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Abstract

Background: Assembling haplotypes given sequence data derived from a single individual is a well studied
problem, but only recently has haplotype assembly been considered for population-sampled data. We discuss a
software tool called Hapler, which is designed specifically for low-diversity, low-coverage data such as ecological
samples derived from natural populations. Because such data may contain error as well as ambiguous haplotype
information, we developed methods that increase confidence in these assemblies. Hapler also reconstructs full
consensus sequences while minimizing and identifying possible chimeric points.

Results: Experiments on simulated data indicate that Hapler is effective at assembling haplotypes from gene-sized
alignments of short reads. Further, in our tests Hapler-generated consensus sequences are less chimeric than the
alternative consensus approaches of majority vote and viral quasispecies estimation regardless of error rate, read
length, or population haplotype bias.

Conclusions: The analysis of genetically diverse sequence data is increasingly common, particularly in the field of
ecoinformatics where transcriptome sequencing of natural populations is a cost effective alternative to genome
sequencing. For such studies, it is important to consider and identify haplotype diversity. Hapler provides robust
haplotype information and identifies possible phasing errors in consensus sequences, providing valuable
information for population studies and downstream usage of resulting assemblies.

Background
The assembly and analysis of short-read sequence data
presents a number of well known challenges including
error correction, correct determination of repetitive
regions, and accurate identification of genetic variation
such as single nucleotide polymorphisms (SNPs) and
insertions/deletions (indels). The end result of an assem-
bly is a set of consensus sequences that ideally matches
genetic sequence found on naturally occurring chromo-
somes. When input reads are all sourced from highly
inbred individuals (e.g., from clonal lines of Drosophila),
this is easy to ensure: any variation should result from
sequencing error, and the popular “majority vote”
mechanism will create a correct consensus [1].

When reads are sourced from non-inbred individuals,
the majority vote mechanism reduces to an uninformed
parsimony approach; we assume the existence of a
“most frequent” consensus and rely on coverage depth
to identify it. Unfortunately, this approach disregards
the extant sequence diversity, and does not identify pos-
sible errors in the consensus assembly caused by it.
Thus, proper analysis of diverse data should focus on
the assembly or reassembly of haplotypes–consensus
sequences that match to at least one of the diverse set
of chromosomes in the sample.
Reconstructing haplotypes from low cost, low fidelity

data sources has been an active area of research for over
20 years [2], but not always in the context of sequence
assembly. For example, genotype (SNP-chip) data
sourced from many diploid individuals of a population
or lineage provides alleles present in each individual, but
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does not associate co-occurring alleles across loci and
requires statistical methods to infer haplotypes [3].
Haplotypes can also be reconstructed given an assem-

bly (or alignment against a reference) of the poly-
morphic reads. Because reads may span multiple variant
loci, each read may contain a small amount of haplotype
information. When the number of haplotypes is known
to be two, this is known as the single-individual haplo-
type assembly problem.
Here, we are interested in a recent variant of the pro-

blem: assembling haplotypes from read data where the
true number of source haplotypes is unknown, which
we call the population haplotype assembly problem. For
the related problem of viral quasispecies estimation,
Eriksson et al. and Zagondi et al. previously formulated
a graph-theoretic solution called ShoRAH [4,5], which
was applied to high diversity, high coverage data (e.g.,
HIV data representing 6.8% pairwise genetic divergence
sequenced to 2100X [5]). This application benefits from
high diversity, because overlapping individual reads are
likely to share informative SNPs, and errors can be
more clearly identified because of high coverage.
Many recent biological studies, however, have

sequenced genetic data from pools of higher-order indi-
viduals. For example, population-level de novo transcrip-
tome assemblies provide a low cost alternative to whole
genome sequencing for ecologically important non-
model species [6]. Such populations represent less
genetic diversity (6 to 20 SNPs per kilobase) and are
sequenced to shallower depths (6-23X) [7-11]. For hap-
lotyping, these properties result in difficulties that we
address here:

• Less concrete haplotype information is available.
• Sequencing errors are more difficult to identify.

This paper expands on Hapler [12], a tool for assem-
bling reliable haplotypes given a preliminary alignment
of genetically diverse reads. Here, we describe and dis-
cuss the methods used by Hapler in detail, including a
new feature that reconstructs full consensus sequences.
This reconstruction identifies and minimizes possible
chimeric crossover points (points at which different hap-
lotypes may be contributing to the consensus due to
lack of phasing information) while maximizing the read
coverage, effectively recovering the parsimony principle
of majority vote. Because the length of discernible hap-
lotype regions is usually limited by read length, we focus
on gene-sized alignments as would be found in tran-
scriptome studies. The core of the graph theoretic for-
mulation of Eriksson et al. relies on a maximum
unweighted matching of a bipartite representation of the
alignment. Our formulation builds on this and incorpo-
rates 1) in-situ isolation of reads likely containing errors,

via a weighted matching of a related representation, and
2) parameter adjustable “quality” constraints, reducing
the probability of reconstructing chimeric haplotypes
(see Methods). This is accomplished by exploiting the
mechanism of the Hungarian weighted matching
method, sampling from the space of possible haplotyp-
ings and retaining only commonalities; by default, this
parameter is kept high to ensure high-quality output.
We test Hapler by simulating sequencing, alignment,

haplotype assembly and consensus reconstruction for
population-sourced data representing diversities of 1.2%
and 4.4%. These simulations indicate that the novel
methods employed by Hapler effectively assemble cor-
rect haplotype regions, and that the quality of results
produced will scale with the quality of future input data:
as datasets grow to contain longer reads and fewer
sequencing errors, more correct and complete haplo-
types will result.
Finally, we find that the consensus sequences pro-

duced include less chimerism than related approaches of
quasispecies estimation and majority vote.

