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Abstract

Every malignant tumor has a unique spectrum of genomic alterations including numerous protein mutations.
There are also hundreds of personal germline variants to be taken into account. The combinatorial diversity of
potential cancer-driving events limits the applicability of statistical methods to determine tumor-specific “driver”
alterations among an overwhelming majority of “passengers”. An alternative approach to determining driver
mutations is to assess the functional impact of mutations in a given tumor and predict drivers based on a
numerical value of the mutation impact in a particular context of genomic alterations.
Recently, we introduced a functional impact score, which assesses the mutation impact by the value of entropic
disordering of the evolutionary conservation patterns in proteins. The functional impact score separates disease-
associated variants from benign polymorphisms with an accuracy of ~80%. Can the score be used to identify
functionally important non-recurrent cancer-driver mutations? Assuming that cancer-drivers are positively selected
in tumor evolution, we investigated how the functional impact score correlates with key features of natural
selection in cancer, such as the non-uniformity of distribution of mutations, the frequency of affected tumor
suppressors and oncogenes, the frequency of concurrent alterations in regions of heterozygous deletions and copy
gain; as a control, we used presumably non-selected silent mutations. Using mutations of six cancers studied in
TCGA projects, we found that predicted high-scoring functional mutations as well as truncating mutations tend to
be evolutionarily selected as compared to low-scoring and silent mutations. This result justifies prediction of
mutations-drivers using a shorter list of predicted high-scoring functional mutations, rather than the “long tail” of
all mutations.

Introduction
Numerous somatic mutations are detected in thousands of
genes in all cancers [1-13]. Mutations vary in their impact
on a gene’s function [14,15] and in their contribution to
cancer [16-18]. Every tumor has its own mutation spec-
trum of ~10 to 10,000 of protein-altering mutations. A
challenge is to identify mutations that provide a selective
advantage to tumors ("drivers”). Knowing driver mutations
for individual tumors, one can develop the personalized
approaches to treat cancer [19].

Driver mutations are commonly determined from distri-
butions of mutations in a large group of tumor samples
[1,20-24]. It is assumed that many of the tumors are under
similar selection pressure and those mutations, which are
fixed more frequently than expected based on a given
background mutation rate (e.g. recurrent mutations
observed in many tumors and across many cancers [25])
give selective advantage to cancer. It is also assumed
(although rarely articulated) that the number of cancer-
causing combinations of driver mutations is limited and
therefore a large enough set of sequenced cancer genomes
will represent all combinations of driver mutations in an
amount sufficient for statistical conclusions.Correspondence: reva@cbio.mskcc.org
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However, massive sequencing of cancer genomes [1-13]
has revealed an enormous diversity of genomic aberrations
as well as the high diversity of background mutation rates
within many types of common cancers [8,9]. The huge
diversity of genomic alterations and mutation rates
obviously limits the predictive power of statistical
approaches. Typically, genomic alterations in the top can-
cer genes found by statistics do not affect all tumors
[1-7,10-13]. Thus, statistical approaches leave two impor-
tant questions without answers: First, are there more genes
contributing to carcinogenesis in a given type of cancer?
Second, what are the concrete driver mutations in a given
tumor?
An alternative, personalized approach is to determine

cancer drivers based on in-depth analysis of the impact a
mutation may have on protein molecular function in the
tumor-specific context of genomic alterations. Currently,
the implementation of this approach as a primary method
for determining drivers is limited by incompleteness of the
present knowledge of gene function and gene-regulation
networks, and insufficiency of the existing molecular mod-
eling approaches. Typically, the assessment of the func-
tional impact of mutations is used in the subsequent
analysis of already found driver mutations [12,13,26-28].
However, more accurate predictions of driver mutations
can be achieved by integration of the statistical and the
functional approaches. Hence, new approaches have been
recently reported [13,29], which integrate functional pre-
dictions and mutation distribution statistics. However, the
methodology of integration of statistical and functional
information is not yet well established. In particular, the
statistical model of [29] is not applicable for determining
drivers in individual tumors; it is also unclear what is the
actual power of the “functional mutation burden” [13] to
predict driver mutations.
Recently, we introduced the functional impact score

(FIS), which assesses the functional impact of a mutation
by a value of entropic disordering of the evolutionary
conservation patterns in protein families and subfamilies
[30]. The FIS function (implemented as a web-based ser-
vice mutationassessor.org) was validated by assessing the
accuracy of separation of known disease-associated
variants from benign polymorphisms and by separation of
known recurrent cancer mutations (drivers) from single
mutations (passengers) [25,31]. The original FIS function
of the mutation assessor was also independently tested
and integrated with other mutation scores in the CON-
DEL [32] and Oncodrive-FM [29] methods; the FIS func-
tion was recently implemented and rigorously tested in
the “transFIC” approach to differentiate driver and passen-
ger mutations [33].
However the fact that the FIS of the mutation assessor

