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Abstract

Background: Recent advances in sequencing technologies have greatly increased the identification of mutations
in cancer genomes. However, it remains a significant challenge to identify cancer-driving mutations, since most
observed missense changes are neutral passenger mutations. Various computational methods have been
developed to predict the effects of amino acid substitutions on protein function and classify mutations as
deleterious or benign. These include approaches that rely on evolutionary conservation, structural constraints, or
physicochemical attributes of amino acid substitutions. Here we review existing methods and further examine
eight tools: SIFT, PolyPhen2, Condel, CHASM, mCluster, logRE, SNAP, and MutationAssessor, with respect to their
coverage, accuracy, availability and dependence on other tools.

Results: Single nucleotide polymorphisms with high minor allele frequencies were used as a negative (neutral) set
for testing, and recurrent mutations from the COSMIC database as well as novel recurrent somatic mutations
identified in very recent cancer studies were used as positive (non-neutral) sets. Conservation-based methods
generally had moderately high accuracy in distinguishing neutral from deleterious mutations, whereas the
performance of machine learning based predictors with comprehensive feature spaces varied between assessments
using different positive sets. MutationAssessor consistently provided the highest accuracies. For certain
combinations metapredictors slightly improved the performance of included individual methods, but did not
outperform MutationAssessor as stand-alone tool.

Conclusions: Our independent assessment of existing tools reveals various performance disparities. Cancer-trained
methods did not improve upon more general predictors. No method or combination of methods exceeds 81%
accuracy, indicating there is still significant room for improvement for driver mutation prediction, and perhaps
more sophisticated feature integration is needed to develop a more robust tool.

Background
Cancer arises as a result of genetic and epigenetic altera-
tions in the genome. While most DNA mutations are con-
sidered neutral passenger mutations, driver mutations can
increase the fitness of a cancer cell allowing its clonal
expansion. Identifying driver mutations is crucial to eluci-
dating tumorigenesis and revealing novel therapeutic tar-
gets. Recent developments in next-generation sequencing

technologies enable extensive identification of DNA muta-
tions in cancer as well as normal genomes. Large-scale
efforts such as the Cancer Genome Atlas [1] have uncov-
ered tens of thousands of sequence variants. While the
avalanche of sequence data has revealed the spectrum of
genetic variations in cancer, the results are difficult to
interpret, as the vast majority of mutations do not drive
tumorigenesis. Non-synonymous changes (those that
change protein sequences) are the most investigated group
of genetic perturbations. These mutations vary greatly in
their functional impact, depending on their position and
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function in the protein and nature of the replacement
amino acid. Several computational methods have been
developed to predict the effect of any missense mutation
on protein function, using evolutionary sequence compari-
son, structural constraints, and physicochemical attributes
of amino acids. More recently, machine learning methods
aim to specifically predict cancer-driving deleterious muta-
tions, based on a wider set of attributes and training with
sets of likely cancer mutations. These mutations form a
subset of deleterious mutations in that they are positively
selected during tumor evolution, but are negatively
selected during organismal evolution. Metapredictors that
combine several methods have also been developed [2].
In this study, we introduce and compare the results of

several general and cancer-focused methods, using both
known and novel testing sets. We discuss their indivi-
dual strengths and highlight associated challenges as
well as future prospects. We also examine the availabil-
ity, coverage and inter-dependence of various tools.

Materials and methods
Datasets
We created a positive (non-neutral) test set of likely cancer
driver mutations from the COSMIC database (v58) [3].
From a total of 40,707 missense mutations, we picked
2,682 mutations (corresponding to 482 genes) found in at
least two tumor samples as likely driver mutations (Addi-
tional file 1). Since COSMIC has been used to develop
some of the methods reviewed, we also created a novel
test set, from recurrent somatic mutations in colorectal
carcinoma identified in a very recent study of the Cancer
Genome Atlas Network [4]. 455 somatic missense muta-
tions were found in at least two tumor samples but not
seen in COSMIC or dbSNP [5]. A second novel set of 147
recurrent unique mutations found in breast [6,7] or colon
cancer [8] was similarly created.
Our negative (neutral) set of likely non-deleterious var-

iants was built from germline SNPs found in dbSNP
(Build Id 135). To avoid rare deleterious mutations and
errors, we selected only SNPs with a minor allele fre-
quency of at least 0.25, resulting in a set of 7,170 variants.