Related work
Combinatorial approaches for the single-individual hap-
lotype assembly problem abound (e.g. [13-16]). In these
approaches, certain columns in the alignment M are
identified as SNP columns. Based on these, a conflict
graph GM is created wherein each node represents one
read, and nodes in GM are connected if their reads con-
flict, i.e., overlap at some SNP column and disagree in
the allele. Some SNP columns may contain gaps, posi-
tions where the allele is unknown. In this paper, we dis-
tinguish deletion alleles (’-’) that cause conflicts from
gap positions (’~’), which do not. For example, paired-
end reads and newer strobe reads can be viewed as long
sequences containing one or more sections of contigu-
ous gaps that do not contain discernible SNPs.
In the single individual haplotype assembly problem,

the conflict graph will necessarily be bipartite in the
absence of sequencing errors. In this case, computing
the bipartition reconstructs haplotypes. When sequen-
cing errors are present, the graph may not be bipartite.
Various optimizations exist for inducing bipartiteness
such as Minimum SNP Removal (MSR) and Minimum
Fragment Removal (MFR), though these are NP-Hard
unless the reads are all gapless [17]. Other models are
NP-Hard even in the gapless case [18]. Because of simi-
lar theoretical constraints in Hapler, all results presented
here assume gapless reads (see Conclusion, Methods).
Recently, the MFR problem has been extended to

when the number of known haplotypes is increased
from two to a known constant k [19]. Non-graph theo-
retic approaches also exist for the single individual hap-
lotype assembly problem (e.g [20,21]). The related
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problem of determining haplotypes from unphased gen-
otype “SNP-chip” data of several diploid individuals has
also received extensive attention; see Salem et al. for a
comprehensive review [3].
In our formulation of the population haplotype assem-

bly problem, the goal is not to bipartition GM, but
rather to minimally color it–or, equivalently, minimally
clique cover the complement “compatibility” graph
G′
M –assuming sequencing errors have been addressed

(Figure 1). In the context of the quasispecies estimation
problem, Eriksson et al. observed that with gapless data
the set of irredundant reads and their conflict informa-
tion induce a partial order. Thus, Dilworth’s theorem
applies, and it is sufficient to find a chain decomposition
of a transitive orientation, −→

G′
M
, of the compatibility

graph. Such a chain decomposition is found via a maxi-
mum unweighted matching in a bipartite graph repre-
sentation of the “reachability” relationships in −→

G′
M
.

Recently, the method of Eriksson et al. has been
improved upon by Astrovskaya et al., who incorporated
probabilistic weights [22]. Both of these methods
attempt to reconstruct full end-to-end haplotype con-
sensus sequences by relying on suffcient per-haplotype
coverage [4,5].
Reconstructing consensus sequences with a focus on

identifying and minimizing chimerism has been mini-
mally studied. For single individual haplotype assembly,
the number of possible crossover points is fully deter-
mined by the number of connected components with at
least two nodes in the bipartite conflict graph [20]. The
Celera Assembler incorporated a window-based phasing
heuristic, reporting a number of “variant regions” for
each consensus [23].

Results and discussion
We previously tested Hapler’s haplotype assembly abil-
ities on a low diversity dataset, including a single out-
group haplotype for higher diversity tests [12]. These
initial results suggested that Hapler can effectively
assemble haplotype regions, however the inclusion of

only a single outgroup sequence limited the generality
of the conclusions. Here, we test both Hapler’s haplo-
typing and consensus reconstruction abilities on data
sourced from a 600 bp barcoding region of the COI
gene of Melitaea cinxia, a well-studied butterfly. Of the
known haplotypes for this gene, we chose eight from
two distinct clades (Supplementary Figure 1, Additional
File 1[24]). The first, “Clade 1,” consists of four haplo-
types containing 7 SNPs for a total diversity of 1.16%,
just below that estimated for the transcriptome as a
whole (1.2%, [8]). This clade represents our “low diver-
sity” test data. The second clade also consists of four
haplotypes, and contains 10 SNPs. When combined,
these two clades contain 24 SNPs, for a total diversity of
4.0%. These combined clades represent our “high diver-
sity” data.
Unless otherwise specified, we simulated sequencing

and perfect assembly by randomly selecting subse-
quences of haplotypes of a specific length. For the low
diversity dataset, we sequenced each of the four haplo-
types to 6X coverage to achieve total coverage similar to
recent transcriptome sequencing projects (23X in [11]).
For the high diversity dataset, each of the eight haplo-
types was sequenced to 3X coverage. Because we are
interested in testing up to Sanger size read lengths on
full gene transcripts, each COI barcoding variant was
quadrupled in length by concatenating the COI variant,
the variant with T’s and C’s switched, the variant with
A’s and G’s switched, and the variant with A’s and T’s
switched. This process retains the same level of diversity
and allows for comparisons to other tools that map
reads to a reference. This process did not introduce
inter-SNP distances longer than those present in the ori-
ginal COI barcoding variants.
If a sequencing error e is specified, each base of each

read is mutated to one of the remaining three bases
(uniformly chosen) with probability e. Unless otherwise
specified, default parameters were used for Hapler
("Binomial” SNP calling with default parameters, mini-
mum of 20 coloring repetitions, see Methods).

Figure 1 Example conflict graph GM overlayed on a multiple alignment, with alleles shown only for variant loci. These reads likely
represent two haplotypes, with a sequencing error in read number 6. Hapler considers that there are many possible colorings of conflict graphs
(e.g., dark and light are both proper colorings for read number 1), each representing a different reconstruction consistent with the data.
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Read length and diversity
We first tested Hapler’s ability to assemble correct hap-
lotypes by varying simulated read lengths without
sequencing error and assuming perfect SNP calling. For
each read length, we assembled haplotypes over 5 trials
of random simulated sequencing. All haplotype regions
reported here exclude the “universal” haplotype, which
is composed of reads that are common to all complete
haplotypes (see Methods). For all tests, we call a haplo-
type assembly correct if it is an exact subsequence of
some original COI sequence, otherwise it is incorrect.
Figure 2(a) shows the results for the low diversity data:

each point represents an assembled haplotype region.
The vertical axis shows haplotype assembly length (see
Methods for details) while color indicates coverage,
determined by non-redundant and accompanying redun-
dant reads assigned to that haplotype. Horizontal-axis
jitter has been added for readability. Similar results are
shown in Figure 2(b) for the high-diversity dataset.
Results for both datasets are largely similar: in both

cases, longer sequences result in longer haplotypes, and
longer haplotypes tend to have higher coverage. In both
cases, we see improvements between 200 bp and 400 bp
reads. This is unsurprising, as all extended COI variants
share identical regions with other variants of size ≈ 250
bp. Lack of >250 bp reads prevents phasing across these
regions, which Hapler correctly infers. For the low
diversity dataset, all reconstructed haplotypes were cor-
rect; for the high diversity dataset, of the 2,766
assembled sequences only seven were incorrect chi-
meras, shown offset for readability in Figure 2(b).

