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Abstract

Background: Multi-objective optimization (MOO) involves optimization problems with multiple objectives.
Generally, theose objectives is used to estimate very different aspects of the solutions, and these aspects are often
in conflict with each other. MOO first gets a Pareto set, and then looks for both commonality and systematic
variations across the set. For the large-scale data sets, heuristic search algorithms such as EA combined with MOO
techniques are ideal. Newly DNA microarray technology may study the transcriptional response of a complete
genome to different experimental conditions and yield a lot of large-scale datasets. Biclustering technique can
simultaneously cluster rows and columns of a dataset, and hlep to extract more accurate information from those
datasets. Biclustering need optimize several conflicting objectives, and can be solved with MOO methods. As a
heuristics-based optimization approach, the particle swarm optimization (PSO) simulate the movements of a bird
flock finding food. The shuffled frog-leaping algorithm (SFL) is a population-based cooperative search metaphor
combining the benefits of the local search of PSO and the global shuffled of information of the complex evolution
technique. SFL is used to solve the optimization problems of the large-scale datasets.

Results: This paper integrates dynamic population strategy and shuffled frog-leaping algorithm into biclustering of
microarray data, and proposes a novel multi-objective dynamic population shuffled frog-leaping biclustering
(MODPSFLB) algorithm to mine maximum bicluesters from microarray data. Experimental results show that the
proposed MODPSFLB algorithm can effectively find significant biological structures in terms of related biological
processes, components and molecular functions.

Conclusions: The proposed MODPSFLB algorithm has good diversity and fast convergence of Pareto solutions and
will become a powerful systematic functional analysis in genome research.

Background
With rapid development of the DNA microarray technol-
ogy, simultaneously measuring the expression levels of
thousands of genes in a single experiment can yield large-
scale datasets. The analysis of microarray data mainly con-
tains the study of gene expression under different environ-
mental stress conditions and the comparisons of gene
expression profiles for tumors from cancer patients. A sub-
set of genes showing correlated co-expression patterns
across a subset of conditions are expected to be functionally

related. By comparing gene expression in normal and
disease sells, microarray dataset may be used to identify dis-
ease genes and targets for therapeutic drugs. Therefore,
mining patterns from microarray dataset becomes more
and more important. These patterns relate to disease diag-
nosis, drug discovery, protein network analysis, gene regu-
late, as well as function prediction.
For microarray data analysis, clustering techniques is a

popular technique for mining significant biological mod-
els. Clustering can identify set of genes with similar pro-
files. However, traditional clustering approaches such as
k-means [1], self organizing maps [2], support vector
machine [3] and hierarchical clustering [4], assume that
related genes have the similar expression patterns across

* Correspondence: xiaohua.tony.hu@gmail.com
4Department of Computer Science, Central China Normal University, Wuhan
430079, China
Full list of author information is available at the end of the article

Liu et al. BMC Genomics 2012, 13(Suppl 3):S6
http://www.biomedcentral.com/1471-2164/13/S3/S6

© 2012 Liu et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:xiaohua.tony.hu@gmail.com
http://creativecommons.org/licenses/by/2.0


all conditions, which is not reasonable especially when
the dataset contains many heterogeneous conditions. It
fact, those relevant genes are not necessarily related to all
conditions. To cluster subset of genes that have similar
expression over some conditions, biclustering [5,6] is
proposed for clustering simultaneously gene subset and
condition subset over which the gene subset exhibit simi-
lar expression patterns, such as δ-biclustering [5], pClus-
tering [7], statistical-algorithmic method for biclustering
analysis (SAMBA) [8], spectral biclustering [9], Gibbs
sampling biclustering [10] and simulated annealing
biclustering [11].
In recent three decades, inspired by biology views,

heuristics optimization has become a very popular
research topic. To order to escape from local minima,
many evolutionary algorithms (EA) are used to find glo-
bal optimal solutions from gene expression data [12-14].
If a single objective is optimized, the global optimum
solution can be found. But in the real-world optimization
problem, there are several objectives in conflict with each
other to be optimized and require different mathematical
and algorithmic tools to solve it. Multi-objective evolu-
tionary algorithm (MOEA) generates a set of Pareto-opti-
mal solutions [15] which is suitable to optimize two or
more conflicting objectives.
However when mining biclusters from microarray data,

