finally, in real perturbation experiments,
multiple genes are often primarily affected. CMRF is cap-
able of dealing with both large and small number of pri-
marily affected genes, while performances of other
methods deteriorate as the number of primarily affected
genes grows. Thus, we conclude that our method is more
suitable for real perturbation experiments.

Figure 3 Comparison of CMRF with three other methods. Comparison of our method CMRF to SMRF, SSEM and t-test. The number of
primarily differentially affected genes is 40. The values for deviation (maximum perturbation to the PDR genes) are 0.6 and 0.8. The figures
indicate that CMRF outperforms SMRF, SSEM and t-test.
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Statistical significance experiment
The experiments in the last section enable us to com-
pare the accuracy of CMRF with that of the other meth-
ods on synthetic datasets. We also wanted to evaluate
the accuracy of CMRF on real dataset. However, we do
not have any gold standard available that enlists true set
of PDR genes. Hence, we conducted a set of statistical
significance experiments to estimate the confidence of
our accuracy. Specifically, we obtained the control data
from a real dataset, perturbed it in a controlled way for
a number of genes. We calculated the likelihood prob-
abilities of those genes and created a distribution. We
repeated this process with varying amount of perturba-
tion. Finally, we executed CMRF on a real dataset and
analyzed the result.
Results
We obtained the real dataset from drug response experi-
ment conducted by Taylor et al [3], which is actually
dataset 2. Apart from this real dataset, we create differ-
ent versions of dataset 4 by varying dp as {0.1, 0.2, 0.3,...,
3.0}. If dp > 1.1, we set ds to 1, otherwise ds = 0.5 × dp.
Thus, we have 30 synthetic datasets in total. In every
dataset, we fix the number of primarily and secondarily
differentially regulated genes to 50 and 172 respectively.
To decide whether a gene gi is DR, when gi is DE in DA

and EE in DB, we define a null-hypothesis H0i: gi is DR,
but in the reverse way, i.e. gi is EE in DA and DE in DB.

We calculate the likelihood of being EE in DA and DE
in DB for that gene, as described. For gene gi, we denote
the log likelihood of accepting H0i by LLi. In every data-
set, we create a box plot of the 50 LLi values, as the
number of DR genes in each dataset is 50. A lower
value LLi indicates that gi has a higher probability of
being differentially regulated.
Figure 4 illustrates the statistical significance of the

experiments over the datasets with dp = 1.2 to 2.0. The
box plot demonstrates a relationship between the P-
value and dp. A higher value of dp indicates a lower P-
value and hence, a high chance of being PDR. We also
observe that the variance of P-value increases with the
increase of dp.
We also executed CMRF on the real datasets without

any modification. Interestingly, on the real dataset from
Taylor et al. [3] (dataset 2), we did not obtain any genes
as differentially regulated. A careful observation con-
cludes that when both the number of data points and
the gap dp (i.e. the signal to noise ratio) is low, the coef-
ficients g6 and g7 in the prior density become strong and
all genes are identified as equally regulated. However,
when either the number of data points or dp is signifi-
cantly high, the data can overcome the prior. In the cur-
rent real dataset, the number of data points is only 33
and the gaps between the control and non-control
group were less than 1.2 × s. As a result, CMRF

Figure 4 Illustration of statistical significance test. Illustration of the statistical significance test. Box plot demonstrates the P-value of null
hypothesis of the DR genes over synthetic dataset. From the plot we clearly conclude that a higher gap between the control and non-control
group of a DR gene leads to a lower P-value. The genes with a lower P-value have a higher chance of being primarily differentially regulated.
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identifies no differentially regulated genes in the dataset.
Thus, we can conclude that either there is not much dif-
ference between the two groups in the real data, or the
data does not contain enough data points, so that our
model can highlight difference between the two groups.
In Figure 4 we present the results for dp = 1.2 to 2.0.

Note, that for dp < 1.2 × s our model did not identify
any DR genes. Here also, we attribute a similar reason
for not finding any DR genes as both dp and the num-
ber of data points are small. On the other hand, in Sec-
tion Comparison to other methods, when we execute
CMRF on synthetic datasets with 155 data points we
were able to identify a substantial number of true PDR
genes even with dp = 0.02 × s. To substantiate our con-
clusion that there exists little difference between the
two groups in the real dataset, we conducted a set of
permutation tests. We shuffled the two original groups
to create new sets of data. We repeated this process for
a number of times (40 in the present experiment) and
executed CMRF on each of them. For every derived
dataset, CMRF did not find any DR genes. Hence, this
experiment bolsters the claim that there are no DR
genes in the original real data.
An interesting question can be raised is that “is there

indeed no DR genes in the real dataset from Taylor et
al. [3]?” Another similar question can be “will our
method be able to detect DR and PDR genes from simi-
lar other real datasets?” We believe that CMRF requires
a bigger dataset for DR and PDR genes to be discovered.
For example, CMRF is able to identify the DR and PDR
genes from the synthetic dataset that contains substan-
tially higher number of data points than that of the real
dataset. Since the difference between control and non-
control groups of a DE gene is small compared to the
variance of the data points, it is difficult to detect that
subtle effect of perturbation with a small dataset. For a
small dataset, the prior due to third hypothesis becomes
strong and the two corresponding parameters g6 and g7
assumes extreme values. Thus the support from data is
not sufficient to overcome the prior and hence, the
method is not able to identify the DR and PDR genes.
There are two solutions to overcome this problem. First
of them is to employ a bigger dataset. With the
advancement of comparatively inexpensive and high
throughput technologies bigger dataset are increasingly
common nowadays. From that perspective, CMRF is
supposed to perform more accurately in the near future.
A second option to circumvent the problem is to
restrict the growth of the two parameters g6 and g7. If
we have knowledge about the values of these two para-
meters, we can assign then as input to the program and
refrain from estimating their values. This will enable us
to employ a comparatively non-informative prior which
will be easier for the data to overcome. Also, we can use

specific bound over those variables while estimating
them to avoid them becoming stronger.

Conclusions
Microarray experiments often measure expressions of
genes taken from sample tissues in the presence of
external perturbations such as medication, radiation, or
disease. Typically in such experiments, gene expressions
are measured before and after the application of external
perturbation.
In this paper, we solved the problem of finding pri-

marily differentially regulated genes in the presence of
external perturbations when the data is sampled from
two groups. The probabilistic Bayesian method based on
Markov Random Field incorporates dependency struc-
ture of the gene networks as the prior to the model.
Experimental results on synthetic and real datasets
demonstrated the superiority of CMRF compared to
other simple techniques.