Error rate
Next, we tested Hapler’s performance with sequencing
errors. For these tests, we fixed read lengths to 400 bp
(representative of 454 FLX Titanium technology). In
order to show the results for haplotype assembly in the
general case, for each sequencing error rate e in Figure
3(a), we show the haplotypes assembled over 5 trials.

As the error rate increases, the average length of cor-
rect haplotypes decreases, while the number of incorrect
haplotypes increases. Length of incorrect haplotypes is
comparable to correct haplotypes, particularly for high
error rates. However, when error rate is high the average
coverage of incorrect haplotypes is low, indicating that
Hapler successfully isolates sequencing errors as anoma-
lous, rare haplotypes with little support.
Figure 3(b) shows counts of all correct and incorrect

haplotype assemblies of Figure 3(a) binned by coverage,
as well as the percentage correct for each bin. This fig-
ure indicates that average cutoff can be an effective
metric for determining whether haplotypes represent
reality–at 2X or higher coverage, nearly all assembled
haplotypes are correct as the within-haplotype majority
vote mechanism (see Methods) is able to filter out
sequencing errors. Results for the high diversity dataset
were similar, though haplotype assembly lengths suf-
fered in comparison, particularly at high error rates
where true SNPs are difficult to distinguish from rare
alleles (Supplementary Figures 2(a) and 2(b), Additional
File 1). When coverage is doubled, results are improved
at the highest error rates (Supplementary Figures 2(c)
and 2(d), Additional File 1). For this test, we also evalu-
ated the full length consensus sequences produced by
Hapler, the majority vote, and the most populous qua-
sispecies estimated by ViSpA [22]. We emphasize that
while ViSpA can account for many haplotypes, it is
designed for much higher diversity and sequencing
depths for viral quasispecies applications; here we use
parameters n = 1 and t = 80 as appropriate for lower-
diversity datasets [22]. Although a wide variety of soft-
ware exists for the single individual haplotype assembly
problem, these solutions assume two haplotypes are to
be constructed, and thus would be inappropriate for
comparison to ViSpA and Hapler for data representing
many haplotypes.
We evaluated each of these consensus generation tech-

niques by computing the minimum number of crossovers

Figure 2 Haplotype assemblies of the low and high diversity datasets to 24X total coverage, varying read length, with 0% error rate.
Correct haplotype assemblies (see text) are represented with circles; erroneous assemblies are shown as triangles and offset for legibility. For
these five trials, chimerism is rare and longer read lengths provide longer haplotype assemblies as expected.
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(pairs of SNP loci which must be supported by different
haplotypes) necessary to reconstruct the consensus
amongst 1) original input haplotypes, representing “true”
crossovers, and 2) Hapler assembled haplotypes, repre-
senting “estimated” crossovers; in both cases, sequencing
errors included in consensus sequences at SNP positions
also incur crossovers (see Methods). For chimerism ana-
lyses, each data point is an average of 50 sequencings/
assemblies/consensus reconstructions.
Figure 4 shows the chimerism analysis varying error

rate. At low error rates, the Hapler consensus contains
between 0.5 and two true chimerisms on average,
increasing to just over three at higher error rates. The
majority vote holds steady at ≈ 5 crossover points on
average, regardless of error rate. ViSpA significantly
improves on the results of ShoRAH (consistently incur-
ring ≈ 12 crossovers, not shown) and improves on the
majority vote, particularly at low error rates.

Hapler’s estimate of the number of crossover points
trends between one and two above the true number for
its own and the majority vote consensus. At high error
rates, the estimated number of crossovers for the ViSpA
consensus diverges from the true number faster than for
the other two. For the high diversity dataset (Supple-
mentary Figure 3, Additional File 1), the true number of
crossovers for Hapler only increases by approximately
one, whereas the number for the majority vote suffers
significantly incurring over 10 crossovers on average.

Random repetitions
Because many possible haplotypings may exist, we ran-
domly repeat the colorings that produce haplotype
assemblies and only infer information common to all of
them (see Methods). By default, Hapler runs a minimum
of 20 such repetitions, and continues until the number
of haplotypes assembled has stabilized for the previous

Figure 3 Haplotype assemblies varying error rate for the low diversity dataset over five trials of sequencing to 24X total coverage.
Figure 3(b) aggregates all results of 3(a) binned by coverage, identifying counts and percents of correct versus incorrect assemblies. Even with
high rates of sequencing error, high coverage indicates a likely correct assembly.

Figure 4 Chimerism analysis varying error rate. True crossover numbers indicate the minimum number of crossovers through sequenced
haplotypes needed to reconstruct the consensus. Hapler estimated crossover numbers indicate the minimum number of crossovers through
Hapler-assembled haplotypes needed to reconstruct the consensus. Each datapoint represents an average of 50 measurements.
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50% of repetitions. For Figure 5(a), we use artificially
low numbers of repetitions on the low diversity dataset;
read length was held at 400 bp and the error rate was
held at 0.01, and we again show haplotype assemblies
produced over 5 trials of sequencing.
With only a single minimum coloring most haplotype

assemblies, while long, are incorrect chimeras. As the
number of repetitions increases, correct haplotype infer-
ences quickly begin to outnumber incorrect ones and
the lengths of both correct and incorrect haplotypes
drop. We quickly see an asymptotic behavior: correct
haplotypes reach a minimum length and incorrect hap-
lotypes reach a small average coverage. Results were
similar for the high diversity dataset (Supplementary
Figure 4(a), Additional File 1). Figure 5(b) shows the
chimerism analysis for consensus reconstructions. While
we varied the number of repetitions used by Hapler
from 1 to 12, we also varied the n parameter used by
ViSpA from 1 to 12. When the number of repetitions is
very small, we see Hapler for the first time consistently
underestimating the number of crossovers. In this case,
although the number of true crossovers is steady for
Hapler’s consensus sequences at approximately two,
Hapler estimates zero crossovers because of its assembly
of long (but actually chimeric) haplotypes. For both the
low and high diversity datasets, the estimated chimerism
approximates or exceeds the true chimerism after four
colorings (Figure 5(b), Supplementary Figure 4(b), Addi-
tional File 1).