(or other approaches) differentiates preselected drivers
from passengers does not automatically mean that it will

not produce too many false positives in analysis of total
sets of somatic mutations found in tumors. Therefore,
before using the FIS to nominate driver mutations in a
large set of somatic mutations, it is necessary to answer an
important practical question: how the value of the pre-
dicted functional impact correlates with the contribution of
a given mutation to carcinogenesis? Assuming that cancer-
drivers are positively selected in tumor evolution, we pro-
pose and test a hypothesis: “high scoring functional muta-
tions tend to be selected in tumor evolution“. Testing this
hypothesis is interesting because the FIS represents the
evolutionary conservation of residues; a value of the score
can be simply interpreted as a measure of conservation.
Testing this hypothesis is also practical because the impact
score of the mutation assessor is used routinely for assess-
ment of the mutation impact in large-scale sequencing
projects [3-6,11,12] and in newly developed combined
approaches [29,32,33].
This hypothesis has several testable implications. If it is

true, then the fraction of cancer genes (e.g. tumor suppres-
sors and oncogenes) should increase among genes affected
by functional mutations. Another general signature of
selection, non-uniformity of distribution of mutations
across genes, should also increase among functional muta-
tions. Functional mutations should more frequently affect
genes, which are likely under selection pressure, i.e. genes
affected by truncating mutations or by copy number
alterations.
Therefore, we tested the hypothesis by comparing distri-

butions of silent, truncating and missense mutations cate-
gorized by the predicted functional impact [30]. We
investigated how the predicted functional impact corre-
lates with the frequency of affected tumor suppressors and
oncogenes, non-uniformity of distribution of mutations
and frequency of concurrent genomic alterations. These
tests are general and can be used in studying selection and
nominating driver mutations using any scoring function.
All tests conducted on ~120K missense mutations

among six types of cancers studied by TCGA showed
that high-scoring functional mutations tend to be evolu-
tionary selected. These results justify nominations of the
driver mutations based on the predicted functional
impact score of the mutation assessor.

Results and discussion
Cancer-driver mutations are defined as those that give
selective advantage to cancer cells. Therefore cancer-driver
mutations are specifically selected in tumor evolution. It is
easy to identify as evolutionarily selected recurrent cancer
mutations. The distributions of the FIS for recurrent
mutations and disease-associated variants are practically
indistinguishable [30]. Can the FIS be used to bring on the
top both recurrent and non-recurrent cancer-driver muta-
tions? To this end, one needs to prove that non-recurrent
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high-scoring mutations are generally under stronger selec-
tion pressure as compared to low-scoring or silent muta-
tions. Below we present computational tests that reveal a
stronger selection pressure for predicted high-scoring
functional mutations.
First, we studied how a fraction of “cancer genes” (tumor

suppressors and oncogenes) affected by missense muta-
tions depends on the value of the functional impact score.
We tested and confirmed a hypothesis that the fraction of
cancer genes affected by mutations increases with the
value of the functional impact score (Figure 1).

Figures 1A and 1B present distributions of truncating
(TM), silent (SM) and predicted functional missense
mutations (FM) affecting tumor suppressors and onco-
genes in colon cancer 4. (The lists of tumor suppressors
(TS) and oncogenes (OG) are taken from the annotated
lists of cancer genes (Additional File 1, Tables S1; Addi-
tional File 2[30,34,35]).
In spite of the fact that the cancer gene list is incom-

plete, non-specific to a given cancer and have erroneous
annotations, the distributions of truncating, silent and
predicted functional mutations clearly demonstrate natural

Figure 1 (A,B) Percentages of predicted functional missense mutations in annotated tumor suppressors (TS) (A) and oncogenes (OG)
(B) tend to increase with the value of the FIS in colon cancer [4]. Percentages of “silent” and “truncating” mutations are given for
comparison; “TS-missense”, “TS-silent”, TS-trunc” stand for annotated tumor suppressors affected by respectively, missense, silent and truncating
mutations; similarly, OG-missense”, “OG-silent”, OG-trunc” stand for annotated oncogenes affected by respectively, missense, silent and truncating
mutations; (C) Percentage of annotated cancer genes affected by missense mutations tend to increase with the predicted functional impact for
missense mutations detected in each of six TCGA projects [3-6,10,11]. All missense mutations are separated into 4 groups by a value of the
predicted functional impact; thus, “FIS>-4 (all MM)” stands for a mutation group that includes all assessed missense mutations (MM); “FIS>1”
stands for a mutation group that includes all mutations assessed with FIS>1, etc... Percentages of “silent” and “truncating” mutations affecting
annotated cancer genes in six types of studied cancers are given for comparison.
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selection. First, one should note a striking difference
between truncating mutations and silent mutations
affecting tumor suppressors (Figure 1A) and oncogenes
(Figure 1B). Truncating mutations affect tumor-suppres-
sors approximately three times more often than silent
mutations, while they affect oncogenes with the same fre-
quency as silent mutations. The difference in frequencies
is caused by natural selection. Truncating mutations result
in loss of function of certain tumor suppressors that give
advantage to affected cancer cell. Therefore truncating
mutations in tumor suppressors are been fixed in evolu-
tion. However, truncating mutations in oncogenes are not
generally advantageous to cancer cells, and, hence, they
are not fixed in tumor evolution. The distributions of pre-
dicted functional missense mutations also show the clear
tendency of high-scoring mutations to be evolutionarily
selected for tumor suppressors and oncogenes as com-
pared to low-scoring and silent mutations (Figure 1A-B).
With an increase of the functional impact (FIS), a fraction
of mutations affecting tumor suppressors and oncogenes
increases and gets the maximum value at FIS ~3.0. At
higher values of FIS, the total number of mutations
becomes very low that may affect statistics.
The Figure 1C presents distributions of silent, truncat-