Methods
In this section we describe different components of
CMRF. Section Notation and problem formulation
describes the notation and formulates the problem. Sec-
tion Overview of the solution provides a high level over-
view of the solution. Section Computation of the prior
density function describes the calculation of the prior
density function of MRF. Section Approximation of the
objective function discusses the definition of a tractable
objective function. Section Computation of likelihood
density function discusses the calculation of the likeli-
hood function. Finally, Section Objective function opti-
mization describes the algorithm to optimize the
objective function.

Notation and problem formulation
In this section, we describe our notation and formally
define the problem. We define a Bayesian model for
gene expression in a two-group perturbation experi-
ment. We classify the random variables of the model
into two different groups, namely observed variables and
hidden variables. We have the values for the observed
variables, while we estimate the values of the hidden
variables.
Observed variables
We define two sets of observed variables, one for micro-
array gene expression data and another for the neigh-
borhood in the extended gene network.

• Microarray data. We denote the number of genes by
M and the number of data points in the two groups
DA and DB by NA and NB respectively. We represent
the set of genes with G = {g1, g2, · · · , gM} . For each
gene and for each group the microarray data contains
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the gene expression values before and after the per-
turbation, i.e. control and non-control data respec-
tively. We denote the expression value of the ith gene
from the jth sample in the control data of group DA

with yAij. We represent the same for the non-control
data with y′Aij . Thus the expression values of the gene
gi for all the samples in DA for control and non-con-
trol data are yAi = {yAi1, yAi2, · · · yAiNA} and
yAi′ = {yAi1′, yAi2′, · · · yAiNA ′} respectively. We denote
all the expression values in group DA for gene gi with
YAi(i.e. YAi = yAi ∪ y’Ai). We denote the collection of
the gene expressions of all the genes in group DA by
YA =

⋃M
i=1 YAi . We define YB similarly for all the

genes in DB. We refer the complete gene expression
data using variable Y = YA ∪ YB .
• Neighborhood variables. We use the term
W = {Wij} to indicate if two genes gi and gj are
neighbors in the extended gene network. If gi is an
incoming neighbor of gj (i.e. gj has an incoming edge
from gi ), then we set the value of Wij (1 ≤ i, j ≤ M)
to 1. It is 0 otherwise.

Hidden variables
We define three sets of hidden variables, These variables
govern the state of genes, regulations of genes and inter-
actions among genes respectively.

• State variables. We use SA = {SAi} and SB = {SBi} ,
(1 ≤ i ≤ M) to denote the states of the genes in
group DA and DB. SAi = 1 if gi is DE in DA and 0 if
it is EE in DA. We define SBi similarly. We assume
that the metagene g0 is DE for both DA and DB.
Thus, SA0 = SB0 =1.
• Regulation variables. We denote the regulation con-
dition of gene gi with Zi. Table 1 enumerates different
values of Zi for the values of SAi and SBi. In this for-
mulation, the cases Zi = {2, 3} indicate that gi is DR,
whereas Zi = {1, 4} indicate that gi is ER. The meta-
gene is guaranteed to be ER, since SA0 = SB0 = 1.
• Interaction variables. In order to govern the joint
regulation states of genes gi and gj we define interac-
tion variables X = {Xij}, (1 ≤ i, j ≤ M). Mathemati-
cally, Xij = 4 × (Zi − 1) + Zj. Note that, this equation
is created to maintain brevity of the mapping
between the interaction variables and the regulation
variables by carefully assigning different numeric
constants between one and 16 to appropriate values
of an interaction variable. Table 1 enumerates differ-
ent values of Xij for values of Zi and Zj . Specifically,
X0j Î {2, 3} and X0j Î{1, 4} correspond to the cases
where gj is DR and ER respectively because of inter-
action with the metagene g0.

It is easy to see that the hidden variables follow a hier-
archical structure. For instance, the value of Zi depends

on the values of SAi and SBi. Similarly, the value of Xij

depends on the values of Zi and Zj. Thus, the value of
the dependent variable Xij is based on the values of four
independent variables SAi, SBi, SAj and SBj . Table 1 enu-
merates the values of Zi, Zj and Xij for different values
of SAi, SBi, SAj and SBj .
It is worth noting that the different values that we

assign to the hidden variables are categorical in nature.
Problem formulation
Let G = {g1, g2, · · · , gM} denote the set of all genes.
Using the definition of the neighborhood variables W ,
we denote the collection (G, W) by V which essen-
tially represents the gene networks. We denote the
metagene by g0. Given an observed data {V , Y} we
want to estimate the probabilities
p (Xij = x |X − Xij, Y , V), x ∈ {1, 2, · · ·16} .
A higher value of p (X0j = {2, 3}|·) indicates a higher

probability of a gene gj being PDR. Using the estimated
values of p (X0j |·), ∀j Î {1, 2,... M}, we can create an
ordered list of candidate PDR genes.

Overview of the solution
This section describes a high level overview of our
approach to estimate p(X0j|·), ∀j Î {1, 2,... M}. One sim-
ple approach can be using a hypothesis test to find out
the PDR genes in the given dataset [15]. However, the
available hypothesis tests do not consider the interac-
tions among genes in the gene network. Also, deciding
on the significance of test can be a complex step.
Another approach can be to use SSEM to create a rank

Table 1 Enumeration of the values of Zi, Zj and Xij
SAi SBi SAj SBj Zi Zj Xij

DE DE DE DE 1 1 1

DE DE DE EE 1 2 2

DE DE EE DE 1 3 3

DE DE EE EE 1 4 4

DE EE DE DE 2 1 5

DE EE DE EE 2 2 6

DE EE EE DE 2 3 7

DE EE EE EE 2 4 8

EE DE DE DE 3 1 9

EE DE DE EE 3 2 10

EE DE EE DE 3 3 11

EE DE EE EE 3 4 12

EE EE DE DE 4 1 13

EE EE DE EE 4 2 14

EE EE EE DE 4 3 15

EE EE EE EE 4 4 16

Enumeration of the values of Zi, Zj and Xij for different values of SAi, SBi, SAj
and SBj. The hidden variables are oriented in a hierarchical structure. For
instance, the value of Zi depends on the values of SAi and SBi. Similarly, the
value of Xij depends on the values of Zi and Zj. Thus, the value of the
dependent variable Xij in turn depends on the values of four independent
variables SAi, SBi, SAj and SBj.
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of the potential primarily affected genes in each group
separately [11]. Then we can select the top k genes in
each group and perform a set difference to obtain the
PDR genes. Though SSEM considers the correlation
between the genes, it does not utilize any known infor-
mation from the gene networks.
We build a Bayesian probabilistic method based on

