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Abstract

Background: Various computational methods are presently available to classify whether a protein variation is
disease-associated or not. However data derived from recent technological advancements make it feasible to
extend the annotation of disease-associated variations in order to include specific phenotypes. Here we tackle the
problem of distinguishing between genetic variations associated to cancer and variations associated to other
genetic diseases.

Results: We implement a new method based on Support Vector Machines that takes as input the protein variant
and the protein function, as described by its associated Gene Ontology terms. Our approach succeeds in
discriminating between germline variants that are likely to be cancer-associated from those that are related to
other genetic disorders. The method performs with values of 90% accuracy and 0.61 Matthews correlation
coefficient on a set comprising 6478 germline variations (16% are cancer-associated) in 592 proteins. The sensitivity
and the specificity on the cancer class are 69% and 66%, respectively. Furthermore the method is capable of
correctly excluding some 96% of 3392 somatic cancer-associated variations in 1983 proteins not included in the
training/testing set.

Conclusions: Here we prove feasible that a large set of cancer associated germline protein variations can be
successfully discriminated from those associated to other genetic disorders. This is a step further in the process of
protein variant annotation. Scoring largely improves when protein function as encoded by Gene Ontology terms is
considered, corroborating the role of protein function as a key feature for a correct annotation of its variations.

Background
The problem of annotating variations in proteins is parti-
cularly urgent given the high frequency of detection of
non-synonymous Single Nucleotide Variations (SNVs) in
humans thanks to the recent technological advancements
in nucleotide sequencing. This direct approach allows the
identification of common and also rare disease-associated
germline variants that may play a role in susceptibility to
different genetic disorders. Indeed a better knowledge of
all the genes endowed with inherited variations will help
case-control variation screening of human genetic dis-
eases [1]. At present several available computational tools

estimate with various scoring efficiencies whether a varia-
tion is or is not disease-associated, starting from the pro-
tein sequence and/or structure [2,3]. Recently the
performance of prediction methods of variation patho-
genicity on missense variants was assessed and two meth-
ods, SNPs&GO [4] and MutPred [5] scored with
accuracies of 82% and 81%, respectively [6]. However the
characterization of variations associated to specific phe-
notypes is still at its beginning. The vast majority of the
methods [6] can classify the variations as disease asso-
ciated or not with a likelihood of the prediction output
without providing the type of associated pathogenicity.
Alternatively, only few methods focus on variations that
are known to be associated to specific disorders.
This is so particularly for cancer associated variations

[7-9]. All the methods suited at predicting the cancer
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associated variations are based on the COSMIC dataset
[10] containing both germline and somatic variations.
The role of the individual somatic mutations in cancer
pathogenesis and progression cannot be easily character-
ized and generally requires the application of computa-
tional filtering procedures. Karchin et al. [11] recently
developed a method based both on features of the varia-
tion and of the protein at hand and on genomic infor-
mation such as the conservation of genomic sequences
among different species and the SNP density within
exons as reported in HapMap [12]. By this their main
result is the discrimination among driver and passenger
mutations [11]. Our goal in this paper is different and
complementary. Indeed we focus on germline variations
and describe a newly implemented method that, taking
as input the protein sequence, its function (as described
with its associated GO-terms), and mutation type, well
discriminates cancer-associated germline variations in
proteins from those related to other genetic disorders.
Our results support the notion that information on pro-
tein function helps in improving the performance of
predictors suited at interpreting the phenotypic effects
of protein variations.

Methods
GO-score
The GO-scores are computed with a formula previously
defined [4]. For each protein this score is the sum of the
log-odds associated to its GO annotations. The log-odd of
each GO term is the logarithm of the ratio between its
occurrence in “Cancer” class and in “Other diseases” class.
We computed three different GO-scores according to the
three different GO sub-ontologies (Molecular Function=F,
Cellular Component=C, Biological Process=P). We always
computed the GO-scores in cross-validation. This means
that using the 10 protein subsets split by similarity (see
Dataset section), we generated 30 different sets of GO-
probabilities: 10 for each training set times 3 (the 3 GO-
sub-ontologies). All the proteins in each test set were
annotated by computing the 3 GO-scores of the protein
terms using the GO-frequencies obtained in the corre-
sponding training set.