we must optimize simultaneously several objectives in con-
flict with each other, for example, the size and the homoge-
neity of the clusters. In this case MOEA is proposed to
discover efficiently global optimal solution. Among many
MOEA proposed, the relaxed forms of Pareto dominance
has become a popular mechanism to regulate convergence
of an MOEA, to encourage more exploration and to pro-
vide more diversity. Among these mechanisms, �-domi-
nance has become increasingly popular [16], because of its
effectiveness and its sound theoretical foundation. �-domi-
nance can control the granularity of the approximation of
the Pareto front obtained to accelerate convergence and
guarantee optimal distribution of solutions. At present, sev-
eral algorithms [17,18] adopt MOEAs to discover biclusters
from microarray data.
Recently particle swarm optimization (PSO) proposed by

Kebnnedy and Eberhart [19] is a heuristics-based optimi-
zation approach simulating the movements of a bird flock
finding food. Most of previous versions of the particle
swarm are based on continuous space, where trajectories
are the changes of position on some dimensions. Kennedy
and Eberhart [20] proposed a discrete binary version of
PSO, where trajectories are defined as changes of probabil-
ity that a coordinate will take on a zero or one value.
The most attractive of PSO is that there are very few

parameters to adjust. So it has been successfully used
for both continuous nonlinear and discrete binary sin-
gle-objective optimization.

The rapid convergence and relative simplicity of PSO
make it very suitable to solve multi-objective optimiza-
tion named as multi-objective PSO (MOPSO). In recent
years many multi-objective PSO (MOPSO) approaches
[21,22] has proposed. The strategy of �-dominance
[23,24] is introduced into MOPSO speeding up the con-
vergence and attaining good diversity of solutions [25].
Liu [26] incorporates �-dominance strategies into
MOPSO, and proposes a novel MOPSO biclustering fra-
mework to find one or more significant biclusters of
maximum size from microarray data.
Most MOPs use a fixed population size to find non-

dominated solutions for obtaining the Paterto front. The
computational cost is the greatest influence of population
size on these population-based meta-heuristic algorithms.
Hence dynamically adjusting the population size need
consider the balance between computational cost and the
algorithm performance. Some methods using dynamic size
are proposed. Tan [27] proposed an incrementing MOEA
(IMOEA) that adaptively computes am appropriate popu-
lation size according to the online discovered trade-off
surface and its desired population size that corresponds to
the distribution density. Yen and Lu [28] proposed
dynamic population size MOEA (DMOEA) that includes a
population-growing strategy based on the converted fit-
ness and a population-declining strategy that resorts to
the following age, health and crowdedness. Leong and Yen
[29] introduced dynamic population size and a fixed num-
ber of multiple swarms into multi-objective optimization
algorithm that improved diversity and convergence of
optimization algorithm. Based on dynamic population, Liu
[30] proposed a novel dynamic multi-objective particle
swarm optimization biclustering (DMOPSOB) algorithm
to mine effectively significant biclusters of high quality.
In recent years, Eusuff [31,32] develops a shuffled frog-

leaping algorithm (SFLA) to solve combinatorial optimi-
zation problems. Due to its effectiveness and suitability,
SFLA has captured much attention and been applied to
solve many practical optimization problems [31-33]. The
shuffled frog leaping (SFL) optimization algorithm has
been successful in solving a wide range of real-valued
optimization problems. Madani [34] proposes a discrete
shuffled particle optimization algorithm with best perfor-
mance in terms of both success rate and speed than the
binary genetic algorithm (BGA) and the discrete particle
swarm optimization (DPSO) algorithm.
To the best of our knowledge, there is no published

work dealing with the biclustering of microarray data by
using SFLA. Thus, in this paper we present an effective
SFLA biclustering algorithm for mining the maximum
biclusters with allowable dissimilarity within the biclusters,
and with a greater row variance. Computational experi-
ments and comparisons show that the proposed SFLA
outperforms three best performing algorithms proposed
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recently for solving the biclustering problem with the
biclustering criterion.