Markov Random Field where we leverage the informa-
tion from gene networks as the prior belief of the
model. Using Bayes theorem [24] we can write the joint
probability density of interaction variables X as,

P(X |Y , V) = P(Y|X ,V , θY)P(X |V , θX)∑
X P(Y|X ,V , θY)P(X |V , θX) (1)

The first term in the numerator, P(Y |X , V , θY) , is the
likelihood of the observed expression data Y given the
interaction variables and gene network. θY represents the
parameters for the likelihood function. A detailed discus-
sion of how we compute this likelihood can be found in
Section Computation of likelihood density function. The
second term in the numerator P(X |V , θX) represents
this prior belief. θX represents the parameters for the
prior density function. We define a Markov Random
Field (MRF) over the interaction variables X and the
priors are encoded via feature functions in the MRF.
Details of the priors and the associated feature functions
are outlined in Section Computation of the prior density
function. The denominator of Equation 1 is the normali-
zation constant that represents the sum of the product of
the likelihood and the prior over all possible assignments
of interaction variables X .
Given the joint probability density function outlined in

Equation 1, our original problem reduces to obtaining
assignments for the interaction variables X and the
parameters θX and θY that maximize it.
A Maximum Likelihood Estimation (MLE) of Equation

1 is practically infeasible even for a small number of
genes since the number of terms in the denominator
grows exponentially. Instead we use a pseudo-likelihood
version of the objective function as shown in Section
Approximation of the objective function. We use Itera-
tive Conditional Modes (ICM) [19] and Differential Evo-
lution [25] in an alternating optimization technique to
maximize the pseudo-likelihood with respect to X , θX
and θY.
After the optimization, we obtain an assignment for

X , θX and θY. Using these assignments and the
observed data, we estimate the posterior probability of
all Xij variables. Using the estimated values of p(X0j|·), ∀j
Î {1, 2,... M}, we create an ordered list of candidate
PDR genes. We elaborate on each of these steps next.
Figure 2 illustrates different portions of CMRF and the

connectivity between them.

Computation of the prior density function
In this section, we describe how we incorporate gene
network as the the prior belief into our Bayesian model.
From the structure and properties of gene network, we
build three hypotheses and embed them into our model.
We present the entire concept in three numbered
subsections.
1. Statement of hypotheses
Here we state the three hypotheses on the biological
networks in brief.

• Hypothesis 1. In each group DT(T Î {A, B}), the
metagene g0 can change the state of all the other
genes. Thus, all the genes can be directly affected by
the external perturbation.
• Hypothesis 2. In each group DT(T Î {A, B}), a gene
gi can change the states of its outgoing neighbors gj
in the same data group, i.e. a gene can be indirectly
affected by the perturbation through genetic
interactions.
• Hypothesis 3. Each gene has a high probability of
being equally regulated. This follows from the obser-
vation that, often the difference between the expres-
sions of most of the genes in two groups is small.
We expect that the response of genes in these
groups is very similar.

Clearly, when the data does not follow one or more of
the hypotheses, the optimization function can overcome
the prior belief with a strong support from the data.
2. Markov Random Field construction
In order to compute the prior density function, we define
a Markov Random Field (MRF) over the X variables [18].
MRF is a probabilistic model, where the state of a variable
depends only on the states of its neighbors. MRF is useful
to model our problem as the states of genes depend on
their neighbors. Here, the MRF is an undirected graph
� = (X , E) , where X = {Xij} variables represent the ver-
tices of the graph (i.e. each interaction variable Xij corre-
sponds to a vertex). We denote the set of edges with
E = {(Xij, Xpj)|Wpi = Wij = 1} ∪ {(Xij, Xik)|Wjk = Wij = 1}.
Thus, two variables in X share an edge if they share a com-
mon subscript at the same position and the two genes corre-
sponding to the other subscript interact in the gene network.
For example, in Figure 5(b), X35 and X25 are neighbors, as
they share 5 (i.e. gene g5) as the second subscript and g2 and
g3 interact in the gene network in Figure 5(a).
One important point to note is that, this graph does

not use the state variables S or the regulation variables
Z to model the dependencies between the genes.
Rather, it establishes those dependencies over the X
variables. For example, in Figure 5(b) we draw the MRF
graph corresponding to the hypothetical gene network
in Figure 5(a). In the gene network, there is an edge
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from g2 to g3. So, g2 can potentially change the state of
g3. We create an edge from X12 to X13 that corresponds
to the edge from g2 to g3. As g1 is common for X12 and
X13, if they assume the same value (i.e. X12 = X13), it
implies that the genes g2 and g3 are in same state (i.e.
ST2 = ST3,T Î {A, B}). We formulate these dependency
constraints using a set of unary and binary functions
called feature functions. We discuss these feature func-
tions next.
3. Development of feature functions
We denote the neighbors of Xij in the MRF graph as
X∗
ij = {Xkj |Wki = 1} ∪ {Xip |Wjp = 1} . We define a clique

over each Xij and its neighbors X∗
ij by Cij provided Wij =

1. A feature function f(Cij ) is a Boolean function
defined over the clique Cij . This function evaluates to
one or zero, if it is satisfied or not, respectively. We
define a potential function ψ(Cij ) corresponding to f(Cij)
as an exponential function given by exp(gf (Cij )). Here g
is a coefficient associated with f(Cij) that represents the
relevance of f(Cij) in the MRF. According to Hammers-
ley-Clifford theorem, we express the joint density

function of the MRF over X as product of potential
functions defined over that MRF as,
p (X |θX) = 1

�

∏
Cij,Wij=1 ψ(Cij) [26]. In this formulation,

Δ is the normalization function � =
∑

X
∏

Cij
ψ(Xij) . To

limit the complexity of our model, we consider only cli-
ques of size one and two.
We define seven feature functions to capture the

dependencies among the variables in X according to
the three hypotheses.