Implementing the method
We trained and tested Support Vector Machines (SVMs)
with several kernel functions and here we report the
results obtained with the best performing one: Radial
Basis Functions (RBFs). We evaluated several types of
input encoding based on protein features, evolutionary
and functional information. The inputs encoded in the
best performing predictors are:
- the variation type represented by a 20-valued vector

where the wild type position is set to –1, the mutant

residue position is set to 1 and all the other elements
are set to 0 (indicated as “mut” in the Tables);
- the evolutionary information of the variation

obtained by extracting the 4 columns that represent the
wild-type and the mutant residues as reported by PSI-
BLAST PSSM/PROFILE output generated using the -Q
option (indicated as “E” in the Tables);
- a sequence profile window of dimension x centred

into the mutated residue; the profile is encoded with
20*x elements vector (indicated as “Wx” in the Tables);
- the GO-scores encoded with 3 elements representing

the log-odd scores of the three GO sub-ontologies (indi-
cated as “GO” in the Tables).

Measuring the performance
To asses the performance of the tested methods we
counted in cross-validation the number of true positives
(TP), true negatives (TN), false positive (FP), and false
negatives (FN) with respect to either one of the two
classes. We then computed the following indices:
Overall accuracy:

Q =
TP + TN

TP + FP + TN + FN
(1)

Specificity:

Sp =
TP

TP + FP
(2)

Sensitivity:

Sn =
TP

TP + FN
(3)

Matthews correlation coefficient:

MCC =
TP TN FP FN

TP + FP TP + FN TN + FN TN + FP

  
        (4)

Results and discussion
Dataset construction
For the training of newly implemented predictors, we
collected from UniProtKB (http://www.uniprot.org) a
first set of 6478 germline variations associated to diseases
listed in OMIM (http://www.ncbi.nlm.nih.gov/omim).
We only collected variations derived from SNVs and
discarded all the variations annotated as “somatic” or
“sporadic”. Furthermore we retained only variations for
which a bibliographic reference reporting the association
to a genetic disease is explicitly indicated in UniProtKB.
Genetic disorders were grouped into two classes:
“Cancer” and “Other diseases” on the basis of the OMIM
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disease descriptions (Table 1). The dataset consists of
non-ambiguous variations: each mutated residue in a
protein chain is univocally associated either to a cancer
or other germline disease. Most proteins carry variations
associated to a single disease class. Only 20 proteins con-
tain different variations, some associated to cancer and
some associated to other diseases. The dataset is available
in Additional file 1. As to the functional annotation, 89%,
98%, and 96% of the proteins have an annotation for the
Cellular Component, Molecular Function and Biological
Process sub-ontologies, respectively. All proteins are
endowed with at least one GO term annotation.
We adopted a cross-validation procedure to evaluate the

predictors. We split the dataset into 10 cross-validation
subsets. Sequences in one subset share <25% sequence
identity with proteins in the complementary sets, accord-
ing to an all-against-all BLAST search with E-value
<0.001. For validating predictors, we also collected a sec-
ond dataset of 3392 variations labelled “Somatic cancer”
from UniProtKB present in 1983 proteins not included in
the training set. This dataset does not include variants
detected in cancer cell lines.

Prediction of the disease type by protein similarity
One of the most popular method for protein sequence
annotation is “transfer by similarity”. Here, the underlying
basic idea is to transfer information from well character-
ized to poorly annotated proteins on the basis of their
pairwise sequence similarity. We therefore quantified how
relevant is sequence similarity on the discrimination of the
two classes of germline variations (cancer versus other
genetic diseases) and tested to which extent the similarity
between two sequences biases the prediction of the disease
type associated to their variations (Table 2). To this pur-
pose, we first based our discrimination/prediction on the
pairwise sequence identity as measured with BLAST. For
each (query) protein q in our dataset, we ran a BLAST
search against the dataset after setting a very high E-value
threshold (E-value=100). Protein hits are then considered
according to BLAST sorting (from the lowest to the high-
est E-values) and for each protein q in the data set only