ing and predicted functional mutations affecting all
annotated cancer genes (Additional File 1, Table S1;
Additional File 2) in several cancer types (TCGA).
While the fractions of silent mutations affecting cancer
genes, stays about the same across all studied cancers,
the fractions of truncating and predicted functional
mutations vary significantly for different cancers. What
is the most remarkable is that the fractions of affected
cancer genes increase with the value of the functional
impact score for all cancers, i.e. predicted functional
mutations tend to be selected in cancer genes in differ-
ent type of cancers.
However, the observed shift of the FIS distribution of

mutations in cancer genes towards higher values can be
also explained by better evolutionarily conservation of can-
cer genes [36]. (Let’s assume that cancer genes are con-
served significantly better than non-cancer genes. Then,
uniformly (or randomly) distributed mutations in cancer
genes will automatically get higher FIS values and a frac-
tion of cancer genes will be disproportionally high among
high-scoring mutations. Under this assumption, the
observed enrichment of high-scoring mutations in cancer
genes (Figure 1) will simply reflect the better conservation
of cancer genes, rather than selection of the specific muta-
tions in cancer genes).
Selection of mutation in tumor evolution results in

non-uniformity of mutation distributions. The non-uni-
formity of mutation distributions is especially high in
cancer genes, many of which are affected by recurrent
mutations. Therefore, to assess an applicability of the FIS

to predict driver mutations, one needs to answer a key
question: what is a correlation between the value of the
FIS and the non-uniformity of mutation distribution?
This question is based on the following hypothesis: driver
mutations are selected in special (and therefore better
conserved) positions of cancer genes and scoring higher
than passenger mutations. Then, the higher the score,
the more likely the mutation is a driver, and the distribu-
tion of high scoring mutations should reflect the main
feature of selection - more mutations in fewer genes. The
alternative hypothesis is that driver and passenger muta-
tions in cancer genes are scoring essentially equally.
Then, the FIS is not relevant for differentiating drivers
and passengers. Thus, the question of what factor plays
the major role in the increase of a fraction of high-scor-
ing mutations in cancer genes - the better conservation
of cancer genes in evolution of species or the specific
selection of driver mutations in tumor evolution - is actu-
ally superseded by other questions: does the non-unifor-
mity of mutation distribution increase with the value of
the FIS, and, does the non-uniformity of distribution
increase for high-scoring mutations in cancer genes
(many of which are under selection pressure) versus non-
cancer genes (many of which are not under selection)?
To answer these questions, we introduced the numerical

indicator of the “non-uniformity” of mutation distribution
across genes and used it as a measure of selection of
somatic mutations in cancer. The non-uniformity can be
numerically determined as a ratio of the total number of
mutated genes to the effective number of mutated genes
that carry majority of mutation (Eq.2, Methods). The
higher this ratio, the higher the non-uniformity. (The non-
uniformity of a distribution does not depend on the score,
therefore any non-specific bias (shift) of the FIS distribu-
tion within a given group of genes (e.g. potential shift of
the FIS caused by better conservation of cancer genes)
does not affect the non-uniformity). The non-uniformities
of distributions of truncating, silent, missense and pre-
dicted functional mutations computed for different types
of cancer are presented in Figure 2.
As expected, distributions of predicted functional

mutations and truncating mutations are essentially non-
uniform (μ~5-40) that differ them drastically from the
more uniform distributions of silent mutations (μ~1.4-
1.9). The non-uniformity of distributions increases with
the value of the functional impact showing the increase
of selection pressure for predicted functional mutations
(Figure 2A).
We also compared the non-uniformities of distribu-

tions of predicted functional mutations affecting different
groups of genes. The non-uniformities of distributions
were computed for predicted functional mutations affect-
ing all genes, annotated cancer genes, annotated tumor
suppressors and oncogenes, and, genes that have no
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cancer annotations. The Figure 2B presents typical
dependencies obtained for glioblastoma cancer. Similar
results are obtained for all studied cancers. The non-uni-
formity of distributions in cancer genes increases with an
increase of predicted functional impact, while the non-
uniformity of the mutation distribution in non-cancer

genes does not increase and even has a tendency to
decrease (the lower μ, the bigger non-uniformity). The
non-uniformity μ gets the maximal value at FIS ~3.0 and
starts to decrease at higher FIS. This simply reflects the
drastic decrease of a number of mutations and a number
of affected genes at higher FIS.