Unequal haplotype representation
The situation tested thus far–equal representation of
several haplotypes–represents a difficult scenario for the
majority vote mechanism, which is expected to perform
better when a single haplotype is more prevalent. In this
section, we modified the low diversity dataset such that
one haplotype is represented three times in the “popula-
tion” while the other three haplotypes are represented
once. We simulated sequencing of these to 4X coverage

each (12X for the most populous haplotype, 4X each for
the remaining three) keeping the read length at 400 bp
and varying error rate. Figure 6(a) shows the haplotype
region assembly results over 5 trials of sequencing; these
are similar to those of Figure 3(a), though at high error
rates assembled haplotypes are shorter.
Figure 6(b) shows the chimerism results for consensus

sequences. The majority vote and Hapler are able to
reduce chimerism overall in this test, while ViSpA
shows improvement at low error rates. Even with a sin-
gle haplotype representing 50% of the population, the
majority vote consistently contains approximately three
crossovers while Hapler significantly improves on this,
particularly for low error rates. The continued poor
results for the majority vote may seem surprising, how-
ever, there are four loci in the expanded COI haplotypes
where the most populous haplotype differs from all
others. Majority vote requires not only a most populous
haplotype, but a true majority haplotype. This is not
always guaranteed, particularly in populations with high
gene flow (see, e.g., [25]).

Runtime
Hapler’s robustness comes at a computational cost:
repeated weighted matching dominates the runtime at O
(rn3), where r is the number of repetitions and n is the
number of irredundant reads in the largest haplotype
block (see Methods). Even when the largest haplotype
block is small, reconstruction of the minimum chimer-
ism consensus runs in O (mk2) time and space, where m
is the number of called SNPs and k is the number of
haplotype regions.
Table 1 shows runtimes, simulating sequencing of the

low diversity dataset with 400 bp reads and a high error
rate of 5% to various depths. Using the “Simple” SNP
caller ensured that each read would be considered as an
irredundant read that would also become an individual
haplotype assembly (# reads = n = k). These tests were
run on a dual core 2.2 GHz desktop with 8 GB of RAM,

Figure 5 Haplotype assemblies and consensus chimerism analysis varying coloring repetitions (for Hapler) and n (for ViSpA) for the
low diversity dataset. Figure 5(a) shows that haplotype assemblies are shorter but less likely to be chimeric as the number of repetitions
increases, while 5(b) shows that when full length consensus sequences are reconstructed, true rates of chimerism are low even when few
repetitions are used.
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though all tests used only a single core and less than
200 MB of resident memory. Hapler used 100
repetitions.
As expected, runtimes grow super-linearly with the

number of reads (though perhaps not as quickly as the
worst case n3 factor would suggest). For comparison to
the Table 1, we consider an example 114 kilobase contig
of the population-sourced Anopheles gambiae genome
assembly (Lawniczak et al., [26]) comprised of 984 reads
containing 879 non-redundant reads with the largest of
12 haplotype blocks containing 481. For this contig,
Hapler called 2,845 SNPs (using the “Simple Strict” SNP
caller, see Methods) and reconstructed a consensus with
146 estimated crossovers in 12 minutes 38 seconds. All
individual Hapler runs contributing to Figures 2 through
6 ran in under 12 seconds.

Conclusions
Until recently, the analysis of genetically diverse short
read data has focused on identifying single-locus poly-
morphisms such as SNPs (and, using mate-pair data,
longer polymorphisms such as inversions and long
indels [27]). However, haplotypic information is often
more useful than locus-specific information [28,29].
Here, we described a new software tool called Hapler
designed to accurately assemble haplotypes from low
diversity, low coverage data. Assemblies can be
improved by minimizing the number of haplotypes sup-
ported by the data while maximizing the number with
minimal support, and sampling from the many possible

consistent haplotypings to infer only robust haplotype
regions (see Methods).
The theoretical foundations of Hapler require that

sequences be gapless. In support of this requirement,
initial experiments that incorporated mate-pair informa-
tion only produced few incorrect haplotypes, with many
internal errors. For this reason Hapler currently does
not incorporate mate-pair information. Hapler’s added
robustness does come at a computational cost, but
experimental runtime analysis indicates that runtime
will nevertheless be adequate for single alignments up to
100 kilobases in length, though low levels of phasing
information are likely to prevent useful results over
regions of this size. Runtimes also suggest that Hapler
will be useful in practice for whole-transcriptome
assemblies, where contig alignments are on the order of
a few kilobases in length.
Although low levels of phasing information may pre-

vent assembly of many long haplotype regions in some
applications, Hapler can use the few long and highly
covered regions to produce a full consensus minimizing
possible chimerism. In this regard, Hapler performs well
compared to the majority vote and quasispecies estima-
tion tools (using the most frequent quasispecies estimate
as the consensus). Perhaps most telling, of the 350 con-
sensus sequences produced by Hapler over various error
rates for Figure 4, 20 were exact matches to some
sequenced haplotype, whereas the other approaches pro-
duced no exact matches. Results were similar when
varying parameters (Hapler: 185, ViSpA: 2, majority
vote: 0) and in the unequal representation test (Hapler:
208, ViSpA: 3, majority vote: 4). We emphasize that
quasispecies estimation tools are designed for datasets
of much higher coverage and diversity, and thus opti-
mize criteria and utilize parameters specific to those
applications.
Hapler can estimate the chimerism of any consensus

against its own haplotype region assemblies. This esti-
mate will naturally overestimate the true chimerism
(due to Hapler’s conservative methods); however, in

Figure 6 Haplotype assemblies and chimerism analysis for the low diversity dataset with a single over-represented haplotype. These
results indicate that high error rates reduce the length of haplotype assemblies compared to equal haplotype representation, however true
chimerism is generally lower in reconstructed consensus sequences.