the best-hit protein is retained from the BLAST list. This
procedure allows the selection of the top scoring proteins
(if any) as candidates for “transferring” the disease annota-
tion to the query protein. Transfer was done by applying a
majority rule: when the top scoring protein p had a num-
ber of cancer associated variations higher than that asso-
ciated to “other diseases”, all the variations of the query
protein q were labelled/predicted as cancer associated;
otherwise all the variations of the query protein q were
labelled/predicted as “other diseases”. Scoring indexes
were evaluated accordingly. In Table 2, the performance
of the disease prediction by similarity is listed at increasing
threshold cut-off of the percentage identity between the
query and the BLAST best-hit. Interestingly our data
prove that when the sequence identity threshold cut-off is
60%, 99% of all the proteins in the data set can be disease
annotated (the corresponding BLAST best-hit is 60% iden-
tical or less) with an overall accuracy of 0.76 and a Mat-
thews correlation coefficient of 0.26. The low MCC value
is indicative of the highly unbalanced data set at hand. At
increasing values of sequence identity both accuracy and
MCC values slightly increase, while at decreasing identity
values the performance decreases. When sequence identity
threshold is 30%, the MCC value is close to random and
only 10% of the proteins in the data set have correspond-
ing hits. Summing up, this analysis performed on the avail-
able and unbalanced data set presently available (Table 1),
indicates that when proteins are highly similar their varia-
tions may inherit an annotation for the disease type based
on the procedure of transfer by similarity. However below
this identity threshold annotation requires other
approaches as described in the following sections.

Prediction of the disease type by protein function
The unbalanced distribution of the available data set
reported in Table 1 shows that the majority of the pro-
teins has variations associated to a single disease type
(in this binary view, familial cancer and non cancer).

Table 1 Dataset of variations adopted for training/testing
the method

Disease type Number of
proteins

Number of variations:

Cancer Other
diseases

Cancer 77 689 -

Other diseases 495 - 5026

Cancer and other
diseases

20 358 405

Total 592 1047 5431

Table 2 Prediction of the disease type by protein
similarity

% Id % prot Sp(C) Sp (N) Sn (C) Sn (N) MCC Q2

≤30 10 0.13 0.94 0.25 0.87 0.09 0.83

≤40 75 0.26 0.85 0.29 0.83 0.11 0.74

≤50 95 0.28 0.87 0.41 0.80 0.18 0.73

≤60 99 0.34 0.88 0.47 0.82 0.26 0.76

≤70 100 0.35 0.89 0.46 0.83 0.26 0.77

≤80 100 0.36 0.89 0.48 0.83 0.29 0.78

≤90 100 0.36 0.89 0.48 0.83 0.29 0.78

%prot= percentage of proteins that can be annotated with a given similarity
threshold cut-off. %Id= Threshold cut-off of the sequence identity of the best
hit retrieved upon a BLAST search in our dataset. For a definition of classes
and scoring indexes see section: Measuring the performance.
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This can be explained assuming that the protein itself
and/or its biological role can carry a significant amount
of information for the task at hand. We then evaluated
the role of functional information, a property of the
whole protein, in the prediction of the disease type. To
label protein function we took advantage of the Gene
Ontology (GO) annotation present in UniProtKB. Label-
ling of protein variants in the lack of any other source
of information was done as in the previous experiment
(see previous section), assigning all the variants in the
same sequence to the same disease type.
We then applied a 10-fold cross-validation to compute

the GO-scores on the 10 different subsets including the
proteins of our data set (as described in the Methods
section). By this, each prediction based on the protein
GO-terms was done without including the GO-terms of
the protein to be classified (nor all the other GO-terms
of the proteins in the same test subset).
In Table 3 we list the classification performance of the

variants as germline cancer-associated or other familial
disease-associated based on cross validated GO-scores.
With this procedure, depending on the sub-ontology, not
all the variations could be predicted (“% var” column in
Table 3). Furthermore, due to specific information, varia-
tions in the same protein carrying different labels cannot
be discriminated (the number of proteins with variants
labelled differently and presently available is 20, corre-
sponding to 3.4% of the whole data set, as shown in
Table 1). The best performing sub-ontology is “Biological
Process” (P in Table 3) scoring with 89% accuracy on
96% of the variations. When the average score of the
three sub-ontologies is considered, the total number of
variations can be predicted (last row of Table 3); however
scoring values decrease, suggesting that the average GO-
score is not sufficient to optimise classification. Since the
GO-scores discriminate quite well between the two dis-
ease classes, we analysed the GO-terms that contribute
the most to the prediction process.
From the analysis described above we can conclude

that the most discriminative GO-terms in the Biological
Process sub-ontology are related to DNA-repair, micro-
tubule regulation, and catabolic processes (Table 4).