Figure 2 (A) The non-uniformity of distributions of mutations across annotated genes-tumor suppressors increases with a value of the
predicted functional impact for missenese mutations discovered in each of six TCGA projects [3-6,10,11]; missense mutations are
separated into three groups by the predicted functional impact. The non-uniformity, μ, is defined as a ratio of the total number of affected
genes in a dataset to the “effective” number of genes that carry the majority of mutations (Eq.2); μ~1 means that mutations are distributed fairly
uniformly across genes; μ≫1 means that majority of mutations are selected in a small fraction of all mutated genes. The non-uniformities of
“Silent” and truncating mutations ("Trunc”) affecting the same groups of genes are given for comparison. (B). The non-uniformities of mutation
distributions computed for different gene groups in glioblastoma (brain) cancer [6]. “All” stands for mutations affecting all genes; TS, OG, CG,
nCG, stand for mutations affecting, respectively, annotated tumor-suppressors, annotated oncogenes, annotated cancer genes, genes with no
cancer annotations; the non-uniformities of truncating ("Trunc”) and “Silent” mutations are computed for truncating and silent mutations
affecting all genes.

Reva BMC Genomics 2013, 14(Suppl 3):S8
http://www.biomedcentral.com/1471-2164/14/S3/S8

Page 5 of 13



Computing non-uniformity of distributions, we did
not take into account gene length. Differences in gene
lengths can affect computed values of non-uniformity,
especially when the number of genes and mutations are
small and differences in gene lengths are big. Although,
in the general case, the non-uniformity of a mutation
distribution may depend upon a spectrum of nucleotide
substitution and cancer type, the main effect of gene
length differences can be assessed by assuming that
mutations are distributed proportionally to gene lengths.
Thus, we determined the effective number of genes that
would carry majority of uniformly distributed mutations.
The coding length of human genes was taken from
MAPBACK database [37]. We found that the effective
number of the longest genes, which cover the whole
genome is ~9,400 that gives for the non-uniformity
coefficient a value of ~2. Thus, the non-uniformity of
the unbiased mutation distribution caused by the differ-
ence in gene lengths is very close to the non-uniformity
coefficients computed for the observed distribution of
silent mutations across different cancers (~1.4-2).
However, taking into account gene lengths is not neces-

sary for comparison characteristics of distributions of the
whole mutation classes (truncating, silent, missense)
affecting the same large groups of genes (thousands of
mutations and genes). The hallmark of selection can be
seen in the significant increase of μ from 3.5 to 7.8 for pre-
dicted functional mutations affecting tumor suppressors at
FIS~3.0; correspondingly, no selection is observed for
mutations affecting non-cancer genes or silent mutations.
Actually, one can compare non-uniformity of mutation
distributions for different groups of genes: if the numbers
of mutated genes in gene groups are large enough (~100
or more), the effects of different gene lengths on non-uni-
formity of distributions become insignificant because of
averaging large numbers of mutations affecting genes of
different lengths. Therefore the non-uniformity coeffi-
cients μ are generally small (close to one) for silent muta-
tions and large for truncating and predicted functional
mutations selected in tumor suppressor, oncogenes and all
cancer genes.
We report more details comparing the non-uniformity

of mutation distributions in cancer genes and in non-
cancer genes for high-scoring missense mutations, for
all missense mutations, for combination of high-scoring
mutations and truncating mutations and for truncating
mutations taken alone (Additional File 1, Table S2). The
main results of these tests can be summarized as fol-
lows: (i) the non-uniformity of distributions of high-
scoring functional missense mutations in cancer genes is
always higher as compared to the non-uniformity of all
missense mutations both in cancer genes and in non-
cancer genes; (ii) the non-uniformity of mutations distri-
bution increases for combination of missense mutations

and truncating mutations; (iii) the non-uniformity of
mutation distributions is the highest for combination of
the high-scoring missense mutations and truncating
mutations in cancer genes. These results resolve the
question of biasing of the FIS caused by potentially bet-
ter conservation of cancer genes. Regardless of the
potential shift of the FIS, the increase of the non-unifor-
mity of distributions of high-scoring mutations in cancer
genes proves selection of these mutations in cancer
genes.
Thus, the comparison of distributions of missense and

predicted functional mutations in combination with
truncating mutations both in cancer genes and in non-
cancer genes (Figure 1, 2, Additional File 1, Table S2)
demonstrates natural selection of predicted high-scoring
functional mutations and truncating mutations in cancer
genes. Based on this result, one can make recommenda-
tions for determining tumor specific (personalized) dri-
vers: nominate as likely drivers high-scoring mutations
in known cancer genes; nominate as possible drivers
high-scoring mutations in remaining non-cancer genes.
In Figure 3, we compared the total number of

impacted genes and the effective numbers of affected
genes (Eqs.3,6) determined for all missense and truncat-
ing mutations and for predicted functional and truncat-
ing mutations. To determine the effective number of
genes impacted by predicted functional mutations, we
took all genes impacted by at least one mutation of
FIS>2.5, because strong selection of mutations at
FIS~2.5-3.0 is visible in all cancers (Figures 1.2). The
histograms of Figure 3 show that distributions of muta-
tions across genes are highly non-uniform for all cancers
and the non-uniformity increases for predicted func-
tional mutations. The non-uniformity of mutation distri-
butions is higher for cancer genes as compared to all
genes. (The actual numbers of genes used in building
the histograms are given in Additional File 1, Table S3).
Based on the distributions of Figure 3, one can make