Running predictors
We obtained SIFT 4.0.4 from http://sift.jcvi.org and fol-
lowed the default instructions to install and run. A Java
based pipeline was implemented to manage input and out-
put data. We obtained PolyPhen-2 from http://genetics.
bwh.harvard.edu/pph2 and followed the standard instruc-
tions for installation. Condel scores for the combination of
SIFT and PolyPhen-2 were calculated with a Perl program
provided by Ensembl. We retrieved functional impact
scores from MutationAssessor, using http://mutationasses-
sor.org. LogRE scores were derived with a Java class to

align wild-type and mutant protein sequences against
Pfam protein domain models (version 25.0) [9] using
HMMER 3.0 [10]. The differences (wild-type versus
mutant) of resulting E-values were used to calculate
LogRE scores. SNAP was installed and applied in coordi-
nation with its developers from the Technische Universi-
taet Muenchen. mCluster scores were calculated as
described [11]. CHASM scores were derived with CRA-
VAT (http://www.cravat.us).

ROC curves and specificity/sensitivity estimation
Receiver operating characteristic (ROC) curves are com-
posed of points that reflect the trade-off between true
positive rate (sensitivity) and false positive rate (1 - speci-
ficity) at varying threshold values. For each predictive
method, the score range was divided into 1000 bins, for
which the proportions of variants from the positive and
the negative set above and below the given threshold
were calculated. Variants that were not covered (scored)
by a method were excluded from the evaluation of that
particular method. To assure the same number of muta-
tions in the positive and negative sets, for each tool
assessment the size of the neutral set was adjusted to the
resulting depth of the covered non-neutral set with a pre-
ference for variants with high minor allele frequencies.
To calculate specificity and sensitivity values for each

tool, we used score cutoffs that yielded the highest accu-
racy as measured by the proportion of correctly classified
variations to the total number of variants in the test set.

Metaprediction
Following the methodology of the Condel score [2], we
used the weighted average of normalized scores to com-
bine multiple predictions into a unified classification.
Basically, normalized scores of each included tool and
associated weights are used to calculate unified consen-
sus scores. While the normalization of scores is straight-
forward, the calculation of weights requires reference
cumulative distributions of true positives and true nega-
tives. For mutations that are classified as deleterious by
an individual tool, the weight of the normalized score
reflects the probability that mutations with higher scores
are not false positives based on the reference set. This
probability is used as weight and increases with the
score. On the other hand, for mutations that are pre-
dicted as benign, the weight reflects the probability that
the mutation is not a false negative. Therefore low prob-
abilities imply low contributions to the consensus score.
The calculation of weights is illustrated in Additional
file 2. We used the COSMIC set and the dbSNP set as
reference sets to create the underlying cumulative distri-
butions for weight estimation. Raw scores of individual
methods were normalized to values between 0 (neutral)
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to 1 (non-neutral). The weighted average score (WAS) is
defined as:

WAS =

∑
i Si ∗ Wi∑

i Wi
,

where Wi = 1 − Pti
(
if variant is classified as deleterious in the ith tool

)

Wi = 1 − Pdi
(
if variant is classified as tolerated in the ith tool

)

Si is the normalized score as calculated by the i-th tool,
while Wi is the weight for the given classification. Weights
were calculated on the basis of the proportions (probabil-
ities) of tolerated (Pti) or deleterious (Pdi) variants with a
normalized score higher than Si as observed for COSMIC
mutations as positive set and dbSNP mutations as negative
set.

Results and discussion
Overview of general tools for predicting the functional
impact of amino acid changes
Most algorithms for predicting the functional impact of
non-synonymous mutations are based on the observation
that evolutionary and structural constraints are non-ran-
domly distributed on proteins. This is consistent with the
stronger conservation of functionally important residues
and the higher probability of damaging mutations to
occur in the protein interior [12]. Here we review some
representative approaches (Figure 1) to provide some
background for our assessment:
SIFT (Sorting Intolerant From Tolerant) [13,14] is a