Methods
Based on shuffled frog-leaping algorithm, crowding dis-
tance and ε-dominance strategy [16], this paper incorporat-
ing dynamic population strategy into MOSFLB algorithm
[35], and proposes a multi-objective dynamic population
shuffled frog-leaping biclustering (MODPSFLB) algorithm
to mine one or more significant biclusters of maximum
size from microarray dataset. In the proposed algorithm,
the feasible solutions are regarded as frogs and Pareto opti-
mal solutions are preserved in frog population updated by
ε-dominance relation and computation of crowding dis-
tance. Then the next generation of frog population is dyna-
mically adjusted according to dynamic population strategy
[29]. The proposed methods can effectively obtain more
Pareto optimal solutions that uniformly distributed onto
the Pareto front. The proposed algorithm uses three objec-
tives, the size, homogeneity and row variance of biclusters,
as three fitness function of biclustering optimization pro-
cess. A low mean squared residue (MSR) score of bicluster
denotes that the expression level of each gene within the
bicluster is similar over the range of conditions. Therefore,
the goal of the algorithm is to find more maximum biclus-
ters with mean squared residue lower than a given δ and
with a relatively high row variance.

Biclusters
Given a gene expression data matrix D = G×C = (here iÎ
[1, n], jÎ[1, m]) is a real-valued n×m matrix, here G is a
set of n genes {g1, g2,..., gn}, C a set of m biological condi-
tions {c1, c2,..., cn}. Entry dij means the expression level of
gene gi under condition cj.
Definition 1 Bicluster. Given a gene expression data-

set D = G×C, if there is a submatrix B = g×c, where g⊂G,
c⊂C, to satisfy certain homogeneity and minimal size of
the cluster, we say that B is a bicluster.
Definition 2 Maximal bicluster. A bicluster B = g×c

is maximal if there exists not any other biclusters B’B’=
g’×c’ g’×c’ such that, g’⊂g, c’⊂C.
Definition 3 Dimension mean. Given a bicluster B =

g×c, with subset of genes g⊂G, subset of conditions
c⊂C, dij is the value of gene gi under condition cj in the
dataset D. We denote by dicdic the mean of the ith gene
in B, dgj the mean of the jth condition in B. We also
denote by dgc the mean of all entries in B. These values
are defined as follows, where Size(g, c) = |g||c| presents
the size of bicluster B.

dic =
1
|c|

∑
j∈c dij (1)

dgj =
1
|g|

∑
i∈g dij (2)

dgc =
1

|g||c|
∑

i∈g,j∈c dij (3)

Definition 4 Residue and mean square residue.
Given a bicluster B = g×c, to assess the difference the
actual value of an element dij and its expected value, we
define by r(dij) the residue of dij in bicluster B in Eq.(4).
Therefore the mean squared residue (MSR) of B is
defined as the sum of the squared residues to assess
overall quality of a bicluster B in Eq.(5).

r(dij) = dij − dic − dgj + dgc (4)

MSR(g, c) =
1

|g||c|
∑

i∈g,j∈c r(dij)
2 (5)

Definition 5 Row variance. Given a bicluster B =
g×c, the ith gene variance in B is defined by RVAR(i, c)
and the overall gene-dimensional variance is defined as
the sum of all genes variance as follows.

RVAR(g, c) =
1

|g||c|
∑

i∈g,j∈c (dij − dic)
2 (6)

RVAR(i, c) =
1
|c|

∑
j∈c (dij − dic)

2 (7)

Our target is mining good quality biclusters of maxi-
mum size, with mean square residue (MSR) smaller
than a user-defined threshold δ > 0, which presents the
maximum allowable dissimilarity within the biclusters,
and with a greater row variance. The problem is NP-
complete, so the large majority of the algorithms use
heuristic approaches to attain near optimal solutions.

Bicluster encoding
Each bicluster is encoded as an individual of the popula-
tion. Each individual is represented by a binary string of
fixed length n+m, where n, m is the number of genes,
conditions of the microarray dataset, respectively. The
first n bits are responding to n genes, the following m
bits to m conditions. If a bit is set to 1, it means that
the responding gene or condition belongs to the
encoded bicluster; otherwise it does not. This encoding
method presents the advantage of having a fixed size,
thus using standard variation operations. Figure 1 pre-
sents the individual encoding a bicluster with 2 genes
and 3 conditions, and its size is 2 × 3 = 6.
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Fitness function
We hope to mine those biclusters with low mean
squared residue, with high volume and gene-dimen-
sional variance, thus three objectives in conflict with
each other are used to model multi-objective optimiza-
tion problem. In this paper, we use the following three
fitness functions [26].

f1(x) =
|G||C|
size(x)

(8)

f2(x) =
MSR(x)

δ
(9)

f3(x) =
1

RVAR(x)
(10)

Where G and C are the total number of genes and
conditions of the microarray datasets respectively. Size
(x), MSR(x) and RVAR(x) denotes the size, mean
squared residue and row variance of bicluster encoded
by the frog × respectively. δ is the user-defined thresh-
old for the maximum acceptable mean squared residue.
Our algorithm minimizes those three fitness functions.