Table 1 Runtimes

Coverage # SNPs # Reads Runtime

5X 1482 120 15 secs

10X 1970 240 61 secs

15X 2186 360 155 secs

20X 2280 480 430 secs

Runtimes, simulating sequencing of the low diversity dataset with high error
rate and “Simple” SNP caller (so that each read is considered as a unique
haplotype).
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most tests Hapler’s estimated chimerism for the
approaches tested preserved the ranking of true chimer-
ism. The only exception we found was when error rates
were high (Figure 4), and Hapler estimated ViSpA as
having a higher chimerism than the majority vote, when
in fact ViSpA performed similarly to or slightly better
than the majority vote.
Finally, Hapler not only minimizes chimerism in its

consensus reconstructions, it also identifies where possi-
ble chimeric points might occur. This is useful informa-
tion, for example, when designing microarray probes or
PCR primers that may fail if they include chimeric
sequence.

Software availability
Hapler is packaged as a single Java.jar file, and has been
tested with Java 1.6, requiring no other dependencies. It
is available at http://www.nd.edu/~biocmp/hapler and is
released under an LGPL license. Hapler is also easy to
use: to reconstruct haplotypes for a list of contig IDs in
an Amos bank, one can simply use the Amos tools in
conjunction with Hapler: bank2contig -E eIDList.txt
amosBank | java - jar Hapler.jar –input -.

Methods
Hapler takes as input read alignments either in TIGR
[30] or SAM [31] format, as well as an optional list of
positions to consider as variant loci. A polynomial time
solution requires that reads do not contain gaps, thus
mate-pair information is currently ignored. For each
multiple alignment, Hapler executes the following steps:

1. (Optional) SNP calling.
2. Masking of redundant reads.
3. Determination of haplotype blocks from con-
nected components of GM, and determination of the
“universal” haplotype.
4. For each haplotype block M ’:

(a) Determining the transitive compatibility
graph −−→

G′
M′ .

(b) Minimum coloring of G′
M′, maximizing the

number of single-node colors.
(c) Randomly repeating step b), identifying com-
monalities in colorings, and assembling haplo-
type regions.

5. Reconstructing an overall consensus, minimizing
possible crossover points while maximizing SNP
allele coverage.
6. If given a consensus sequence to evaluate, com-
puting the minimum number of crossovers to sup-
port it with haplotype regions. If also given a set of
“true” haplotypes, computing the minimum number
of crossovers through these to support the given and
reconstructed consensus sequences.

As the sections below discuss, it is primarily steps 3),
4b), and 4c) that improve haplotype assembly quality.

SNP calling
Although step 4b) is designed to isolate reads that likely
contain errors so they can be ignored (see below), many
sequencing technologies induce frequent errors that are
easy to identify. For example, 454 data is plagued by
indel errors adjacent to homopolymer runs [32]. Hapler
currently incorporates a number of methods for identi-
fying which variant loci should be used in haplotyping:

• Simple: Any variant locus regardless of allele fre-
quency is treated as a SNP locus.
• Simple Strict (default): Any variant locus where a
minority allele is present at least twice or is covered
by less than 10 reads is treated as a SNP.
• 454: A variant locus is a SNP if 1) the majority
allele is not a ‘-’ and 2) either a) the number of non-
’-’ alleles is at least two, or b) there is any non-’-’
allele that is not part of a homopolymer run of
length ≥ 3.
• Binomial (default): Given an estimated error rate e
(default 0.005) and sequence alphabet A, at a non-
polymorphic locus the expected occurrence rate of
the second most frequent character (under an equal
substitution model) will be e/(|A| - 1). Thus, this
method uses a Bonferroni corrected Binomial test to
call SNPs: for each locus, we call a SNP if the actual
second most frequent character count is greater
than F-1(1 - a/L; d, e/(|A| - 1)), where F - 1 is the
inverse cumulative Binomial distribution function, a
is the p-value cutoff (default 0.05), L is the length of
the alignment, and d is the read depth at the locus.
• User Provided: The user can provide a file contain-
ing a list of loci for each alignment to consider as
SNPs, allowing for sophisticated external SNP-callers
such as QualitySNP [33] and PyroBayes [32].

Masking of redundant reads
A read Rr is called “redundant” if the SNPs covered by
Rr are a subset of those covered by some other read R,
and Rr and R do not conflict. Hapler scans the reads
first in order of first covered SNP position and secondly
by length; for each such read R, those reads Rr which
are made redundant by R are subsumed, or “masked” by
R. Rr is then removed from consideration as a masking
read itself. This is necessary to ensure that the compat-
ibility graph G′

M can be transitively oriented [4]: con-
sider ordered reads x, y and z, where y does not share
SNPs with z. If x shares SNPs with both, does not con-
flict with y (which is redundant) but does conflict with
z, this produces a non-transitive relationship.
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Determination of haplotype blocks and the universal
haplotype
For low-diversity data, GM may consist of multiple con-
nected components. In this case, no information exists
to determine whether reads from different connected
components could belong to the same haplotype. Thus,
for each alignment, haplotypes are assembled for each
connected component separately. It can be shown that
SNP loci covered by reads of each component form con-
tiguous stretches–hence the usage of the phrase “haplo-
type block” [34].
Reads in connected components of size one are con-

sistent with all possible haplotypes, and are combined
into a “universal” haplotype consistent with all other
assembled haplotype regions.

Determination of block compatibility graphs
Once a connected component GM’ has been isolated, the
directed, transitive, block compatibility graph −−→

G′
M′ is

easily created: if read Sx starts before read Sy and does
not conflict with Sy, a directed edge is drawn from the
node representing Sx in

−−→
G′

M′ to that representing Sy.