Variations affecting proteins related to DNA-repair
increase the rate of replication errors, while defects in
microtubule regulation are known to affect the regular
course of cell-cycle, including mitosis [13]. In the case of
impairment of catabolic processes, alternative and poten-
tially oncogenic pathways (e.g. are hypoxia pathway) are
often adopted by the cell [14]. When considering the
Molecular Function sub-ontology, most discriminative
terms relate to DNA repair and kinase activity that are
known to be implicated in signalling pathways regulating
the cell cycle (Table 4). The most discriminative terms
related to the Cellular Component sub-ontology refers to

Table 3 Prediction of the disease type by protein
function

GO sub-ontology % var Q MCC Sp(C) Sn(C) Sp(O) Sn(O)

C 89 0.76 0.3 0.58 0.34 0.79 0.91

F 98 0.77 0.45 0.83 0.39 0.75 0.96

P 96 0.89 0.63 0.79 0.62 0.9 0.96

CFP 100 0.75 0.52 0.40 0.97 0.99 0.71

GO sub ontology: C=cellular component, F=molecular function, P=biological
process. % var= percentage of predicted variations. Predicted classes: C=
Cancer; O= Other genetic diseases. For a definition of classes and scoring
indexes see section: Measuring the performance.

Table 4 Most discriminative GO annotations

GO-term Description

Cellular Component
(C)

GO:0032301 MutSalpha complex

GO:0032300 Mismatch repair complex

GO:0032302 MutSbeta complex

GO:0005773 Vacuole

GO:0005764 Lysosome

GO:0000323 Lytic vacuole

GO:0030877 Beta-catenin destruction complex

GO:0016328 Lateral plasma membrane

GO:0034747 Axin-APC-beta-catenin-GSK3B complex

Molecular Function
(F)

GO:0030983 Mismatched DNA binding

GO:0032137 Guanine/thymine mispair binding

GO:0032134 Mispaired DNA binding

GO:0030291 Protein serine/threonine kinase inhibitor activity

GO:0016538 Cyclin-dependent protein kinase regulator
activity

GO:0004861 Cyclin-dependent protein kinase inhibitor
activity

GO:0019887 Protein kinase regulator activity

GO:0019207 Kinase regulator activity

GO:0005099 Ras GTPase activator activity

Biological Process (P)

GO:0006298 Mismatch repair

GO:0044271 Cellular nitrogen compound biosynthetic
process

GO:0006301 Postreplication repair

GO:0046395 Carboxylic acid catabolic process

GO:0016054 Organic acid catabolic process

GO:0009310 Amine catabolic process

GO:0070507 Regulation of microtubule cytoskeleton
organization

GO:0032886 Regulation of microtubule-based process

GO:0009063 Cellular amino acid catabolic process.
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DNA-repair complexes MutSalpha and MutSbeta, to
lysosome and lytic vacuoles, involved in apoptosis and
tumour suppression processes [15], and to catenin com-
plex, a key regulator of the Wnt signalling pathway
whose alterations are associated to carcinogenesis [16].
Overall, our findings are in agreement with the notion
that variations affecting proteins involved in these pro-
cesses/functions can be related to oncogenesis and can-
cer progression.

Prediction of the disease type with a SVM-based method
In order to improve the method performance and includ-
ing also the possibility of predicting variations associated
to different disease types in the same protein, we imple-
mented different SVM based predictors taking advantage
of the results described above. Practically we implemen-
ted different SVM based predictors with and without
protein GO-scores. The results (Table 5) highlight that
the performances are significantly lower when the GO-
scores are not included in the input encoding (first two
rows). Noticeably the SVM-based predictor, encoding
only the three GO-scores, performs significantly higher
than the simple average of the scores (compare last row
of Table 3 with the third row of Table 5). The best per-
forming predictor of Table 5 is a SVM based method
that adds to the GO-scores also the variation type (last
row of Table 5). Noticeably with this last implementation
it is possible to assign classifications to variations labelled
differently in the same protein sequence (endowed with
the same GO-scores). Although the set of proteins carry-
ing differently labelled variations (germline “cancer” and
germline “other diseases”) is small (20 proteins, Table 1),
a total amount of 358 germline “cancer” and 405 germ-
line “other diseases” variations can be predicted with the
SVM based method. On this set the efficacy of the GO
terms vanishes. However the predictor scores with