estimates of the total numbers of common driver genes
for a given cancer. We propose to rank (cancer) genes
by a total number of highly functional mutations
(FIS>2.5 and truncating mutations) and nominate a set
of the “effective genes” as a set of common drivers. This
is motivated by the idea that highly functional mutations
are selected during tumor evolution in a limited number
of conserved positions in certain (cancer) genes. These
genes are enriched by highly functional mutations and
can be revealed by the increased non-uniformity of dis-
tributions of highly functional mutations.
However, the effective gene lists can include long genes,

which can be incorrectly nominated as common drivers.
Long genes can compete with shorter driver genes in a
number of highly functional mutations, because long
genes have more chances to accumulate such mutations
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by random. The simplest solution would be removing long
genes (e.g. ~30 genes with the exome length bigger than
~15,000 nucleotides) from the lists of the effective genes
or from the total list of all mutated genes. However, selec-
tion of mutations and role of long genes in cancer is not
fully understood, in particular, because not all long genes
are mutated proportionally frequently in all cancers.
Therefore, rather than excluding long genes from the lists
of the effective genes, we implemented a simple criterion

for scoring out potentially false positives ("passenger”)
genes. Assuming that evolutionarily selected genes have
more high-functional mutations than low-functional
mutations, we marked genes that have more or equal
number of low functional mutations as compared to high-
functional mutations as potential “passengers”. Predicted
functional mutations (FIS>2.5) and truncating mutations
were counted as high functional mutations; all missense
mutations of the FIS<1.0 were counted as benign or low

Figure 3 Histograms of genes affected by all missense mutations and predicted functional mutations built for six types of cancer: (A)
each of the histograms represent the total number of genes (Genes tot) affected by at least one of missense or truncating mutations (MM+TM);
the effective number of genes (Eq.6) affected by at least one of missense or truncating mutations ("Genes eff (MM+TM)”), the effective number of
genes affected by at least one of predicted functional or truncating mutations ("Genes eff (FIS>2.5+TM)”); (B) the histograms represent the total
number of cancer genes (CanGene) affected by at least one of missense or truncating mutations (MM+TM); the effective number of cancer genes
affected by at least one of missense or truncating mutations, the effective number of cancer genes affected by at least one of predicted
functional or truncating mutations (FIS>2.5+TM).
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functional (the FIS thresholds are chosen so that to avoid
counting mutations in the range of 1<FIS<2.5, where
uncertainty of the predicted functional impact is maximal).
The percentages of potential passenger genes within each
group of the effective genes are presented in Figure 4 and
in Additional File 1, Table S3. This simple approach
produced reasonable results: typically, fractions of passen-
ger genes are relatively high (>50%) for both a set of “all
genes” and a subset of “cancer genes”, however the frac-
tions of potential passenger genes drop in the sets of the
effective genes and the reduction of passengers becomes
especially significant (<5%) for the sets of the effective
genes derived with using the functional predictions.
(Potentially passenger genes in the sets of the effective

genes are long genes, e.g. FAT1 gene in ovarian cancer is
4,588 residues long).
It is difficult to make accurate comparisons between

cancers, because the overall diversity of the observed
mutation spectrum depends on a number of samples
and stage of cancer, but one can notice that the number
of the effective genes representing the mutation spec-
trum for ovarian, colon and brain cancer is smaller than
the numbers of the effective genes for kidney, breast
and especially lung cancer. Generally, the smaller the
number of the effective genes, the stronger the selection.
However, the effective number of genes that are likely
under selection pressure is estimated as ~200 for ovar-
ian cancer and ~350-400 for brain and colon cancers.

Figure 4 The percentages of potential “passenger” genes predicted within genes sets presented in the histograms of Figure 3.
Potential “passengers” genes are defined as genes that have more or equal number of low functional mutations (FIS<1.0) as compared to a
number of high-functional mutations, i.e. missense mutations of FIS>2.5 and truncating mutations; “MM+TM” refers to genes affected by either
missense (MM) or truncating (TM) mutations; CanGenes referes to “cancer genes”.
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The large numbers of genes affected by predicted evolu-
tionarily selected mutations highlight a diversity of can-
cer drivers and suggest that a typical tumor has more
drivers, rather than few drivers. The large numbers of
the effective genes have to be compared with the total
number of mutated genes; the resulting reduction in
numbers of potential driver genes is ~10-30 times. (For
more accurate and comprehensive nomination of driver
genes, it is necessary to take into account statistics of
gene copy number alterations and gene expressions that
is beyond the scope of this study).
We also studied the statistical concurrency of predicted