�-dominance
Among many MOEA proposed, the non-dominated
solutions of each generation are kept in an external
population that must be updated in each generation.
The time needed for updating the population depends
on the population size, population size and the number
of objectives and increases extremely when increasing
the values of these three factors [36]. To encourage
more exploration and to provide more diversity the
relaxed forms of Pareto dominance has become a popu-
lar mechanism to regulate convergence of an MOEA.
Among these mechanisms, �-dominance has become
increasingly popular [16], because of its effectiveness
and its sound theoretical foundation. �-dominance can
control the granularity of the approximation of the Par-
eto front obtained to accelerate convergence and guar-
antee optimal distribution of solutions. Here, we adapt
the idea of �-dominance to fix the size of the population

to a certain amount. This size depends on �. We apply
�-dominance technique to search for the approximate
Pareto-front.
Definition 6 Dominance relation. Let f, g ÎRm. Then

f is said to dominate g (denoted as f ≻ g), iff

(i) ∀i Î{1,...., m}: fi ≤ gi
(ii) ∃j Î{1,...., m}: fj < gj

Definition 7 Pareto set. Let F ÎR m be a set of vec-
tors. Then the Pareto set F* of F is defined as follows:
F* contains all vectors g Î F which are not dominated

by any vector f Î F, i.e.

F := {g ∈ F|�f ∈ F : f � g} (11)

Vectors in F* are called Pareto vectors of F. The set of
all Pareto sets of F is denoted as P*(F).
Definition 8 �-dominance. Let f, g Î Rm. Then f is

said to � -dominate g for some � > 0, denoted as f ≻� g,
iff for all iÎ{1,...., m}

(1 + ε)fi ≥ gi. (12)

Definition 9 �-approximate Pareto set. Let F ⊆ Rm

be a set of vectors and � > 0. Then a set F� is called an
�-approximate Pareto set of F, if any vector g Î F is
�-dominated by at least one vector f Î F� , i.e.

∀g ∈ F : ∃f ∈ Fεsuch that f�εg (13)

The set of all �-approximate Pareto sets of F is
denoted as P� (F).
Definition 10 �-Pareto set. Let F ⊆ Rm be a set of

vectors and � > 0. Then a set F∗
∈⊆F is called an �-Pareto

set of F if

(i) F∗
∈ is an �-approximate Pareto set of F, i.e.

F∗
∈ ∈ P∈(F) , and

(ii) F∗
∈ contains Pareto points of X only, i.e. F∗

∈ ⊆ F∗

The set of all �-Pareto set of F is denoted as F∗
∈(F) .

Update of �-Pareto set of the frog population
In order to guarantee the convergence and maintain
diversity in the population at the same time, we

Figure 1 An individual encoding a bicluster. Figure 1 presents the individual encoding a bicluster with 2 genes and 3 conditions, and its size
is 2 × 3 = 6.
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implement updating of �-Pareto set of the frog popula-
tion during selection operation [16].

Fining the global best solution
To order to find the global best solutions, we use the
Sigma method [21] to find the best local guide pg among
the population members for the frog i of population as
follows. In the first step, we assign the value sj to each
frog j in the population. In the second step, si for frog i
of the population is calculated. Then we calculate the dis-
tance between the si and sj, ∀j = 1,...,|A|. Finally, the frog
k in the population A which its sk has the minimum dis-
tance to si is selected as the best local guide for the frog
i. Therefore, frog pg = xk is the best local guide for frog i.
In other words, each frog that has a closer sigma value to
the sigma value of the population member, must select
that population member as the best local guide. In the
case of two dimensional objective space, closer means the
difference between the sigma values and in the case of m-
dimensional objective space, it means the m-dimensional
euclidian distance between the sigma values. The algo-
rithm of the Sigma method can find the best local pg for
the frog i of the population [21]. Here, the function
Sigma calculates the s value and dist computes the eucli-
dian distance. yi denotes the objective value of the jth ele-
ment of the population.