accuracy and MCC equal to 70% and 0.4, respectively.
These values are lower than those obtained on the whole
dataset (90% and 0.61) but still significantly different
from random. Overall our results strengthen the notion
that functional annotation is needed for the optimal pre-
diction and that the integration of the variation type in
the input encoding can help in difficult cases where both
cancer and other diseases are associated to different var-
iations in the same sequence.
We also predicted with the most accurate SVM of

Table 5 a set of 3392 variations associated to “Somatic
cancer” in 1983 proteins not included in the training/
testing set. On this set the predictor correctly discharges
96% of the variations with a false positive rate of only
4% mispredicted cases. This indicates that our method
can indeed quite accurately discriminate between cancer
related germline variations and somatic ones.

Integration of the SVM-based method with SNPs&GO
Our new implementation classifies variations that are dis-
ease related. This implies that it can be used in experi-
mental set-ups or in pipelines in cascade with other more
general predictors discriminating among disease related
and neutral variations. In this respect we devised an
experiment: evaluation in a cascade with our SNPs&GO
[4]. We predicted with SNPs&GO variations of the pro-
teins in our dataset taking care of removing the sequence
identity with those of the SNPs&GO training set. To this
aim, we used the 10 different cross-validated SNPs&GO
models and for each target sequence to be predicted we
adopted only the model trained on a set that does not
contain sequences similar to the target. SNPs&GO pre-
dicts as disease related 70% of the variations of our data-
set. This result was expected, since SNPs&GO was tuned
to have a very low rate of false positives (variations pre-
dicted as disease but observed as neutral) at expenses of
the coverage (some disease related variations are dis-
charged as neutral). However, when SNPs&GO is used in
combination with our best SVM-based method (mut_GO
in Table 5) the combined accuracy in discriminating
between germline cancer and non cancer associated var-
iations is higher than that of the single method alone
(Table 6). This suggests that even if only 70% of the var-
iations were correctly retained by SNPs&GO, the missed
variations are probably the less discriminative between
germline variations associated to cancer and other
diseases.

Conclusions
Overall our work aims at filling the gap between predic-
tors classifying variations as disease-associated or not and
association studies among genotypes and phenotypes
[17]. In this paper we focus on discriminating cancer
germline from other variations associated to genetic

Table 5 Prediction of the disease type with a SVM-based
method

Encoding Q MCC Sp(C) Sn(C) Sp(O) Sn(O)

mut_E_W1 0.59 0.12 0.21 0.55 0.88 0.60

mut_E_W5 0.64 0.17 0.24 0.55 0.88 0.66

OnlyGO 0.89 0.60 0.7 0.63 0.93 0.95

mut_GO_E 0.89 0.60 0.68 0.65 0.93 0.94

mut_GO_E_W1 0.89 0.58 0.68 0.64 0.93 0.94

mut_GO_E_W5 0.89 0.58 0.68 0.64 0.93 0.94

mut_GO 0.90 0.61 0.69 0.66 0.93 0.94

mut= is a 20 elements vector that encodes for the variation type; Wx= a input
sequence window of dimension x centered into the variation; E= the
evolutionary information on the variation obtained by extracting the 4
columns that represent the wild-type and the mutant residues as reported by
PSI-BLAST PSSM/PROFILE output (-Q option); GO= the 3 GO scores. For a
definition of classes and scoring indexes see section: Measuring the
performance.
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diseases. Our results indicate that protein function, when
integrated with the variation information in a SVM based
method, is a key feature for a correct classification.
Furthermore, when the method is applied to cancer-

somatic variations it predicts most of them as non asso-
ciated to cancer germline variations. Our predictor can
therefore be applied to prioritize germline variations in
proteomes of cancer cells.

Additional material

Additional file 1: Data set
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For a definition of classes and scoring indexes see section: Measuring the
performance.
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