widely used pioneering method for identifying deleterious
mutations using only evolutionary information. Installa-
tion and usage are straightforward, and the method
depends only on PSI-BLAST [15]. SIFT identifies con-
served protein residues based on multiple sequence
alignment of homologous proteins, and calculates the
probability for each of the 19 amino acid changes to be
tolerated relative to the most frequent residue. Mutations
of highly conserved protein positions tend to be predicted
as deleterious, whereas changes in lower conserved protein
regions are more likely to be neutral. Bi-directional SIFT
(B-SIFT) [16] is a modification of SIFT that attempts to
classify both gain- and loss-of-function mutations. By cal-
culating SIFT scores for both the mutant and wild-type
alleles, it identifies potential gain-of-function mutations
where the mutant residue is more similar to those found
in homologous proteins. As B-SIFT is exclusively based on
SIFT, its implementation is also straightforward.
MutationAssessor [17] has a more elaborate conserva-

tion-based approach. It distinguishes between conserva-
tion patterns within aligned families (conservation score)
and sub-families (specificity score) of homologs and so
attempts to account for functional shifts between subfami-
lies of proteins. Specificity residues are defined by the

clustering-based identification of homologous sequence
subfamilies to determine functional specificity on the
background of overall conservation. Interestingly, specifi-
city residues were found to be predominantly located in
binding interfaces on the protein surface implicating them
in protein interaction [18].
In addition to conservation the feature space can be

further increased by the inclusion of physiochemical char-
acteristics. MAPP (Multivariate Analysis of Protein Poly-
morphism) [19,20] and Align-GVGD [21], for example,
combine both evolutionary conservation and physiochem-
ical information. While most sequence-based tools are
capable of predicting the functional consequence of any
mutation in a protein with homologs in other species,
some are restricted to the classification of a subset of
amino acid alterations. For example, LogRE (Log R Pfam
E-value) [22] predicts only on Pfam domains, by compar-
ing the Pfam score of the wild type and mutant alleles.
Structure-based methods model the structure of a pro-

tein using a protein structure database, and then examine
structural features such as solvent accessibility or crystallo-
graphic B-factor surrounding the substituted amino acid.
Predictors based exclusively on structural information
have been clearly outcompeted. Their coverage is relatively
low due to the lack of available protein structures, and the
isolated context of a crystal structure might not reflect the
functional importance of certain residues in an interactive
environment. For example, a multitude of solvent accessi-
ble residues such as posttranslational modification sites
are fundamental for protein function, which is reflected in
their conservation [23,24], but not in their structural con-
text. Combining sequence and structure information can
increase prediction accuracy to a certain degree [25]. Poly-
Phen-2 [26] is the most prominent tool based on both
sequence and structural information. It uses eight
sequence-based and three structure-based features as
input to a naive Bayes classification. Due to the diverse
feature space, PolyPhen-2 is dependent on a variety of
tools. For single amino acid substitutions it is therefore
more straightforward to use the associated website (http://
genetics.bwh.harvard.edu/pph2/).
To our knowledge the neural network-based tool SNAP

(screening for non-acceptable polymorphisms) [27,28]
spans the most comprehensive feature space. SNAP incor-
porates evolutionary constraints, structural features and
protein annotation information. The most important sin-
gle feature for SNAP prediction is conservation in a family
of related proteins as reflected by PSIC scores [29]. As a
result of the extensive feature space, SNAP depends on
several other tools, which makes its installation complex.
For a limited set of mutations it is possible to use SNAP’s
website.
These methods can give widely differing scores on the

same variant, and have individual strengths and weaknesses.
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A combination of predictors may improve predictability.
Condel (consensus deleteriousness score of missense muta-
tions) [2] is a weighted average of the normalized scores
from multiple methods. Implementing Condel is not

complicated, but it involves the installation of various pre-
dictive methods and their supporting tools. Condel scores
can be derived for a limited set of specified mutations via
the corresponding web application, and the Ensembl

Figure 1 Overview of representative predictors. Predictors are annotated with the basis of their predictions, their cancer-specificity and reliance on
each other. The pioneering SIFT method uses conservation information to predict the functional impact of amino acid changes. Several other
approaches integrate SIFT results (arrows pointing to SIFT). The power of evolutionary information as an input feature is reflected by the number of
classifiers that use conservation for prediction. For example, MAPP, SIFT, Align-GVGD, MutationAssessor and LogRE are predominantly based on
conservation. PolyPhen-2 additionally integrates structure to classify mutations as deleterious or benign. Consensus classifiers such as Condel combine
multiple predictive tools. The neural network-based SNAP represents one of several recently developed methods that rely on training sets and a large
set of discriminatory features. Cancer-specific tools such as mCluster are specifically designed to identify driver mutations and also depend on
mutation training sets. The machine learning based method CHASM spans an extensive feature space and is trained on canonical cancer driver
mutations. In addition to evolutionary information, CanPredict takes into account gene ontology annotation for classifying oncogenes.
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database [30] provides position-specific Condel predictions
that combine SIFT and Polyphen-2 for every possible
amino acid substitution in all human proteins.