Unary feature functions
F1, F2, F3. A primary component of the prior density
function is modeling the frequency of Xij itself. Here, we
focus on two values of Xij namely Xij = {2, 3}, since they
correspond to the events that a gene gj is DR due to the
metagene g0. When Xij = 2, gj is DE in DA and EE in DB.
To capture this, we define a feature function F1(Xij)
which returns one when Xij = 2. It returns zero other-
wise. Similarly, Xij = 3 when gj is EE in DA and DE in DB.
We define another feature function F2(Xij), which returns
one when Xij = 3. We capture all the other values of Xij

Figure 5 A hypothetical gene network and corresponding Markov random graph. (a) A small hypothetical gene network with perturbation
in two datasets DA and DB. The genes in the two datasets interact through identical network, although they assume different states. The circle g0
represents the abstraction of the external perturbation. Rectangles denote genes. ® implies activation and ⊣ implies inhibition. The potential
effect of metagene to all other genes is indicated by dotted arrows from the metagene to all the other genes. For example, g1 is primarily
affected in DA, but not affected in DB. g2 is primarily affected in both the datasets. g3 is secondarily affected in both DA and DB. (b) The Markov
Random Field graph constructed based on the small hypothetical gene network in (a). The numbers in the parenthesis are the expected
assignments to the variables based on the states of the genes in (a). Nodes with dotted boundaries indicate that those nodes are required for
completeness of the model, however the corresponding interactions do not exist.
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by a feature function called F3(Xij). It returns zero when
Xij Î {2, 3} and equals to one otherwise. Table 2 enumer-
ates the the domains and ranges of F1, F2 and F3.

Binary feature functions
F4, F5. Let ϒ represent the hypothesis that in a group DT

,T Î {A, B} a gene gj including the metagene can change
the state of one of its outgoing neighbors gk. We make a
stronger hypothesis ϒ°that, ϒ holds simultaneously in

DA and DB with high probability. Note that, this stron-
ger hypothesis is based on the assumption that the
genes in both DA and DB express in a similar fashion.
This assumption is meaningful as in these two-group
perturbation experiments the different groups belong to
similar biological conditions [3].
ϒ°is encoded in X domain as follows. Consider four

genes gp, gi, gj and gk, such that gp ® gi, gi ® gj and gj ®
gk. Here ® indicates that the gene on the left activates or
inhibits the gene on the right. By definition, (Xpj, Xij) and
(Xij , Xik) are edges in the MRF. Note that the first edge
corresponds to an incoming neighbor gp of gi, while the
second edge corresponds to an outgoing neighbor gk of gj
. We discriminate between these two sets of neighbors of
Xij , as they are related to the incoming neighbors of gi
and outgoing neighbors of gj respectively. It can be
shown that, for the first set of edges, Xpj equals to Xij if
and only if (iff) Zp = Zi, i.e. ϒ°holds true. Similarly, for the
second set of edges Xij equals to Xik iff Zj = Zk, which in
tern implies that ϒ°is satisfied.
We define two sets of feature functions to formalize

these equalities based on the incoming neighbors of gi
and the outgoing neighbors of gj.

• Left external equality. We denote the incoming
neighbors of gi with In (gi). We write a feature func-
tion f4(Xpj , Xij), ∀p, gp Î In (gi). f4(Xpj , Xij) = 1 if Zi

= Zp and Wpi = Wij = 1. Otherwise, f4(Xpj, Xij) = 0.
We denote the summation of this function over all

Table 2 Feature functions

Xij F1 F2 F3 F6 F7

1 0 0 1 1 1

2 1 0 0 1 0

3 0 1 0 1 0

4 0 0 1 1 1

5 0 0 1 0 1

6 0 0 1 0 0

7 0 0 1 0 0

8 0 0 1 0 1

9 0 0 1 0 1

10 0 0 1 0 0

11 0 0 1 0 0

12 0 0 1 0 1

13 0 0 1 1 1

14 0 0 1 1 0

15 0 0 1 1 0

16 0 0 1 1 1

Enumeration of five different unary feature functions F1, F2, F3, F6 and F7.

Table 3 Left external equality

Xpj
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 0 0 0

2 1 0 0 0

3 1 0 0 0

4 1 0 0 0

5 0 1 0 0

6 0 1 0 0

7 0 1 0 0

Xij 8 0 1 0 0

9 0 0 1 0

10 0 0 1 0

11 0 0 1 0

12 0 0 1 0

13 0 0 0 1

14 0 0 0 1

15 0 0 0 1

16 0 0 0 1

The table enumerates the truth values for the binary feature function left
external equality (f4). Only the possible entries are annotated with zero and
one. The other entries require different values of Zj in Xij and Xpj, which is not
possible. Note, that the feature function can assume one only when Xij and Xpj
are equal, which is in accordance with the definition of that feature function.

Table 4 Right external equality

Xik
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

5 1 0 0 0

6 0 1 0 0

7 0 0 1 0

Xij 8 0 0 0 1

9 1 0 0 0

10 0 1 0 0

11 0 0 1 0

12 0 0 0 1

13 1 0 0 0

14 0 1 0 0

15 0 0 1 0

16 0 0 0 1

The table enumerates the truth values for the binary feature function right
external equality (f5). Only the possible entries are annotated with zero and
one. The other entries require different values of Zi in Xij and Xik, which is not
possible. Note, that the feature function can assume the value one only when
Xij and Xik are equal, which is in accordance with the definition of right
external equality.
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the incoming neighbors of gi as,

F4(Xij) =
∑

p,Wij=1,Wpi=1

f4(Xij, Xpj).

• Right external equality. We denote the outgoing
neighbors of gj as Out (gj). We define a feature func-
tion f5(Xik, Xij ), ∀k, gk Î Out (gj). f5 (Xik, Xij) = 1 if
Sk = Sj and Wjk = Wij = 1. Otherwise, f5 (Xik, Xij ) =
0. We denote the summation of this function over
all the outgoing neighbors of gj as,

F5(Xij) =
∑

k,Wij=1,Wjk=1

f5(Xij, Xik).