Shuffled frog-leaping algorithm
SFL is a population-based cooperative search metaphor
combining the benefits of the genetic-based memetic
algorithm and the social behavior based on particle
swarm optimization. Shuffled frog leaping algorithm is a
new meta-heuristic proposed by Eusuff [31,32,34] for sol-
ving problems with discrete decision variables. In the SFL
algorithm, a population of randomly generated P solu-
tions forms an initial population X = {x1, x2,..., xP}, where
each solution xi called a frog is represented by a number
of bits xi = { xi1, xi2,..., xiN }.
SFL starts with the whole population partitioned into a

number of parallel subsets referred to as memeplexes.
Then eachmemeplex is considered as a different culture
of frogs and permitted to evolve independently to search
the space. Within each memeplex, the individual frogs
hold their own ideas, which can be affected by the ideas
of other frogs, and experience a memetic evolution. Dur-
ing the evolution, the frogs may change their memes by
using the information from the memeplex best x(b) or
the best individual of entire population x(g). Incremental
changes in memotypes correspond to a leaping step size
and the new meme corresponds to the frog’s new posi-
tion. In each cycle, only the frog with the worst fitness x
(w) in the current memeplex is improved by a process
similar to PSO. The improving cycle has four steps, in
the first step it uses a method which in concept is

somehow similar to the discrete particle swarm optimiza-
tion algorithm, and for the second and third steps it uses
the operators of the the binary genetic algorithm (BGA),
i.e. mutation and crossover [34].
Step1. For d = 1,..., Nbit , use Eq.(14) to calculate the

speed vector of the worst frog VWi:

vwn+1
id = ξ(ω · vwn

id + c1 · r1 · (pbnid − xwn
id)+

k · μ1 · c2 · r2 · (gbnd − xwn
id) + μ2 · c3 · r3 · (xbid − xwn

id)
(14)

where i denotes the worst frog of ith memeplex, n
represents the iteration number, Pbi is the best position
visited previously by the worst frog of ith memeplex and
XBi is the position of the best frog in ith memeplex, and
ξ is the constriction factor; c1, c2 and c3 are three positive
constants called acceleration coefficients (c1 = c2 = c3 =
2); r1, r2 and r3 are three random numbers uniformly dis-
tributed between 0 and 1. μ1 and μ2 are called the influ-
ence factors, μ1 reflects the influence of the global best
position on the worst frog and μ2 reflects the influence of
the best position of any memeplex imposed on the worst
frog. As a rule μ1 and μ2 are positive decimal fractions.
The default values of μ1 and μ2 are as μ1 = μ2 = 0.5. k
reflects the movement direction, which is selected ran-
domly, thus if k = 1 the frog moves towards the global
best position, else k = -1 and it moves in the opposite
direction. ω is called the inertia weight, and is calculated
from Eq.(14).
The position of the frog is determined using Eq.(15):

xwn+1
id = boolean(xwn

id + vwn+1
id ) (15)

where

boolean(x) =

{
1 if x ≥ 0

0 otherwise

If this process produces a better solution, it replaces
the worst frog; otherwise go to the next step.
Step2. A mutation operator is applied on the position

of the worst frog. In the case of improvement, the
resulted position is accepted; otherwise go to the next
step.
Step3. A crossover operator is applied between the

worst frog of the memeplex and the globally best posi-
tion. The worst frog is replaced if its fitness is improved;
otherwise go to the next step.
Step4. The worst frog is replaced randomly.
If no improvement becomes possible in this case, then

x(w) is replaced by a randomly generated solution
within the entire feasible space.
After a predefined number of memetic evolution steps,

the frogs in memeplexes are submitted to a shuffling
process, where all the memeplexes are combined into a
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whole population and then the population is again
divided into several new memeplexes. The memetic
local search and shuffling process are repeated until a
given termination condition is reached.
As a predefined number of improvement cycles is

reached, memeplexes are shuffled, and if stopping cri-
teria are not met, the algorithm is repeated.
Accordingly, the main parameters of DSFL are: number

of frogs P, number ofmemeplexes m, number of proces-
sing cycles on each memeplex before shuffling, number
of shuffling iterations (or function evaluations), number
of bits for any variable, mutation rate, crossover type, the
constriction factor, acceleration coefficients and influence
factors.
Based on some primary experimental results, the suita-

ble values were found as follows: number of frogs and
number of bits for each variable are 60 and 10, respec-
tively, number of processing cycles on each memeplex
before shuffling is 10, number of memeplexes is 6. The
values of other parameters have been mentioned before.
This paper incorporating dynamic population size.