Overview of cancer-specific predictors
Cancer driver mutations are a subset of deleterious muta-
tions that decrease the organism’s evolutionary fitness,
while increasing cellular proliferation, survival or metasta-
sis. Cancer-specific mutation predictors mainly use fre-
quency-based or machine learning techniques trained on
recurrent cancer mutations that are likely to be drivers. A
variety of statistical methods has been developed to deter-
mine increased mutation frequency. mCluster [11] aggre-
gates mutation data by mapping known disease related
mutations to positions along conserved domains, and then
mapping novel variants to those same conserved domains.
Conserved mutation-enriched domain regions reflect hot-
spots for cancer driving functional changes. The mCluster
score expresses the probability of observing a cluster of
certain size given the number of positions in the domain
and the mutation frequency. As a consequence of the
underlying methodology, only mutations that occur in
protein domains can be scored.
CHASM (cancer-specific high-throughput annotation of

somatic mutations) [31] is a major machine learning
approach that uses a random forest approach and is
trained on cancer mutations from COSMIC and other
cancer-related resources. CHASM uses an extensive set of
49 predictive features ranging from exon conservation to
UniProt annotation [32] and frequency of missense change
type in COSMIC. Notably the latter feature was ranked as
second most predictive feature. CHASM is available via
the web application CRAVAT (http://www.cravat.us).
Analogously to Condel, CanPredict [33] uses a random

forest classifier to combine results from different methods.
It uses SIFT and LogRE to determine the functional

impact of changes, and Gene Ontology Similarity Score
(GOSS) [34] to estimate the resemblance between the
given mutated gene and known cancer-causing genes.

Missense mutations from COSMIC and dbSNP used for
testing
To compare these methods, we created a positive test set
of likely cancer driver mutations and a negative test set of
likely benign variations (Materials and Methods). Few dri-
ver mutations have been well validated, so we used data
from the COSMIC database of tumor-specific mutations.
Most of these are random passenger mutations, but a sub-
stantial minority of positions are recurrently mutated:
2,682 of 40,707 positions are mutated 2 or more times
(Figure 2) and are likely to be enriched for driver muta-
tions. Common germline polymorphisms are likely to be
largely neutral, so our negative test set consists of 7,170
variants in dbSNP with a reported minor allele frequency
of at least 0.25.
The criteria for selecting these datasets are supported

by an initial scoring of all variants using SIFT. 49.4% of
singleton COSMIC mutations score as deleterious
(score<0.05), while 90.9% of mutations found in more
than 10 samples score as deleterious (Figures 3a,b). In
contrast, dbSNP variants with higher minor allele fre-
quencies are predicted to be substantially more benign
(Figures 3c,d). The same pattern was observed with
PolyPhen-2 (Additional file 3).
Notably, these datasets do not represent a true gold

standard in which all variants are either functionally dele-
terious or neutral, and there is in any case no uniform
definition of functionality. However, they provide a suffi-
cient enrichment in both classes of variants to be effective
for comparison of methods. In general it is not straightfor-
ward to generate an optimal set for benchmark analysis. In
contrast to the assessment of protein structure predictors,

Figure 2 Distribution of missense mutations in COSMIC and dbSNP. (A) Most somatic non-synonymous mutations in COSMIC were
identified in only one tumor sample. 7% of missense mutations were identified in two or more cancer samples. (B) In the dbSNP database
global minor allele frequencies are provided for single nucleotide polymorphisms that were identified in the 1000 genomes project. 10% of the
missense mutations have a minor allele frequency of 0.25 or higher, which increases their likelihood to be neutral.
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where the experimental structure gives a clear answer, the
biology of underlying sets of missense mutations is far
more complicated. We performed a relatively intuitive
approach by taking recurrent somatic mutations as posi-
tive set. The overrepresentation of mutations of some
canonical cancer genes in the COSMIC set supports our
selection. For example, TP53, PTEN and EGFR each have
more than 100 mutations reported in COSMIC.