Tables 3 and 4 enumerate the values of f4 and f5 for
different values of Xij. The missing entries in these
tables correspond to the cases which can not occur dur-
ing the optimization. For instance, in Table 3, a missing
entry corresponds to different values of Zj in Xij and Xpj

which is not possible.
For feature functions f4 and f5, Xpj or Xik may not

represent any interactions from the extended gene net-
work when Wpj = 0 or Wik = 0 respectively. We repre-
sent them by dotted rectangles in Figure 5(b).

Unary feature functions
F6, F7. We introduce two unary feature functions to
incorporate our last hypothesis, that all genes are ER
with a high probability. We consider two genes gi and gj
such that gi ® gj. This hypothesis holds true, if gi is
equally regulated or gj is equally regulated.

• Left internal equality. We define this feature func-
tion to capture the events when gi is equally regu-
lated. As, gj can assume any state, this feature
function holds true for eight different values of Xij .
We denote the feature function by f6(Xij, t) that
returns one if its two arguments are equal and zero
otherwise. We denote the summation of this func-
tions over all these eight values of Xij as,

F6(Xij) =
∑

i,j,Wij=1,t∈{1,·,4, 13,··· ,16}
f6(Xij, t).

• Right internal equality. We define this feature
function to capture the events when gj is equally
regulated. As, gi can assume any state, this feature
function holds true for eight different values of Xij.
We denote the feature function by f7(Xij, t) that
returns one if its two arguments are equal and zero
otherwise. We denote the summation of this func-
tions over all these eight values of Xij as,

F7(Xij) =
∑

i,j,Wij=1,t∈{1,4,5,8,9,12,13,16}
f7(Xij, t).

The last two columns of Table 2 enumerate these two
internal equalities.

Based on these feature functions, we define the joint
density function of X as,

p(X |θX) = 1
�
exp(

∑
i,j,Wij=1, k∈ {1,2,··· ,7}

γkFk(Xij)) (2)

In the above equation gk, k Î {1, 2,... 7} are the coeffi-
cients of the seven feature functions in MRF.
In the next section, we discuss how we approximate

the objective function of the MRF and the data. We also
describe how we formulate the posterior probability
density function for Xij.

Approximation of the objective function
A direct maximization of the objective function given by
Equation 1 is intractable, as it requires evaluation of
exponential number of terms in the denominator. We
employ pseudo-likelihood as an established substitute to
Equation 1 [27]. Pseudo-likelihood is the simple product
of the conditional probability density function of the Xij

variables. Geman et al. proved the consistency of the
maximum pseudo-likelihood estimate [28]. The approxi-
mated objective function can be written as,

F = argmax
X

(
∏
i,j

Fij) (3)

The posterior density function Fij of Xij as,

Fij = p(Xij|X − Xij, Y , θX, θY)

=
p(YAi,YBi,YAj,YBj|Xij,X∗

ij , θY)p(Xij|X − Xij, θX)∑
Xij∈{1,··· ,16} p(YAi,YBi,YAj,YBj|Xij,X∗

ij , θY)
(4)

Derivation of Fij.

Fij
= p(Xij |X − Xij, Y , θX, θY)

= p(Xij |X − Xij, YAi, YBi, YAj, YBj, θX, θY)

=
p(YAi,YBi,YAj,YBj,X − Xij − X∗

ij,Xij,X∗
ij , θX, θY)

p(YAi,YBi,YAj,YBj,X − Xij − X∗
ij,X

∗
ij , θX, θY)

=
p(YAi,YBi,YAj,YBj,X − Xij − X∗

ij |Xij,X∗
ij , θX, θY)p(Xij,X∗

ij, θX , θY)

p(YAi,YBi,YAj,YBj,X − Xij − X∗
ij |X∗

ij , θX, θY)p(X
∗
ij, θX, θY)

=
p(YAi,YBi,YAj,YBj |Xij,X∗

ij , θX, θY)p(X − Xij − X∗
ij |Xij,X∗

ij , θX, θY)p(Xij,X∗
ij , θX, θY)

p(YAi,YBi,YAj,YBj |X∗
ij , θX, θY)p(X − Xij − X∗

ij |X∗
ij , θX, θY)p(X

∗
ij , θX, θY)

=
p(YAi,YBi,YAj,YBj |Xij,X∗

ij , θX, θY)p(X − Xij − X∗
ij,Xij,X∗

ij, θX , θY)

p(YAi,YBi,YAj,YBj |X∗
ij , θX, θY)p(X − Xij − X∗

ij,X
∗
ij , θX, θY)

=
p(YAi,YBi,YAj,YBj |Xij,X∗

ij, θX , θY)p(X , θX , θY)

p(YAi,YBi,YAj,YBj |X∗
ij , θX, θY)p(X − Xij, θX, θY)

=
p(YAi,YBi,YAj,YBj |Xij,X∗

ij , θX, θY)p(Xij |X − Xij, θX, θY)p(X − Xij, θX, θY)

p(YAi,YBi,YAj,YBj |X∗
ij , θX, θY)p(X − Xij, θX, θY)

=
p(YAi,YBi,YAj,YBj |Xij,X∗

ij , θX, θY)p(Xij |X − Xij, θX, θY)

p(YAi,YBi,YAj,YBj |X∗
ij , θX, θY)

=
p(YAi,YBi,YAj,YBj,Xij,X∗

ij , θX, θY)p(X
∗
ij , θX, θY)p(Xij |X − Xij, θX , θY)

p(Xij,X∗
ij, θX , θY)p(YAi,YBi,YAj,YBj,X

∗
ij , θX, θY)

=
p(YAi,YBi,YAj,YBj, θX |Xij,X∗

ij, θY)p(Xij,X∗
ij, θY)p(X

∗
ij , θX, θY)p(Xij |X − Xij, θX, θY)

p(Xij,X∗
ij , θX, θY)p(YAi,YBi,YAj,YBj, θX |X∗

ij, θY)p(X
∗
ij , θY)

=
p(YAi,YBi,YAj,YBj |Xij,X∗

ij , θY)p(θX |Xij,X∗
ij , θY)p(Xij,X∗

ij, θY)p(X
∗
ij, θX, θY)p(Xij |X − Xij, θX, θY)

p(YAi,YBi,YAj,YBj |X∗
ij, θY)p(Xij,X∗

ij, θX , θY)p(θX |X∗
ij , θY)p(X

∗
ij , θY)