Minimum coloring
Because we consider only unmasked reads, any compat-
ibility graph −−→

G′
M′ is fully transitive: a minimum path

cover solves minimum clique cover, solving minimum
coloring of the conflict connected component GM ’.
Although the application of Dilworth’s theorem in [4]

is correct (equating the path covering and coloring num-
bers), the constructive algorithm that uses a “reachability”
bipartite representation is not strictly necessary: any
directed acyclic graph can be path covered using a differ-
ent, “connects-to” bipartite representation [35]. Here,
nodes in −−→

G′
M′ are represented on the left and right of a

bipartite graph BM ’ , and node x from the left of BM ’

connects to y from the right if x is directly connected to y
in −−→

G′
M′ . Figure 7(a) shows this unweighted representa-

tion (and a colored maximum matching) for the conflict
graph of Figure 1. This representation affords us two
advantages. First, we can modify it to maximize the num-
ber of paths (haplotypes) that consist of a single read, iso-
lating reads that are likely to contain errors. This requires
the use of a weighted bipartite matching algorithm such
as the Hungarian method [36]. Second, we can more
effectively take advantage of the mechanics of the Hun-
garian method to sample in a random fashion from the
set of minimum color solutions (see next section).
Regarding the first point, solving a maximum

unweighted matching on BM ’ and computing connected
components (after contracting left and right nodes repre-
senting the same node in −−→

G′
M′ ) would give a minimum

path cover of −−→
G′

M′ [35]. However, we are given no guar-
antees about any properties of this path cover, other than

its minimality. To remedy this, we modify BM ’ to pro-
duce Bε

M′ in the following way: Let n be the number of
nodes in −−→

G′
M′ . We connect each pair of nodes xl and xr

(from the left and right of BM ’, respectively) representing
the same node in −−→

G′
M′ by an edge of weight 1 /(n + 1).

Original edges are given weight of 1.
Theorem 1. Computing connected components of a

maximum weighted matching of Bε
M′ followed by contrac-

tion of nodes representing the same node in−−→
G′

M′ produces a minimum path cover of −−→
G′

M′ , while sec-
ondarily maximizing the number of paths consisting of a
single node.
Proof. As noted in [35], connected components in an

unweighted matching of the original BM ’ produce a
minimum path cover of −−→

G′
M′ , where n - k is the number

of paths and k is the number of edges selected in the
matching. It is easy to see that selection of any edge of
weight 1 /(n + 1) in Bε

M′ produces a single-node path. It
is suffcient to show that the total number of paths pro-
duced does not change.
Let L be a maximum unweighted matching of BM ’,

which selects k edges. Now consider any maximum
weighted matching of Bε

M′ and let the total weight
selected be k’. Clearly, k’ ≥ k; k’ must also be less than k
+ 1 (otherwise L wasn’t a maximum matching). This
implies that k integer edges and some number of small
weight edges are selected. Since k’ is maximum, the
number of single node paths is maximized, while the
number of post-contraction edges remains the same as
in the unweighted matching: k. As before, the number
of paths is defined by n - k. □
Figure 7(b) shows this modified bipartite graph and

the weighted matching produced, which forces the use
of the light coloring for read number 1 in Figure 1, iso-
lating the remaining read (number 6) that likely contains
a sequencing error.

Random repetition of coloring and haplotype assembly
In general, colorings of GM ’ described by Theorem 1
are not unique, and different colorings can produce dif-
ferent haplotypings. If we can sample in a pseudo-ran-
dom fashion from the coloring solution set a large
number of times, we can increase the confidence in our
haplotype assemblies: reads that are always similarly
colored are likely to be from the same haplotype in rea-
lity. This is the final haplotype information used by
Hapler. Because the Hungarian method considers aug-
menting paths based on the order of the inputs, the
matching output can be drastically altered for each
iteration merely by by randomizing the ordering of
nodes in Bε

M′ before calling the Hungarian method.
Once a set of reads has been identified as belonging to

the same haplotype, a haplotype region is assembled.
For non-SNP loci covered by reads in the haplotype
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region, this is the majority vote of the multiple align-
ment as a whole. For SNP loci, we use the allele of
reads belonging to the haplotype. Using the entire align-
ment in non-SNP positions reduces the possibility of
including sequencing errors at non-variant loci, since
haplotype-specific coverage is frequently quite low. For
loci not covered by reads in the haplotype region, we
use a ‘~’ character to represent lacking information.
Determining assembled haplotype region length
Here we note that haplotype assemblies need not be
contiguous, though in practice they almost always are.
Consider a multiple alignment of only three reads {A, B,

C}, where A conflicts with B, B conflicts with C, but A
and C do not overlap. In this case, all minimal colorings
will put A and C together, even though they do not
overlap. (Similarly, the universal haplotype will consist
of contiguous sequenced regions separated by gaps
induced by haplotype blocks.) Thus, for Figures plotting
haplotype region lengths (e.g., Figures 2(a), (b), and 3(a))
we actually plot the number of bases in the haplotype
region rather than the length. Again, in almost all cases
regions are contiguous and this measure is equal to the
length, and in the rare situations where this is not the
case it underestimates the “length.”

Figure 7 Unweighted and modified weighted bipartite representations of the conflict graph shown in Figure 1, with associated
solutions and colorings shown. For the unweighted case, multiple minimum colorings are possible: read 1 could be colored blue or yellow.
Adding small-weight edges between node pairs maximizes the number of single-node colors. Thus, read 1 is forced to be colored with reads 5
and 3, isolating read 6 which likely contains a sequencing error.
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Consensus reconstruction
One possibility for reconstructing an overall consensus
sequence is to find a minimum tiling path through hap-
lotype assemblies, from the first base in the alignment
to the last. This formulation, however, is complicated by
1) the possibility of haplotype assemblies being non-con-
tiguous (see above) and 2) the existence of the universal
haplotype: switching to a universal haplotype region
should not be penalized. Thus, we aim to reconstruct
the full consensus only at SNP positions, filling in non-
SNP loci with the majority vote of the overall alignment.
Given a consensus sequence C , we define a “possible
crossover” as any two adjacent SNPs Sj and Sk, where
no haplotype assembly supports (covers and agrees
with) C at both Sj and Sk.
A consensus with minimal possible crossovers can

easily be computed via dynamic programming. First, for
each SNP Si we identify the set of haplotype assemblies
that cover it, call this H(Si). Let m(Hq, Si) be the mini-
mum number of crossovers needed to reconstruct a
consensus for the first i SNPs (represented in order as
S1 to Sm if there are m SNP loci), ending with haplotype
assembly Hq providing the allele for Si. At the base of
the dynamic program, for all Hq Î H(S1), m(Hq, S1) = 0.
The solution for other haplotype/SNP combinations can
then be computed as

∀Hq ∈ H(Si), i ∈ {2...m},m(Hq, Si) =

min
Hr∈H(Si−1)

{m(Hr , Si−1) + 1 − IHr=Hq }.