Coverage
We ran all predictors on both test sets (Materials and
Methods). CHASM, MutationAssessor, PolyPhen-2,
SIFT, Condel and SNAP were able to score most variants
(Figure 4), each classifying at least 94% of COSMIC
mutations. However, the reliability of predictions varies
depending on the features scored. For example, with
SIFT, low sequence diversity in the aligned homologs

Figure 3 SIFT predicts high frequency cancer mutations and low frequency SNPs to be more deleterious. (A, B) The frequency of mutations
in COSMIC correlates with the likelihood to be deleterious according to SIFT score (mutations that are predicted to be deleterious have low SIFT
scores). (C, D) The minor allele frequency of dbSNP polymorphisms correlates with the likelihood to be benign according to SIFT score.
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decreases classification confidence. Rare cases, where
mutations could not be classified at all, can be explained
by the absence of homologous proteins for evolutionary
comparison. In contrast, LogRE and mCluster scored
only 75% and 63% of cancer mutations respectively, since
they can only predict within domain regions. They scored
even fewer neutral variants (LogRE: 43%, mCluster: 33%),
due to the relative scarcity of neutral mutations in
domains. This limitation to classify only a specific group
of variants can also be observed in other applications that
are not further reviewed here. For example, approaches
that are exclusively based on protein structures provide
fewer predictions than conservation-based methods given
the shortage of available protein structures opposed to
the plethora of available sequence information.

Prediction accuracy based on curated datasets
We compared prediction methods using a ROC analysis:
using a range of score cutoffs to predict a mutation as
deleterious, we plotted the fraction of likely drivers
scored as deleterious ("True Positive Rate”) against
the fraction of likely benign variants scored as deleterious
("False Positive Rate”) for a given score threshold
(Figure 5, Table 1). Each method was scored with an
equal number of neutral and cancer-associated variants.
LogRE and mCluster were clearly outperformed by

other methods. For LogRE, this agrees with a previous
comparison [22]. mCluster, assumes that functionally

important protein changes are enriched in conserved
domain regions. The mCluster score of a given mutation
increases with the frequency of all mutations from both
the given dataset and curated disease-associated data-
bases that occur in the same hotspot region. However, in
our analysis the statistical power from the input set is
depleted, as all mutations are counted as single events in
our test set. Table 1 lists the sensitivity and specificity
values calculated on the basis of score thresholds that
yielded the highest accuracies as defined by the propor-
tion of correctly classified variants in relation to the
number of all variants in the test set (see also Additional
file 4). In most cases the derived optimal cutoffs were
similar to the thresholds recommended by the developers
of the tools (Figure 6). In concordance with the resulting
ROC curves, the accuracies of LogRE and mCluster were
61% and 65%, respectively.
In comparison, we found SIFT and PolyPhen-2 to have
maximum accuracies of 76% and 77%, respectively. Saun-
ders and Baker [25] showed that in general the additional
inclusion of structural information (if available) contri-
butes to a slight increase in performance. This might also
play a role for the marginally increased performance of
PolyPhen-2. The combination of Polyphen-2 and SIFT as
reflected by the Condel score did not improve the accu-
racy significantly (78%).
With an accuracy of 81% MutationAssessor yielded the

second highest specificity across all methods at any

Figure 4 Coverage of prediction. CHASM, MutationA(ssessor), PolyPhen-2, SIFT, Condel, SNAP, and CHASM scored most missense mutations.
LogRE and mCluster predictions are restricted to alterations that occur in domain regions and so scored less than 80% of likely cancer drivers
(A). Coverage of likely-neutral mutations (B) was broadly similar, but with even lower coverage for LogRE and mCluster due to the lower
prevalence of neutral mutations in domains.
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sensitivity. As reviewed above, the use of evolutionary infor-
mation in MutationAssessor differs from other sequence-
based predictors. The methodology includes a refined class
of conserved residues, termed specificity residues, to iden-
tify functional specificity on the background of overall con-
servation. Specificity residues are conserved within a
subfamily but differ between subfamilies presumably
encoding functional diversity. For example, a D125N muta-
tion in CDKN2A (cyclin-dependent kinase inhibitor 2A)
from liver cancer is scored as deleterious by MutationAs-
sessor, because this residue is absolutely conserved as D in
mammalian homologs (Figure 7, subfamily 1), but is scored
as neutral by other methods that include more distant
homologs, such as those of fishes, where the wild-type resi-
due is N. The co-crystal of CDKN2A with cyclin-dependent