=
p(YAi,YBi,YAj,YBj |Xij,X∗

ij , θY)p(Xij,X∗
ij , θX, θY)p(X

∗
ij , θX, θY)p(Xij |X − Xij, θX, θY)

p(YAi,YBi,YAj,YBj |X∗
ij , θY)p(Xij,X∗

ij , θX, θY)p(X
∗
ij , θX, θY)

=
p(YAi,YBi,YAj,YBj |Xij,X∗

ij , θY)p(Xij |X − Xij, θX , θY)

p(YAi,YBi,YAj,YBj |X∗
ij , θY)

=
p(YAi,YBi,YAj,YBj |Xij,X∗

ij , θY)p(Xij |X − Xij, θX)

p(YAi,YBi,YAj,YBj |X∗
ij , θY)

=
p(YAi,YBi,YAj,YBj |Xij,X∗

ij , θY)p(Xij |X − Xij, θX)∑
Xij∈{12,3,···16} p(YAi,YBi,YAj,YBj |Xij,X∗

ij, θY)
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In step 2 of the derivation, we substitute Y by YAi, YBi,
YAj and YBj as Xij is independent of all YCk such that k ≠
{i, j} and C ≠ {A, B}. Also, in the 15th step we assume
that Xij is independent of θY given X − Xij and θX. □
Derivation of p(Xij|X − Xij, θX), Wij = 1.

p (Xij|X − Xij, θX)

=
p(X , θX)

P(X − Xij, θX)

=
p(X , θX)∑

Xij∈{1,2,3 ··· 16} P(X − Xij,Xij, θX)

=
A(Xij).B(ij)∑

t={1,2,3, ··· 16} A(t) · B(ij)

A (Xij) is exp(
∑

k∈{1,2,··· ,7} γkFk(Xij)) and B(ij) is given
by exp(

∑
m,n,ij�=mn,k∈{1,2,··· ,7} γkFk(Xmn)) . Here, we denote

the prior density parameters {g1, g2,...·g7} by θX. Cancel-
ing B(ij) from numerator and denominator the density
function simplifies to,

p(Xij |X − Xij, θX)

=
exp(

∑
k∈{1,2,··· ,7} γkFk(Xij))∑

t={1.2.3,···16} exp(
∑

k∈{1,2,··· ,7} γkFk(Xij = t))

□
There are two different terms in objective function of

Equation 4. p(Xij|X − Xij, θX) stands for the conditional
prior density function of Xij which we just have derived
from using Bayes rule. In the next section, we discuss
the likelihood function p(YAi, YBi, YAj, YBj|Xij, X∗

ij , θY) .

Computation of likelihood density function
In this section, we describe how we derive the likelihood
function in three numbered subsections. Here, we
assume that gene expressions in a group follow a nor-
mal distribution, We can rewrite the derivations if gene
expressions follow some other distribution.
1. Likelihood for a single gene
Consider a set of measurements for a gene gi that fol-
lows a single Gaussian distribution by zi = {zi1, zi2,...,
ziN}. We denote the latent mean of zi as µ and the stan-
dard deviation as s. As different genes can have differ-
ent average expressions, we assume that µ follows a
genome wise distribution with mean µ0 and standard
deviation τ [29]. Thus, for zi, the likelihood for the data
points in that group is given by,

L (z|μ0, σ 2, τ 2) =
∫

[
n∏
i=1

N (zi|μ, σ 2)]N (μ|μ0, τ 2)dμ

=
σ

(
√
2πσ )

n√
nτ 2 + σ 2

exp(−
∑

i z
2
i

2σ 2
− μ2

0

2τ 2
).

exp(
τ2n2 z̄2

σ 2 + σ 2μ2
0

τ2 + 2nz̄μ0

2(nτ 2 + σ 2)
)

(5)

The derivation of Equation 5 can be obtained from
Demichelis et al [30]. If a gene is DE, its expression
measurements in control and non-control groups follow
different distributions [29]. On the other hand, for
equally expressed genes, all the measurements in both
groups share the same mean. The likelihood function
for a DE gene gi in group DT ,T Î {A, B} is given by,

LTDE
(gi) = L(yi |μ0, σ 2, τ 2)L(y’i |μ0, σ 2, τ 2) (6)

Similarly, for EE genes it is given by,

LTEE (gi) = L(yi ∪ y’i |μ0, σ 2, τ 2) (7)

For instance, the likelihood of a gene to be DE in
group DA is given by LADE

(gi) .
2. Likelihood for a regulation variable
As for a gene gi, the regulation variable Zi can assume
four different values from 1 to 4, the equations of the
likelihood that a gene is DR or ER also take four differ-
ent forms given by,

LZ(gi) =

⎧⎪⎪⎨
⎪⎪⎩

LADE
(gi) LBDE

(gi), if Zi = 1.
LADE

(gi) LBEE
(gi), if Zi = 2

LAEE
(gi) LBDE(gi), if Zi = 3

LAEE
(gi) LBEE

(gi), if Zi = 4

2. Likelihood for an interaction variable
We have 16 different forms for the likelihood of the Xij

due to its 16 different values. However, here, we shall
derive only for Xij = 1, as for the other values of Xij we
have a similar derivation.

p(YAi, YBi, YAj, YBj |Xij = 1, X∗
ij, θY)

=
∑

τi,τj∈ {1,··· ,4}
p(YAi, YBi, YAj, YBj |Zi = τi, Zj = τj, θY).

p(Zi = τi, Zj = τi, θY |Xij = 1, X∗
ij , θY)

(8)

From the definition of
Xij, p(Zi = τi, Zj = τi, θY |Xij = 1, X∗

ij , θY) equals to 1
when Zi = 1 and Zj = 1. Its value is zero for all other
values of Zi and Zj. So, continuing from the last step of
Equation 8,

p(YAi, YBi, YAj, YBj |Xij = 1, X∗
ij, θY)

= p(YAi, YBi, YAj, YBj |Zi = 1, Zj = 1, θY)

= p(YAi, YBi |Zi = 1, Zj = 1, θY).

p(YAj, YBj |Zi = 1, Zj = 1, θY)

= p(YAi, YBi |Zi = 1, θY)p(YAj, YBj|Zj = 1, θY)

= LZ(gi)LZ(gj)

(9)

In a similar way, we can derive the likelihood func-
tions for all the 16 different values of Xij variables. A
special case arises when gi is the metagene, i.e. g0. We
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assume that LTDE
(g0) = 1 and LTEE(g0) = 0, T ∈ {A, B} .