In fact, Hapler optimizes the consensus sequence C
via dynamic programming based on several criteria of
decreasing importance:

1. Minimizing the number of possible crossover
points in C.
2. Maximizing the total supporting read coverage
(both redundant and irredundant) of alleles used at
SNP positions in C.

3. Minimizing the number of unique haplotype
assemblies used.

In practice, there may be many paths through haplo-
type assemblies that minimize possible crossover points.
In the case of ties, criterion 2 chooses assemblies for C
that are high in coverage, minimizing sequencing error
and increasing the probability that a possible crossover
point is not actually a true crossover point in reality
(similar to the uninformed majority vote). Criterion 2
also governs where a necessary crossover from one hap-
lotype assembly to another will occur. If two assemblies
overlap at SNP loci, the highest covered will be “crossed
into” and “crossed out of” greedily.
Criterion 3 will seldom be called upon in practice, as

ties in both criteria 1 and 2 are unlikely. Nevertheless,
within the constraints of a minimal set of haplotype
crossovers maximizing coverage, we prefer to utilize a
minimum number of explanatory haplotype regions. A
graphical representation can be found in Figure 8; pseu-
docode can be found in Supplementary File 1.

Consensus evaluation
Given a set of “true” haplotypes or a set of assembled hap-
lotype regions H , Hapler can evaluate the chimerism of a
given consensus sequence C’ against H . This is done
using a dynamic programming approach similar to that
used for consensus reconstruction, with the only differ-
ences being 1) SNPs are identified any polymorphic locus
in H , and 2) HC(Si) is used rather than H(Si) where HC

(Si) defines not only those haplotypes that cover SNP Si
but those that cover and agree with the allele of C’ at Si. If
no haplotype covers and agrees with C’ at a SNP Si, then Si
is associated with a new, unique “error” haplotype for that
locus. This will incur two crossovers in the evaluation–
one into the unique error haplotype at Si and one out of it.
Thus, errors at SNP loci not supported by any haplotype
are heavily penalized. However, sequencing errors in the
consensus are not considered if they do not coincide with
SNP loci in H .

Figure 8 Dynamic programming representation used for reconstructing minimum chimerism consensus sequences. At each SNP locus,
the haplotype assemblies overlapping that locus are identified, and a minimum chimerism, maximum coverage path is identified. Shown are
example haplotype assemblies overlapping three SNPs, as well as the locus-specific coverages of each haplotype assembly.
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Additional material

Additional file 1: An additional PDF file providing Supplementary
Materials, including consensus reconstruction pseudocode and
supplementary figures (oneil_bmc2011_supp.pdf, Additional File 1)
is available online.

Acknowledgements
The authors would like to thank Prof. Jessica Hellmann for bringing this
problem to our attention and members of the Hellmann lab for data
preparation and useful discussions. We also thank Irina Astrovskaya for
sharing the ViSpA manuscript preprint. This work was supported in part by a
fellowship to STO as part of the University of Notre Dame’s strategic
research investment in global health.
This article has been published as part of BMC Genomics Volume 13
Supplement 2, 2012: Selected articles from the First IEEE International
Conference on Computational Advances in Bio and medical Sciences
(ICCABS 2011): Genomics. The full contents of the supplement are available
online at http://www.biomedcentral.com/bmcgenomics/supplements/13/S2.

Authors’ contributions
STO designed the methods, wrote the software, performed the analysis and
drafted the manuscript. SJE helped conceive the study, supervised
experimental analysis and helped draft the manuscript. Both authors read
and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 12 April 2012

References
1. Pop M, Salzberg S, Shumway M: Genome sequence assembly: algorithms

and issues. Computer 2002, 47-54.
2. Clark AG: Inference of haplotypes from PCR-amplified samples of diploid

populations. Mol Biol Evol 1990, 7(2):111-122.
3. Salem R, Wessel J, Schork N: A comprehensive literature review of

haplotyping software and methods for use with unrelated individuals.
Human Genomics 2005, 2:39-66.

4. Eriksson N, Pachter L, Mitsuya Y, Rhee S, Wang C, Gharizadeh B, Ronaghi M,
Shafer R, Beerenwinkel N: Viral Population Estimation Using
Pyrosequencing. PLoS Computational Biology 2008, 4(5):e1000074+.

5. Zagordi O, Klein R, DÃumer M, Beerenwinkel N: Error correction of next-
generation sequencing data and reliable estimation of HIV quasispecies.
Nucleic Acids Research 2010, 38(21):7400-7409.

6. Wheat C: Rapidly developing functional genomics in ecological model
systems via 454 transcriptome sequencing. Genetica 2010, 138(4):433-451.

7. Turner T, Hahn M: Locus- and population-specific selection and
differentiation between incipient species of Anopheles gambiae.
Molecular Biology and Evolution 2007, 24(9):2132-2138.

8. Vera C, Wheat C, Fescemyer H, Frilander M, Crawford D, Hanski I, Marden J:
Rapid transcriptome characterization for a nonmodel organism using
454 pyrosequencing. Molecular Ecology 2008, 17(7):1636-1647.

9. Anderson JT, Mitchell-Olds T: Ecological genetics and genomics of plant
defences: evidence and approaches. Funct Ecol 2011, 25:312-324.

10. O’Neil ST, Dzurisin JDK, Carmichael R, Lobo NF, Emrich SJ, Hellmann JJ:
Population level transcriptome sequencing of nonmodel organisms
Erynnis propertius and Papilio zelicaon. BMC Genomics 2010, 11:310+.

11. Ewen-Campen B, Shaner N, Panfilio KA, Suzuki Y, Roth S, Extavour CG: The
maternal and early embryonic transcriptome of the milkweed bug
Oncopeltus fasciatus. BMC Genomics 2011, 12:61.

12. O’Neil ST, Emrich SJ: Robust haplotype reconstruction of eukaryotic read
data with Hapler. ICCABS ‘11: Proceedings of the IEEE 1st International
Conference on Computational Advances in Bio and medical Sciences 141-146.

13. Lancia G, Bafna V, Istrail S, Lippert R, Schwartz R: SNPs problems,
complexity, and algorithms. ESA ‘01: Proceedings of the 9th Annual
European Symposium on Algorithms 2001, 182-193.