kinase-6 (CDK6) shows that D125 is at the binding inter-
face of the two proteins, close to Serine 155 (4.9A) of
CDK6. Loss of this negative charge in the D125N mutant
may substantially alter the binding affinity and so promote
tumorigenesis.
Interestingly the accuracy of SNAP (68%) was lower

than those of SIFT and PolyPhen-2, despite its more ela-
borate feature set. CHASM (89%) was the only tool that
outperformed MutationAssessor in this assessment.
CHASM predicted 99% of the negative set as non-drivers.
However, recurrent COSMIC mutations were used to
train the CHASM predictor, and several properties in
CHASM’s complex feature space are derived from COS-
MIC. For this reason, the CHASM performance in this
test should be viewed with caution.
Excluding CHASM, the results of this assessment sug-

gest that conservation based predictors, MutationAssessor
in particular, achieve the highest accuracies in distinguish-
ing neutral from deleterious mutations. However, none of
these methods gives correct classifications of all mutations
in the test sets. As an example for likely misclassification,
MutationAssessor predicted the somatic G1007D muta-
tion in phosphatidylinositol-4,5-biphosphate 3-kinase
(PIK3CA), which was identified in haematopoietic, lym-
phoid and thyroid cancer, to be neutral, while all other
methods defined the amino acid change to be deleterious.
On the other hand, Bromberg and Rost showed that
SNAP, which achieved relatively low sensitivity but high
specificity in our assessment, outperformed competing
approaches when using an independent dataset from four

Figure 5 Prediction accuracies compared between methods. ROC curves for 8 predictors scored on COSMIC mutations and prevalent SNPs.

Table 1 Prediction accuracies, sensitivities, specificities,
AUC values and Matthew’s correlation coefficients (MCC)
compared between methods (based on COSMIC dataset)

Tool Accuracy Sensitivity Specificity AUC MCC

CHASM 89% 79% 99% 0.92 0.79

MutationAssessor 81% 76% 86% 0.89 0.62

Condel 78% 75% 82% 0.85 0.58

PolyPhen-2 77% 79% 75% 0.82 0.54

SIFT 76% 70% 82% 0.80 0.52

SNAP 68% 55% 81% 0.67 0.37

mCluster 65% 40% 90% 0.64 0.35

logRE 61% 65% 57% 0.60 0.22
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proteins (LacI repressor, bacteriophage T4 lysozyme, HIV-
1 protease and human Melanocortin-4 receptor) [27]. Dif-
ference in performance might reflect testing dataset bias,
or that cancer mutations are inherently different from
those enzyme mutations commonly used in various train-
ing and testing programs.

Prediction accuracy based on novel recurrent somatic
mutations
Since CHASM was explicitly trained on COSMIC muta-
tions, and other methods may have been refined with it, we
created new, independent positive test sets, of newly-identi-
fied recurrent mutations in colorectal tumors (2012a)

(’TCGA’ set) as well as recurrent somatic mutations in
colon [8] or breast cancer [6,7] (’COBR’ set) (Materials and
Methods). We measured accuracy of each method on
these new data and found similar results, with some nota-
ble differences (Figure 8):
Overall, we see a slight drop in prediction accuracy.

This may be due to a drop in the severity of mutations
in these new sets, since they exclude highly recurrent
mutations seen in COSMIC. The most notable change
is that CHASM accuracy dropped from 89% to 50%, as
all mutations from the positive set were predicted to be
neutral. The reason for this drop is not clear, but it has
to be noted that mutations matching to COSMIC