Thus, the likelihood of the metagene given Z0 = 1
equals to 1. Its value is zero otherwise.

Objective function optimization
So far, we have described how we compute the posterior
density function. The final challenge is to find the values
of the hidden variables that maximize the objective
function (Equation 3). We develop an iterative algorithm
to address this challenge.
In our model we have three different sets of para-

meters. The nodes of the MRF given by X consist of
one set. Other two sets are the parameters of condi-
tional probability density function of Xij and likelihood
function of observed data given by θX = {g1,... g7} and θY
= {µ0, s, τ), respectively. In each iteration, we first esti-
mate θX and θY based on the estimated value of X in
the previous iteration. Next, based on the estimated
parameters, we estimate X that maximize the objective
function in Equation 3.
The likelihood function is non-convex in terms of the

parameters θY = {µ0, s, τ). Also, the conditional density
is non-convex in terms of θX = {g1,... g7}. We use a glo-
bal optimization method called differential evolution to
optimize both of them [25]. To optimize the objective
function in Equation 3, we employ the ICM algorithm
described by Besag [19]. Briefly, our iterative algorithm
works as follows.

1. Obtain an initial estimate of S variables. In our
implementation we use student’s t-test assuming the
data follows normal distribution. We use 5% confi-
dence interval for this purpose.
2. Estimate parameters θY that maximizes the data
likelihood function given by,

argmax
θY

∏
Xij,Wij=1

p(YAi, YBi, YAj, YBj |Xij, X∗
ij , θY)

We implement this step using Differential Evolution,
which is similar to the genetic algorithm.
3. Calculate an estimate of the parameters θX that
maximizes the conditional prior density function by,

argmax
θX

∏
Xij ,Wij=1

p(Xij |X − {Xij}, θX)

We also implement this step using Differential
Evolution.

4. Carry out a single cycle of ICM using the current
estimate of S , θX and θY. For all Si , maximize∏

Xmn
p(Xmn|X − Xmn, Y , θX, θY) when

Xmn ∈ {Xrt |r = i or t = i, Wrt = 1} .
5. Go to step 2 for a fixed number of cycles or until
X converges to a certain predefined value.

We optimize the objective function in terms of the Si
(1 ≤ i ≤ M) variables instead of Xij variables. Specifically,
in step 4, we go over all the Si variables, and optimize
Fij function (given by Equation 4) for only those Xij vari-
ables that are impacted by the change of Si. Figure 2
illustrates different components of CMRF and the con-
nectivity between them.
The optimization procedure is guaranteed to converge

since in every iteration the value of the objective func-
tion increases. We continue the iterative process, until
the changes in estimates of the parameters between two
consecutive iterations reach below a certain cutoff level.

Acknowledgements
This work was supported partially by NSF under grants CCF-0829867 and IIS-
0845439.
This article has been published as part of BMC Genomics Volume 13
Supplement 2, 2012: Selected articles from the First IEEE International
Conference on Computational Advances in Bio and medical Sciences
(ICCABS 2011): Genomics. The full contents of the supplement are available
online at http://www.biomedcentral.com/bmcgenomics/supplements/13/S2.

Authors’ contributions
NB conceived the study, analyzed the data, implemented the methods,
supplied the analysis tools, designed the experiments, performed the
experiments and wrote the paper. MS conceived the study and participated
in writing the paper. SR conceived the study, designed the experiments and
participated in writing the paper. TK conceived the study, designed the
experiments and participated in writing the paper.

Competing interests
The authors declare that they have no competing interests.

Published: 12 April 2012

References
1. Cheng R, Zhao A, Alvord W, Powell D, Bare R, Masuda A, Takahashi T,

Anderson L, Kasprzak K: Gene expression dose-response changes in
microarrays after exposure of human peripheral lung epithelial cells to
nickel(II). Toxicol Appl Pharmacol 2003, 191:22-39.

2. Ideker T, Thorsson V, Ranish J, Christmas R, Buhler J, Eng J, Bumgarner R,
Goodlett D, Aebersold R, Hood L: Integrated genomic and proteomic
analyses of a systematically perturbed metabolic network. Science 2001,
292(5518):929-34.

3. Taylor K, Pena-Hernandez K, Davis J, Arthur G, Duff D, Shi H,
Rahmatpanah F, Sjahputera O, Caldwell C: Large-scale CpG methylation
analysis identifies novel candidate genes and reveals methylation
hotspots in acute lymphoblastic leukemia. Cancer Res 2007, 67(6):2617-25.

4. Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour CD,
Bennett HA, Coffey E, Dai H, He YD, Kidd MJ, King AM, Meyer MR, Slade D,
Lum PY, Stepaniants SB, Shoemaker DD, Gachotte D, Chakraburtty K,
Simon J, Bard M, Friend SH: Functional discovery via a compendium of
expression profiles. Cell 2000, 102:109-126.

5. Marton MJ, Derisi JL, Bennett HA, Iyer VR, Meyer MR, Roberts CJ,
Stoughton R, Burchard J, Slade D, Dai H, Bassett DE, Hartwell LH, Brown PO,

Bandyopadhyay et al. BMC Genomics 2012, 13(Suppl 2):S2
http://www.biomedcentral.com/1471-2164/13/S2/S2

Page 15 of 16

http://www.biomedcentral.com/bmcgenomics/supplements/13/S2
http://www.ncbi.nlm.nih.gov/pubmed/12915101?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12915101?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12915101?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11340206?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11340206?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17363581?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17363581?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17363581?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10929718?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10929718?dopt=Abstract


Friend SH: Drug target validation and identification of secondary drug
target effects using DNA microarrays. Nat Med 1998, 4(11):1293-1301.

6. Giaever G, Shoemaker DD, Jones TW, Liang H, Winzeler EA, Astromoff A,
Davis RW: Genomic profiling of drug sensitivities via induced
haploinsufficiency. Nature Genetics 1999, 21(3):278-283.

7. Giaever G, Flaherty P, Kumm J, Proctor M, Nislow C, Jaramillo DF, Chu AM,
Jordan MI, Arkin AP, Davis RW: Chemogenomic profiling: Identifying the
functional interactions of small molecules in yeast. Proceedings of the
National Academy of Sciences of the United States of America 2004,
101(3):793-798.