Dynamic population strategy
Generally, multiple-objective optimization focus on two
competing objectives: (1) to quickly converge to the true
Pareto front and (2) to maintain the diversity of the solu-
tions along the resulting Pareto front. Because maintain-
ing the diversity will slow down the convergence speed
and may degrade the quality of the resulting Pareto front,
these two objectives are in conflict each other. In this
paper, we adopt dynamically adjusting the population
size to explore the search space in balance between two
competing objectives.

Initializing the population
The initial population is get by running state-of-art MOEA
(NSGA-II [37]) with 50 individuals and 20 generations to
produce the initial population of MODPSFLB.

Adding population size
Population adding strategy mainly consist in increasing the
population size to ensure sufficient number of individuals
to contribute to the search process and to place those new
individuals in unexplored areas to discover new possible
solutions. Based on the strategies of dynamic population
size [29], the procedures proposed in literature [38] is pro-
posed to facilitate exploration and exploitation capabilities
for MODPSFLB.

Decreasing population size
To prevent the excessive growth in population, a popula-
tion decreasing strategy [27] is used to adjust the popula-
tion size. Sigma value is utilized to select potential frogs
to be deleted. After computing all the distance between

Sigma value of each frog and Sigma value of its corre-
sponding best local guide, the rank of the distance of
each frog can be attained. If the removal of frogs is only
based upon the distance rank of each frog, then there is a
possibility of eliminating an excessively large quantity of
frogs in which some may carry unique schema to contri-
bute in the search process. A selection ratio is implemen-
ted to regulate the number of frogs to be removed and to
provide some degrees of diversity preservation at the
same time. A selection ratio inspired by Coello and Mon-
tes [39] is used to stochastically allocate a small percen-
tage of frogs in the population for removal.

MODPSFLB biclustering algorithm
We incorporates dynamic population strategy into multi-
objective shuffled frog leaping biclustering (MOSFLB) [38]
algorithm, and propose a multi-objective dynamic popula-
tion shuffled frog-leaping biclustering (MODPSFLB) to
mine biclusters from the microarray datasets to attain the
global optimum solutions. The proposed algorithm consist
of the following three strategies: (1) �-dominance to
quicken convergence speed; (2) Sigma method to find
good local guides; (3) population-growing strategy to
increase the population size to promote exploration cap-
ability; and (4) population declining strategy to prevent the
population size from growing excessively. The pseudo-
code of the proposed MODPSFLB algorithm is given in
Algorithm 1.
Algorithm 1: MODPSFLB Algorithm
Input: microarray data, minimal MSR δ, a
Output: the best solutions, that is, the found

biclusters
Begin

Initialize the frog population A according to the
population initializing stragery
While not terminated do

Calculate fitness for each frog
Add the size of population A according to the
population adding stragery
Divide the population into several memeplexes
For each memeplex

Determine the best and worst frogs
Improve the worst frog position x(w) using
Eq.(15)
If no improvement in this case then
x(w) is replaced by a randomly generated frog
within the entire feasible space

End for
Combine the evolved memeplexes
Select the best frogs using Sigma method and
�-dominance
Decrease the size of population A according to
the population decreasing stragery
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End while
Return At the set of biclusters

END
MODPSFLB algorithm iteratively updates the frogs

population until maximum number of generation are
reached and converge to the optimal solution set.

Results
Mitra and Banka applied MOEA to solve biclustering pro-
blem and proposed MOE Biclustering (MOEB) [17]. To
obtain the diversity of optimal solution, we apply the pro-
posed MODPSFLB algorithm to mine biclusters from two
well known datasets and compare the diversity and con-
vergence of the algorithm with MOEB, MOPSOB [40] and
MOSFLB algorithm. The biological significance of the
biclusters found by MODPSFLB is given in the end.

Datasets and data preprocessing
The first dataset is the yeast Saccharomyces cerevisiae cell
cycle expression data [41], and the second dataset is the
human B-cells expression data [42].
The yeast dataset collects expression level of 2,884

genes under 17 conditions. All entries are integers lying
in the range of 0-600. Out of the yeast dataset there are
34 missing values. The 34 missing values are replaced by
random number between 0 and 800 [5].
The human B-cells expression dataset is collection of

4,026 genes and 96 conditions, with 12.3% missing values,
lying in the range of integers -750-650. The missing values
are replaced by random numbers between -800-800[5].
However, those random values affect the discovery of
biclusters [43]. The parameter δ, for the yeast data is set δ
= 300, for the human B-cells expression data δ = 1200.