Figure 6 Proportion of true positives and true negatives above certain score thresholds and corresponding score distributions.
Cumulative distributions of true positives and true negatives above certain score cutoffs form the basis for the derivation of weights for our
metapredictors. In many cases calculated optimal cutoffs (marked in green) were similar to recommendations from the developers of the tools
(marked in red). Both the cumulative distributions and the associated score distributions varied highly between the methods. We transformed
raw scores of Snap and MutationAssessor, so that the minimum score is zero.
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variants were ignored in this evaluation and these
excluded mutations were the ones with the highest fre-
quencies in the test sets. It should also be noted that
the CHASM algorithm was developed to predict both
tumor suppressor mutations as well as oncogene muta-
tions. In our particular test, our choice of using recur-
rent mutation biased the data toward oncogenic driver
mutations, which might contribute to the poor perfor-
mance by CHASM. Furthermore, it is important to note
that the relative frequency of missense changes in the
COSMIC database is one of the 49 features used for
CHASM prediction. Remarkably, this feature was shown
to be the second most important feature for CHASM
prediction. We purposely exclude any known COSMIC
mutations in our independent test data, presumably
causing the sharp performance drop by CHASM. It
would be interesting to determine whether the CHASM
performance might be more consistent across multiple
test data sets if the COSMIC mutation frequency is
excluded from the 49 feature collections.
The prediction accuracies of the other methods dropped

to a lower degree, but their relative rankings were consis-
tent with findings from the COSMIC set. The accuracy of
PolyPhen-2 decreased from 77% for the COSMIC set to
66% and 65% for the TCGA set and the COBR set respec-
tively, but achieved higher accuracies than SIFT or SNAP.
For the TCGA set, Condel - as a combination of Poly-
Phen-2 and SIFT - marginally increased the accuracy from
66% and 65% respectively to 68%, and we found the same

tendency for the COBR set (Figure 8, Tables 2 and 3).
Notably, MutationAssessor performed best, with accu-
racies of 74% and 70% for the TCGA and COBR set,
respectively.
The observation that performances of individual meth-

ods can vary extremely between different test sets, is in
concordance with findings from the Critical Assessment
of Genome Interpretation (CAGI) project (http://geno-
meinterpretation.org) - an analogous approach to the
critical assessment of techniques for protein structure
prediction (CASP) [35].

Combining individual predictors
To determine if multiple methods can be combined into a
unified classification, we implemented metapredictors on
the basis of weighted average scores [2] (Materials and
Methods). We used cumulative distributions of true and
false positives from the COSMIC set as reference to esti-
mate weights (Figure 6). To validate the consensus classifi-
cation on a dataset different from the reference set, we
used the two sets of novel mutations. For both test sets,
the performances of Condel (combining Polyphen-2 and
SIFT) and our metapredictor that combined PolyPhen-2
and SIFT predictions were almost identical (Additional file
5), even though underlying distributions for weight estima-
tion and cutoff optimization were different.
We examined several combinations of predictors and

found that unifying predictions from Polyphen-2 and Muta-
tionAssessor, SIFT and MutationAssessor, or Polyphen-2

Figure 7 Somatic mutation in CDKN2A predicted to be deleterious by MutationAssessor. MutationAssessor predicted the somatic D125N
mutation in the canonical tumor suppressor CDKN2A to be deleterious, due to its conservation in mammalian orthologs (Subfamily 1). Other
tools used a wider array of homologs, including fish orthologs, where the residue is in fact N, and so classified the mutation to be benign. Using
PyMOL (Version 1.2r3pre, Schrödinger, LLC.) the protein structure (PDB id: 1BI7) illustrates CDKN2A (wheat color) in complex with CDK6 (blue).
The majority of residues in CDKN2A are known to be implicated in cancer based on UniProt (http://www.uniprot.org) annotation (green). D125 is
shown in orange.
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and SIFT achieved better predictions compared to other
combinations. However, none of the combinations
improved significantly on the best included predictor, and
no combination improved on MutationAssessor alone. This
is in contrast to a previous report in which combining

prediction results from LogRE, MAPP, Mutation Asssessor,
PolyPhen-2 and SIFT was shown to outperform each indivi-
dual method [2]. The reason of this difference is not clear,
but it is possible that only certain datasets are suitable for
metaprediction approaches.

Figure 8 Prediction accuracies based on novel recurrent somatic mutations. (A) ROC curves for recurrent mutations found in the TCGA set.
(B) ROC curves for recurrent mutations observed in the COBR set.
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Conclusions
Our independent assessment of commonly available tools
reveals challenges and inconsistencies of existing tools.
Although the cancer-specific predictor CHASM per-
formed particularly well using COSMIC mutations, we
observed a dramatic drop in performance when using
novel recurrent mutations not present in the COSMIC
database. Other cancer-specific methods did not perform
better than general tools for predicting the functional
impact of amino acid changes. It is debatable what causes
such performance difference. One major challenge is the
generation of underlying datasets for training and testing.
Using recurrent somatic changes as positive set seems to
be an intuitive and reasonable approach. However, there
is no experimental evidence for the potential to be driver
mutations in cancer. It is clear that machine learning-
based approaches are essentially affected by this problem
and need further improvement to become generally
applicable. In contrast, sequence conservation-based
approaches seem to be less affected by different testing
datasets. In fact, MutationAssessor provides consistently
reasonable prediction results in this study. However, it is
premature to declare any single predictor as the sole win-
ner since we have identified many instances where an
otherwise good predictor would completely miss obvious