functional mutations to affect genes that are likely to be
under selection pressure. In particular, we considered
genes affected by truncating mutations (Figure 5) and
genes affected by copy loss or gain (Tables 1, 2). It is rea-
sonable to expect that missense mutations resulting in
“loss of function” should be selected more frequently in
the same genes, which are affected by truncating muta-
tions. Therefore, a fraction of genes affected by truncating
mutations should increase among genes affected by mis-
sense mutations of significant functional impact. (It is

implied, of course, that each of mutations is detected in a
different tumor).
The data of Figure 5 confirm this expectation. In all

studied cancers, fractions of genes - tumor suppressors -
affected by both truncating mutations and predicted
functional mutations increase at higher values of FIS
(Figure 5A). This tendency is general and observed for
all genes, but the strongest concurrency between pre-
dicted functional mutations truncating mutations is
observed for tumor suppressors. The difference in con-
currency of predicted functional mutations and truncat-
ing mutations affecting different genes groups is well
displayed in mutations of lung cancer (Figure 5B). For
the total counts of missense mutations, all genes groups
have approximately the same percentage of genes
affected by truncating mutations. However, among the
genes affected by predicted functional mutations, the
annotated cancer genes and tumor suppressors are more
frequently affected by truncation mutations as compared
to the group of “non-cancer genes"; on the contrary, the
annotated oncogenes affected by predicted functional
mutations are less frequently affected by truncating

Figure 5 (A) Percentage of genes tumor-suppressors affected by both predicted functional mutations and truncating mutations
increases with the increase of the predicted functional impact of missense mutations discovered in each of six TCGA projects
[3-6,10,11]. (B) Percentage of genes affected by both predicted functional mutations and truncating mutations computed for different gene
groups in glioblastoma (brain) cancer [6]. “All” stands for mutations affecting all genes; TS, OG, CG, nCG, stand for mutations affecting,
respectively, annotated tumor-suppressors, annotated oncogenes, annotated cancer genes, genes with no cancer annotations.
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mutations. These differences demonstrate natural selec-
tion of functional mutations in those groups of genes.
Another group of genes, which are likely under

selection pressure are genes affected by copy number
alterations. Table 1 presents statistics of silent and
truncating mutations affecting genes with discretized
copy number alterations [38]. Silent mutations with no
impact on gene’s function (and no selection) are dis-
tributed fairly uniformly across genes affected by copy
number alterations. Truncating mutations affect pro-
tein function; driven by selection, they are distributed
significantly differently as compared to silent muta-
tions: over-presented in regions of heterozygous

deletions in all studied cancers and under-presented in
regions of copy gains (although only in two of six stu-
died cancers).
The percentages of truncating mutations affecting

genes with copy loss can be used as a reference for
comparison distribution of predicted functional muta-
tions (Table 2).
As expected, predicted functional mutations tend to

be selected in genes with copy loss more frequently as
compare to silent or low-scoring mutations. Predicted
high-scoring functional missense mutations tend to be
selected in genes with one copy loss practically as fre-
quent as truncating mutations.

Method
The functional impact score
The details of the derivation of the functional impact score
of the MutationAssessor are given in [30]. Here we simply
review the assumptions used in the derivation. The esti-
mate of the functional impact of a mutation in a given
protein sequence is derived from a multiple alignment of
homologous sequences under two assumptions: 1) a multi-
ple alignment of protein family sequences is treated as a
statistical ensemble at equilibrium; 2) a distribution of
residues in any aligned position of a protein alignment is
treated independently of other positions in the alignment.
In other words, it is assumed that all possible mutations
were tried in evolution in each sequence position so that
the observed distributions of residues in aligned positions
of homologous sequences reflect all possible constraints
imposed on these residues. Thus, critically important resi-
dues are conserved in the setting of diverse sequence
homologs, while evolutionarily unfavorable residues are
not observed or observed less frequently than neutral or
important residues. In addition to protein family conserva-
tion, we use conservation within protein subfamilies,
which are derived from clustering multiple sequence align-
ments [39]. The clustering algorithm groups the sequences
of a protein family alignment into distinct subfamilies, so
as to minimize the sequence diversity within subfamilies
and to maximize the overall difference between subfami-
lies at a select number of “specificity” positions [39].

Table 1 Percentage of silent (SM) and truncating
mutations (TM) affecting genes with different copy
number alterations

Cancer Gene copy number
alterations

P-val (-1) P-val (+1)

-1 0 1 2

breast CNA: 13 64 21 2

SM: 12 65 22 2

TM: 17 64 18 2 <10-6 1.0E-06

lung CNA: 12 63 22 3

SM: 11 63 22 3

TM: 13 62 22 3 2.1E-05 3.9E-01

colon CNA: 12 71 17 1

SM: 11 71 17 1

TM: 14 72 14 1 1.1E-03 4.2E-04

brain CNA: 14 76 8 3

SM: 13 76 8 3

TM: 15 75 7 2 9.0E-06 4.9E-02

kidney CNA: 12 76 11 0

SM: 10 76 14 1

TM: 16 71 12 0 <10-6 1.2E-01

ovarian CNA: 23 51 24 2

SM: 21 53 24 2

TM: 30 49 19 2 <10-6 <10-6

Silent mutations are distributed similar to distributions of CNA. Truncating
mutations are distributed significantly differently as compared to silent
mutations: over-presented in regions of heterozygous deletions; under-
presented in regions of copy gains

Table 2 Percentage of silent, truncating and functional mutations affecting genes with one copy loss.