Experiments
MODPSFLB algorithm is implemented in JAVA pro-
gramming language and is performed on a 1.7 GHz

Pentium 4 PC with 512 M of RAM running Windows
XP. To evaluate its performance, the proposed algo-
rithm is compared to MOEB, MOPSOB [40] and
MOSFLB algorithm on two well known datasets
[41,42].

Yeast dataset
In Table 1, the information of ten biclusters out of the
one hundred biclusters found on the yeast dataset are
shown. Table 1 shows that the first hundred biclusters
found by the proposed MOSFLB algorithm cover 77.7%
of the genes, 100% of the conditions and in total 57.2%
cells of the expression matrix. The biclusters found by
MOSFLB algorithm cover 76.7% of the genes, 100% of
the conditions and in total 54.3% cells of the expression
matrix. The biclusters found by MOPSOB [40] cover
73.1% of the genes, 100% of the conditions and in total
52.4% cells of the expression matrix. While an average
coverage of 51.34% cells is reported in MOEB [17].
Figure 2 depicts sample gene expression profiles for

small biclusters (bicluster 63) for the yeast dataset. They
show that 24 genes present a very similar behaviour
under 17 conditions.

Human B-cells expression dataset
Table 2 shows the information of ten biclusters out of
the one hundred found on the human dataset. From
Table 2, we know that the first hundred biclusters
found by the proposed MOSFLB algorithm cover 42.1%
cells of microarray dataset (53% of the genes and 100%
of the conditions). However, the one hundred biclusters
found by MOSFLB algorithm cover 40.8% cells of
microarray dataset (51.2% of the genes and 100% of the
conditions). The one hundred biclusters found by MOP-
SOB [40] on the human dataset cover 35.7% cells of
dataset (46.7% of the genes and 100% of the conditions),
whereas an average of 20.96% cells are covered in
MOEB [17].

Table 1 Information of biclusters found on yeast dataset

Bicluster Genes Conditions Residue Row variance

1 101 15 215.62 749.17

6 514 10 289.65 955.25

14 858 10 322.58 702.36

22 478 11 298.68 885.64

31 123 12 201.88 699.87

36 801 8 221.88 687.18

44 1125 13 236.47 598.68

56 847 11 208.48 748.54

75 546 9 250.14 664.13

89 89 17 210.88 666.57

Table 1 shows the number of genes and conditions, the mean squared residue and the row variance of ten biclusters out of the one hundred biclusters found
on the yeast dataset.
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Comparative analysis
We compare the proposed MODPSFLB algorithm with
MOPSOB, MOSFLB and DMOPSOB algorithm on the
yeast dataset and the human dataset and the results are
showed in Table 3.
From Table 3, the biclusters found by MODPSFLB has

a slightly higher squared residue and a higher bicluster
size than those by the other three algorithm on both
yeast dataset and human dataset. It is clear from the

above results that the proposed MODPSFLB algorithm
performs best in maintaining the diversity of solutions.
As for the computation cost, Table 3 shows that the

computation time of MODPSFLB is least, that is 88.24s
on yeast dataset and 287.98s on human dataset, is super-
ior to that of the other thress algorithms. From Table 3,
we alse know that the algorithm adopting dynamic popu-
lation strategy has less the computation cost than the
algorithm not adopting dynamic population strategy.

Figure 2 Small biclusters of size 24 × 17 on the yeast dataset. Figure 2 shows the expression value of 24 genes under 17 conditions from
the small biclusters (bicluster 63).

Table 2 Biclusters found on human dataset

Bicluster Genes Conditions Residue Row variance

1 882 34 987.54 3587.26

4 666 54 1087.25 4201.36

11 1024 36 773.69 2930.64

17 1102 39 1204.65 3698.84

24 968 37 1110.25 3548.45

35 805 41 844.44 2987.01

39 871 48 2874.17 2140.36

44 1208 29 885.74 3587.45

59 258 86 777.58 2874.94

88 1508 59 1405 6658.45

Table 2 shows the number of genes and conditions, the mean squared residue and the row variance of ten biclusters out of the one hundred biclusters found
on the human dataset.
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This show that dynamic population strategy can quicken
optimization process.
In total it is clear from the above results that the pro-

posed MODPSFLB algorithm performs best in maintain-
ing diversity, achieving convergence.