driver mutations. It is not obvious that metapredictors
based on multiple approaches would produce the “silver
bullet” cancer driver mutation predictor, therefore novel
and more robust methodology development is still
needed.
One idea for potential improvement is to train specia-

lized predictors on different classes of putative driver
mutations. Functional driver mutations can impact both
tumor suppressors and oncogenes, and the characteristics
of these mutations are epected to be different. While
tumor suppressors are likely impacted by inactiving muta-
tions, oncogenes can be impacted by a more complex pat-
tern. Mutations that activate oncogenes may exert their
effect by different mechanisms, such as utilizing residues
that are evolutionarily more fit, inactiving a regulatory
region to make a kinase constitutively active, or simulating
the activated state of a protein. It is perhaps more practical
to develop multiple specific algorithms for different classes
of mutations, instead of develop a “one-size-fit-all”
approach. With more validated, novel driver mutation
data available, such robust and specialized prediction tools
should be within reach.

Additional material

Additional file 1: Datasets used for assessments.

Additional file 2: Calculating the weights for metaprediction.
Following the methodology of the Condel score [2], we used the
weighted average of the normalized scores to combine the results of
multiple predictors into a unified consensus score. The weighted average
score is calculated on the basis of normalized prediction scores and
weights. Weights are estimated from cumulative distributions of true
positives and true negatives above given scores.

Additional file 3: Distribution and proportion of missense
mutations predicted to be deleterious by PolyPhen-2. The frequency
of somatic mutations in the COSMIC database correlates with the
likelihood to be damaging according to PolyPhen-2 predictions (A, B).
The global minor allele frequency of single nucleotide polymorphisms in
the dbSNP database correlates with the likelihood to be benign
according to PolyPhen-2 classifications (C, D).

Additional file 4: Calculating the optimal cutoff yielding the highest
accuracy for each method. Accuracy is defined as the proportion of
true positives and true negatives in relation to all positives and
negatives. The accuracy increases with the true positive rate (sensitivity)
until the proportion of false positives outweighs. The peak of each curve
reflects the optimal accuracy. The corresponding score thresholds were
used to calculate specificity and sensitivity values for each method.

Additional file 5: Comparison of Condel and our metapredictor.
Based on an ROC analysis using the TCGA set (A) and the COBR set (B)
as test sets, the performances of our metapredictor and Condel are
almost identical. Both approaches combine PolyPhen-2 and SIFT
predictions, but use different underlying reference sets for weight
estimation.
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Table 2 Prediction accuracies, sensitivities, specificities,
AUC values and Matthew’s correlation coefficients (MCC)
compared between methods (based on TCGA dataset)

Tool Accuracy Sensitivity Specificity AUC MCC

CHASM 50% 0% 100% 0.34 0.05

MutationAssessor 74% 86% 62% 0.79 0.49

Condel 68% 66% 66% 0.72 0.37

PolyPhen-2 66% 76% 56% 0.68 0.34

SIFT 65% 74% 56% 0.66 0.30

SNAP 62% 43% 79% 0.59 0.26

mCluster 54% 8% 99% 0.50 0.17

logRE 52% 39% 64% 0.50 0.07

Table 3 Prediction accuracies, sensitivities, specificities,
AUC values and Matthew’s correlation coefficients (MCC)
compared between methods (based on COBR dataset)

Tool Accuracy Sensitivity Specificity AUC MCC

CHASM 50% 0% 100% 0.36 0.08

MutationAssessor 70% 91% 50% 0.74 0.46

Condel 66% 66% 66% 0.68 0.33

PolyPhen-2 65% 63% 66% 0.63 0.30

SIFT 64% 73% 55% 0.63 0.29

SNAP 62% 45% 78% 0.59 0.26

mCluster 50% 0% 100% 0.46 0

logRE 54% 44% 64% 0.53 0.08
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