Cancer silent mutation truncating mutation P-value all missense mutations Missense mutations selected by FIS

FIS>2 FIS>2.5 FIS>3.0 FIS>3.5 P-val

breast 11.6 16.7 0 12.5 12.9 13.4 14.2 16.3 2E-06

lung 11.4 13.5 2E-05 11.7 12.1 12.4 12.5 12.5 0.009

colon 10.7 13.6 0.001 11.5 12.4 13.3 14.2 15.2 3E-04

kidney 6.1 14.3 0 6.5 11.3 12.1 11.4 10.9 2E-04

brain 12.5 15.3 9E-06 13.9 14.1 14.6 15.0 14.6 0.009

overian 20.5 30 0 22.3 23.6 26.2 26.0 29.0 0

Predicted high-scoring functional missense mutations tend to be selected in genes with one copy loss practically as frequent as truncating mutations.
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Evolutionary constraints are inferred from the patterns of
residue conservation in the computed protein subfamilies.
With these assumptions, the mutation impact of a

mutation a->b in a sequence position i is computed
from the observed mutation counts as follows:

FISi(α → β) = −1
2
[ln

ni(β) + 1
ni(α)

+ ln
np

i
(β) + 1

npi (α)
] (1)

Here a and b are residue types (a, b = 1,...,21, index-
ing 20 residues types and alignment gaps); ni(α), ni(β)
are, respectively, the numbers of residues of types a and
b in an alignment column i; the index p refers to the
particular subfamily to which the mutated sequence is
assigned as the result of clustering and npi (α) and npi (β)
are, respectively, the numbers of residues of types a and
b in sequence position i of a subfamily p.
The two terms of Eq.1 are complementary measures

of evolutionary conservation; therefore, a combination
of these scores provides more information about the
potential functional impact of a mutation.

The statistical measure of the non-uniformity of
distributions
Any selection process results in non-uniformity of distri-
butions. Therefore we compared silent, truncating and
missense mutations by the non-uniformity of distribu-
tions of these mutations across genes. We compared
separately the non-uniformity of distributions within dif-
ferent groups of genes such as tumor suppressors
(~850), oncogenes (~150), annotated cancer genes
(~3,700), and remaining non-cancer genes. We tested a
hypothesis that the non-uniformity of distributions
increases with the value of the functional impact.
The simple and effective measure of the non-uniformity

of a mutation distribution across genes in a given data set
can be introduced as a ratio of the total number of mutated
genes,Q, to the effective number of mutated genes, K :

µ = Q/K (2)

The effective number of mutated genes in a given
dataset, K, is defined as a ratio of the total number of
mutations in a data set, M, to the weighted average
number of mutations per gene, 〈N〉,

K = M
/〈N〉 (3)

where

〈N〉 =
∑

i=1,...,Q
Ni·

(
Ni/M

)
= M

∑
i=1,...,Q

p2i = M · λ (4)

and

λ =
∑

i=1,...,Q
p2i =

∑
i=1,...,Q

(Ni
/
M)2 (5)

is the Simpson diversity index [40].

Thus,

K = M
/〈N〉 = 1

/
λ (6)

and

μ = λQ (7)

In the case, when all genes are mutated fairly propor-
tionally pi = Ni/M ∼ 1/Q that gives λ ∼ Q · (

1/Q
)2 = 1/Q.

Then the effective number of genes K is close to the actual
number of genes K = 1/λ ∼ Q and the non-uniformity
μ = λQ ∼ Q · (

1/Q
) ∼ 1.

However, when mutations of only one or few genes
represent the overwhelming majority of all mutations,
the distribution of mutations across genes is extremely
non-uniform and the diversity index λ ∼ 1. Then the
effective number of mutations K = 1/λ ∼ 1 and
μ = λQ ∼ Q becomes a large number, when the total
number of genes is a dataset is large.
Thus, the non-uniformity coefficient μ can be used as a

measure of selection of mutations in cancer; μ is close to
one, when there is no selection or selection is weak and μ
is larger, when mutations undergo selection pressure.

Cancer gene lists
The cancer gene list used in this study is a combination of
the three lists: the web-based resource of CancerGenes,
which combines gene lists annotated by experts with
information from key public databases [35], the cancer
genes of Sanger Institute [34] and a gene list of frequently
mutated genes with predicted functional mutations [30]
derived from the COSMIC database [25,31]. The Addi-
tional File 1 (Table S1) provides with summarized statis-
tics in the lists and Additional File 2 presents the actual
genes with the basic cancer annotations.