8. Lum P, Armour C, Stepaniants S, Cavet G, Wolf M, Butler J, Hinshaw J,
Garnier P, Prestwich G, Leonardson A, Garrett-Engele P, Rush C, Bard M,
Schimmack G, Phillips J, Roberts C, Shoemaker D: Discovering modes of
action for therapeutic compounds using a genome-wide screen of yeast
heterozygotes. Cell 2004, 116:121-37.

9. Parsons AB, Brost RL, Ding H, Li Z, Zhang C, Sheikh B, Brown GW, Kane PM,
Hughes TR, Boone C: Integration of chemical-genetic and genetic
interaction data links bioactive compounds to cellular target pathways.
Nature Biotechnology 2003, 22:62-69.

10. di Bernardo D, Thompson MJ, Gardner TS, Chobot SE, Eastwood EL,
Wojtovich AP, Elliott SJ, Schaus SE, Collins JJ: Chemogenomic profiling on
a genome-wide scale using reverse-engineered gene networks. Nature
Biotechnology 2005, 23(3):377-383.

11. Cosgrove EJ, Zhou Y, Gardner TS, Kolaczyk ED: Predicting gene targets of
perturbations via network-based filtering of mRNA expression
compendia. Bioinformatics 2008, 24(21):2482-2490.

12. Bandyopadhyay N, Somaiya M, Kahveci T, Ranka S: Modeling perturbations
using gene networks. Proc LSS Comput Syst Bioinform Conf 2010, 26-37.

13. Conesa A, Nueda MJ, Ferrer A, Talón M: maSigPro: a method to identify
significantly differential expression profiles in time-course microarray
experiments. Bioinformatics 2006, 22(9):1096-1102.

14. Hong F, Li H: Functional Hierarchical Models for Identifying Genes with
Different Time-Course Expression Profiles. Biometrics 2006, 62(2):534-544.

15. Chuan Tai Y, Speed TP: On Gene Ranking Using Replicated Microarray
Time Course Data. Biometrics 2009, 65:40-51.

16. Angelini C, De Canditiis D, Pensky M: Bayesian models for two-sample
time-course microarray experiments. Computational Statistics & Data
Analysis 2009, 53(5):1547-1565.

17. Van Deun K, Hoijtink H, Thorrez L, Van Lommel L, Schuit F, Van Mechelen I:
Testing the hypothesis of tissue selectivity: the intersection-union test
and a Bayesian approach. Bioinformatics 2009, 25(19):2588-2594.

18. Li SZ: Markov Random Field Modeling in Image Analysis. 3 edition. Springer
Publishing Company, Incorporated; 2009.

19. Besag J: On the statistical analysis of dirty pictures. Journal of the Royal
Statistical Society 1986, 48(3):259-302.

20. Smirnov D, Morley M, Shin E, Spielman R, Cheung V: Genetic analysis of
radiation-induced changes in human gene expression. Nature 2009,
459(7246):587-91.

21. Dausset J, Cann H, Cohen D, Lathrop M, Lalouel J, White R: Centre d’etude
du polymorphisme humain (CEPH): collaborative genetic mapping of
the human genome. Genomics 1990, 6(3):575-7.

22. Garg A, Mendoza L, Xenarios I, DeMicheli G: Modeling of multiple valued
gene regulatory networks. Conf Proc IEEE Eng Med Biol Soc 2007,
2007:1398-404.

23. Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes.
Nucleic Acids Res 2000, 28:27-30.

24. Bishop CM: Pattern Recognition and Machine Learning (Information Science
and Statistics) Secaucus, NJ, USA: Springer-Verlag New York, Inc; 2006.

25. Storn R, Price K: Differential evolution — a simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global
Optimization 1997, 11(4):341-359.

26. Hammersley JM, Clifford P: Markov fields on finite graphs and lattices.
Unpublished manuscript 1968.

27. Besag J: Efficiency of pseudolikelihood estimation for simple Gaussian
fields. Biometrika 1977, 64(3):616-618.

28. Geman S, Graffigne C: Markov random field image models and their
applications to computer vision. Proceedings of the International Congress
of Mathematics: Berkley 1986, 1496-1517.

29. Kendziorski C, Newton M, Lan H, Gould M: On parametric empirical Bayes
methods for comparing multiple groups using replicated gene
expression profiles. Stat Med 2003, 22(24):3899-914.

30. Demichelis F, Magni P, Piergiorgi P, Rubin M, Bellazzi R: A hierarchical
Naive Bayes Model for handling sample heterogeneity in classification
problems: an application to tissue microarrays. BMC Bioinformatics 2006,
7:514.

doi:10.1186/1471-2164-13-S2-S2
Cite this article as: Bandyopadhyay et al.: CMRF: analyzing differential
gene regulation in two group perturbation experiments. BMC Genomics
2012 13(Suppl 2):S2.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Bandyopadhyay et al. BMC Genomics 2012, 13(Suppl 2):S2
http://www.biomedcentral.com/1471-2164/13/S2/S2

Page 16 of 16

http://www.ncbi.nlm.nih.gov/pubmed/9809554?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9809554?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10080179?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10080179?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14718668?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14718668?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14718172?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14718172?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14718172?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14661025?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14661025?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15765094?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15765094?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18779235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18779235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18779235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16481333?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16481333?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16481333?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16918918?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16918918?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18537947?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18537947?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21552424?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21552424?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19671693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19671693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19349959?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19349959?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2184120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2184120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2184120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18002226?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18002226?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592173?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14673946?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14673946?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14673946?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17125514?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17125514?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17125514?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Our approach

	Results and discussion
	Dataset
	Regulatory networks
	Comparison to other methods
	Experimental setup
	Results

	Statistical significance experiment
	Results


	Conclusions
	Methods
	Notation and problem formulation
	Observed variables
	Hidden variables
	Problem formulation

	Overview of the solution
	Computation of the prior density function
	1. Statement of hypotheses
	2. Markov Random Field construction
	3. Development of feature functions

	Unary feature functions
	Binary feature functions
	Unary feature functions
	Approximation of the objective function
	Computation of likelihood density function
	1. Likelihood for a single gene
	2. Likelihood for a regulation variable
	2. Likelihood for an interaction variable

	Objective function optimization

	Acknowledgements
	Authors' contributions
	Competing interests
	References