14. Bonizzoni P, Vedova GD, Dondi R, Li J: The haplotyping problem: an
overview of computational models and solutions. Journal of Computer
Science and Technology 2003, 18(6):675-688.

15. Schwartz R: Theory and algorithms for the haplotype assembly problem.
Communications in Information and Systems 2010, 10:23-38.

16. Xie M, Wang J, Chen J, Wu J, Liu X: Computational models and
algorithms for the single individual haplotyping problem. Current
Bioinformatics 2010, 5:18-28.

17. Bafna V, Istrail S, Lancia G, Rizzi R: Polynomial and APX-hard cases of the
individual haplotyping problem. Theoretical Computer Science 2005,
335:109-125.

18. Cilibrasi R, Leo V, Kelk S, Tromp J: The complexity of the single individual
SNP haplotyping problem. Algorithmica 2007, 49:13-36.

19. Li Z, Wu L, Zhao Y, Zhang X: A dynamic programming algorithm for the
k-haplotyping problem. Acta Mathematicae Applicatae Sinica 2006,
22(3):405-412.

20. Panconesi A, Sozio M: Fast hare: a fast heuristic for single individual SNP
haplotype reconstruction. Algorithms in Bioinformatics 2004, 266-277.

21. He D, Choi A, Pipatsrisawat K, Darwiche A, Eskin E: Optimal algorithms for
haplotype assembly from whole-genome sequence data. Bioinformatics
2010, 26(12):i183.

22. Astrovskaya I, Tork B, Mangul S, Westbrooks K, Mandoiu I, Balfe P,
Zelikovsky A: Inferring viral quasispecies spectra from 454
pyrosequencing reads. BMC Bioinformatics 2011, 12(Suppl 6):S1.

23. Denisov G, Walenz B, Halpern AL, Miller J, Axelrod N, Levy S, Sutton G:
Consensus generation and variant detection by Celera Assembler.
Bioinformatics 2008, 24(8):1035-1040.

24. Dincă V, Zakharov E, Hebert P, Vila R: Complete DNA barcode reference
library for a country’s butterfly fauna reveals high performance for
temperate Europe. Proceedings of the Royal Society B: Biological Sciences
2011, 278(1704):347.

25. Zakharov E, Hellmann J: Genetic differentiation across a latitudinal
gradient in two co-occurring butterfly species: revealing population
differences in a context of climate change. Molecular Ecology 2008,
17:189-208.

26. Lawniczak M, Emrich S, Holloway A, Regier A, Olson M, White B,
Redmond S, Fulton L, Appelbaum E, Godfrey J, et al: Widespread
divergence between incipient Anopheles gambiae species revealed by
whole genome sequences. Science 2010, 330(6003):512.

27. Lee S, Cheran E, Brudno M: A robust framework for detecting structural
variations in a genome. Bioinformatics 2008, 24(13):i59.

28. Davidson S: Research suggests importance of haplotypes over SNPs.
Nature Biotechnology 2000, 18(11):1134-1135.

29. Hoehe M, Timmermann B, Lehrach H: Human inter-individual DNA
sequence variation in candidate genes, drug targets, the importance of
haplotypes and pharmacogenomics. Current Pharmaceutical Biotechnology
2003, 4:351-378.

30. Pop M, Kosack D: Using the TIGR assembler in shotgun sequencing
projects. Methods in Molecular Biology 2004, 255:279-294.

31. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecasis G, Durbin R: The sequence alignment/map format and
SAMtools. Bioinformatics 2009, 25(16):2078.

32. Quinlan AR, Stewart DA, Stromberg MP, Marth GT: Pyrobayes: an improved
base caller for SNP discovery in pyrosequences. Nature Methods 2008,
5(2):179-181.

33. Tang J, Vosman B, Voorrips R, Van Der Linden C, Leunissen J: QualitySNP: a
pipeline for detecting single nucleotide polymorphisms and insertions/
deletions in EST data from diploid and polyploid species. BMC
Bioinformatics 2006, 7:438.

34. Wall J, Pritchard J: Haplotype blocks and linkage disequilibrium in the
human genome. Nature Reviews Genetics 2003, 4(8):587-597.

35. Nemhauser G, Trotter L Jr, Nauss R: Set partitioning and chain
decomposition. Management Science 1974, 20(11):1413-1423.

36. Kuhn H: The Hungarian method for the assignment problem. Naval
Research Logistics Quarterly 1955, 2(1-2):83-97.

doi:10.1186/1471-2164-13-S2-S4
Cite this article as: O’Neil and Emrich: Haplotype and minimum-
chimerism consensus determination using short sequence data. BMC
Genomics 2012 13(Suppl 2):S4.

O’Neil and Emrich BMC Genomics 2012, 13(Suppl 2):S4
http://www.biomedcentral.com/1471-2164/13/S2/S4

Page 12 of 12

http://www.biomedcentral.com/content/supplementary/1471-2164-13-S2-S4-S1.pdf
http://www.biomedcentral.com/bmcgenomics/supplements/13/S2
http://www.ncbi.nlm.nih.gov/pubmed/2108305?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2108305?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15814067?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15814067?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18437230?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18437230?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20671025?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20671025?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18931921?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18931921?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17636041?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17636041?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18266620?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18266620?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21532968?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21532968?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20478048?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20478048?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21266083?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21266083?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21266083?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22331423?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22331423?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20529904?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20529904?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22168285?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22168285?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18321888?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20702462?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20702462?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20702462?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17784923?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17784923?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17784923?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20966253?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20966253?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20966253?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18586745?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18586745?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11062421?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14683431?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14683431?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14683431?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15020832?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15020832?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19505943?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19505943?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18193056?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18193056?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17029635?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17029635?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17029635?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12897771?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12897771?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Related work

	Results and discussion
	Read length and diversity
	Error rate
	Random repetitions
	Unequal haplotype representation
	Runtime

	Conclusions
	Software availability

	Methods
	SNP calling
	Masking of redundant reads
	Determination of haplotype blocks and the universal haplotype
	Determination of block compatibility graphs
	Minimum coloring
	Random repetition of coloring and haplotype assembly
	Determining assembled haplotype region length

	Consensus reconstruction
	Consensus evaluation

	Acknowledgements
	Authors' contributions
	Competing interests
	References