Biological analysis of biclusters
We determine the biological relevance of the biclusters
found by MODPSFLB on the yeast dataset in terms of
the statistically significant GO annotation database. The
gene ontology (GO) project (http://www.geneontology.
org) provides three structured, controlled vocabularies
that describe gene products in terms of their associated
biological processes, cellular components and molecular
functions in a species-independent manner. To better
understand the mining results, we feed genes in each
bicluster to Onto-Express (http://vortex.cs.wayne.edu/
Projects.html) and obtain a hierarchy of functional anno-
tations in terms of Gene Ontology for each bicluster.
The degree of enrichment is measured by p-values

which use a cumulative hyper geometric distribution to
compute the probability of observing the number of
genes from a particular GO category (function, process
and component) within each bicluster. For example, the
probability p for finding at least k genes from a particular
category within a bicluster of size n is given in Eq.(16).

p = 1 −
k−1∑
i=0

(
m

i

) (
g − m

n − i

)
(
g

n

) (16)

Where m is the total number of genes within a cate-
gory and g is the total number of genes within the gen-
ome. The p-values are calculated for each functional
category in each bicluster to denote how well those
genes match with the corresponding GO category.
Table 4 lists the significant shared GO terms (or par-

ent of GO terms) used to describe the set of genes in
each bicluster for the process, function and component
ontologies. Only the most significant common terms are
shown. For example for cluster C1, we find that the
genes are mainly involved in Oxidoreductase activity.
The tuple (n = 13, p = 0.00051) means that out of 101
genes in cluster C1, 13 genes belong to Oxidoreductase
activity Function, and the statistical significance is given
by the p-value of 0.00051. Those results mean that the
proposed MODPSFLB biclustering approach can find
biologically meaningful clusters.

Conclusions
This paper proposes a novel multi-objective dynamic
population shuffled frog-leaping biclustering framework
for mining biclusters from microarray datasets. We
focus on finding maximum biclusters with lower mean
squared residue and higher row variance. Those three
objective are incorporated into the framework with
three fitness functions. We apply the following techni-
ques: a SFL method to balance and control the search
process, population adding method to dynamically
grows new individuals with enhanced exploration and
exploitation capabilities, population decreasing strategy
to balance and control the dynamic population size, and
final to quicken convergence of the algorithm.

Table 3 Comparative study of three algorithms

MOPSOB MOSFLB DMOPSOB MODPSFLB

Dataset Yeast Human Yeast Human Yeast Human Yeast Human

Avg. MSR 218.54 927.47 215.98 913.53 216.13 905.23 212.8 904.9

Avg. size 10510.8 34012.24 1109.23 35507.22 11213.5 35442.98 11220.7 35601.8

Avg. genes 1102.84 902.41 1148.21 928.12 1151.25 932.57 1154.21 933.9

Avg. conditions 9.31 40.12 9.78 43.11 9.59 42.78 9.81 43029

Max size 15613 37666 15709 37871 14770 37231 14827 37486

Avg. time 120.78 328.56 111.41 319.88 100.47 310.34 88.24 287.98

Table 3 compares the performance of two algorithms. It gives the average of mean squared residue and the average size of the found biclusters, and gives
computation cost of two algorithms.

Table 4 Significant GO terms of genes in three biclusters

Cluster No. No. of genes Process Function Component

1 101 Lipid transport (n = 21, p = 0.00389) Oxidoreductase activity
(n = 13, p = 0.00051)

Membrane
(n = 12, p = 0.0023)

12 71 Physiological process
(n = 43, p = 0.0043)

MAP kinase activity
(n = 7, p = 0.00126)

Cell
(n = 32, p = 0.00194)

33 58 Protein biosynthesis
(n = 27, p = 0.00216)

Structural constituent of ribosome
(n = 17, p = 0.00132)

Cytosolic ribosome
(n = 11, p = 0.00219)

Table 4 lists the significant shared GO terms which are used to describe genes in each bicluster for the process, function and component ontology.
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The comparative study of MODPSFLB and three
state-of-the-art biclustering algorithms on the yeast
microarray dataset and the human B-cells expression
dataset clearly verifies that MODPSFLB can effectively
find significant palocalized structures related to sets of
genes that show consistent expression patterns across
subsets of experimental conditions. The mined patterns
present a significant biological relevance in terms of
related biological processes, components and molecular
functions in a species-independent manner.
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