Conclusion
The main task in analysis of somatic mutations in can-
cer is determining driver mutations that provide a
selective advantage to cancer cells. The recurrence of
driver mutations is a signature of selection. Recurrent
driver mutations can be differentiated from benign pas-
sengers by the predicted functional impact 30. In this
work, we showed that the predicted functional impact
can be generally applied to identify drivers by revealing
trends of evolutionary selection of predicted functional
mutations in systematic tests conducted on ~120 mis-
sense mutations of six different cancers. We found an
important correlation between the value of the pre-
dicted functional impact and selection: higher pre-
dicted functional impact correlates with stronger
selection trends. Hence, we conclude that the func-
tional impact score can be used for prediction of driver
mutations and genes.
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The functional impact score used in this work [30]
represents the evolutionary conservation of residues in
protein sequences. The greater values of the score corre-
spond to higher evolutionary conservation. Thus, the
conducted tests showed that mutations affecting evolu-
tionary conserved residues tend to be selected in tumor
evolution. Or, in other words, rapidly unfolding tumor
evolution selects mutations affecting protein residues
conserved in millions of years of natural history. This
means that the main reservoirs of functional diversity in
proteins are the residues that are selected and conserved
in molecular evolution.
In this study, we showed that predicted functional

mutations (potential drivers) are selected in annotated
cancer genes. This underscores the practical usefulness
of cancer gene lists. With more cancer genome sequen-
cing, a general list of cancer genes as well as specific
cancer gene lists are likely to be very useful in the prac-
tice of personalized cancer treatment.
We interpreted as a trend of selection the fact that

predicted functional mutations are concurrently selected
in genes affected by truncation mutations and by copy
number losses. This fact emphasizes the diversity of
genomic alterations in cancer. Thus, accurate prediction
of cancer driver mutations can be done only in the con-
text of all genomic alterations, possibly by utilizing an
integrated profile of functional genomic alterations
where predicted functional missense mutation are taken
into account together with truncating mutations and
gene copy number alterations.

Additional material

Additional file 1: contains a Table S1 summarizing the annotations
of Cancer Gene List used in the study, a Table S2 presents the non-
uniformities of various mutation distributions across six different
cancers and a Table S3 presents the effective numbers of genes
derived at different thresholds of the FIS.

Additional file 2: (Table SM2) presents a combined cancer gene list
with basic cancer annotations.

Competing interests
The author declares that they have no competing interests.

Acknowledgements
The author is grateful to Alexei Finkelstein, Chris Sander and Niki Schultz for
constructive discussions, to Will Lee and Robert Fieldhouse for careful
reading and useful remarks. This work was supported by NIH grant R01
CA132744-02.

Declarations
The publication costs for this article were funded by NIH grant R01
CA132744-02.
This article has been published as part of BMC Genomics Volume 14
Supplement 3, 2013: SNP-SIG 2012: Identification and annotation of SNPs in
the context of structure, function, and disease. The full contents of the

supplement are available online at http://www.biomedcentral.com/
bmcgenomics/supplements/14/S3

Published: 28 May 2013

References
1. Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D, Stern HM, Yue P,

Haverty PM, Bourgon R, Zheng J, et al: Diverse somatic mutation patterns
and pathway alterations in human cancers. Nature 2010,
466(7308):869-873.

2. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, Shen D,
Boca SM, Barber T, Ptak J, et al: The genomic landscapes of human breast
and colorectal cancers. Science 2007, 318(5853):1108-1113.

3. Cancer Genome Atlas N: Comprehensive molecular portraits of human
breast tumours. Nature 2012, 490(7418):61-70.

4. Cancer Genome Atlas N: Comprehensive molecular characterization of
human colon and rectal cancer. Nature 2012, 487(7407):330-337.

5. Cancer Genome Atlas Research N: Integrated genomic analyses of ovarian
carcinoma. Nature 2011, 474(7353):609-615.

6. Cancer Genome Atlas Research N: Comprehensive genomic
characterization defines human glioblastoma genes and core pathways.
Nature 2008, 455(7216):1061-1068.

7. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D,
Leary RJ, Ptak J, Silliman N, et al: The consensus coding sequences of
human breast and colorectal cancers. Science 2006, 314(5797):268-274.

8. Chin L, Hahn WC, Getz G, Meyerson M: Making sense of cancer genomic
data. Genes & development 2011, 25(6):534-555.

9. Ding L, Wendl MC, Koboldt DC, Mardis ER: Analysis of next-generation
genomic data in cancer: accomplishments and challenges. Hum Mol
Genet 2010, 19(R2):R188-196.

10. Cancer Genome Atlas Research N, Hammerman PS, Hayes DN,
Wilkerson MD, Schultz N, Bose R, Chu A, Collisson EA, Cope L, Creighton CJ,
et al: Comprehensive genomic characterization of squamous cell lung
cancers. Nature 2012, 489(7417):519-525.

11. Consortium TCGA: Integrative analysis of genomic alterations in clear cell
renal carcinoma. Nature (submitted) 2012.

12. Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, Schinzel AC,
Harview CL, Brunet JP, Ahmann GJ, Adli M, et al: Initial genome sequencing
and analysis of multiple myeloma. Nature 2011, 471(7339):467-472.

13. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP,
Nickerson E, Auclair D, Li L, Place C, et al: A landscape of driver mutations
in melanoma. Cell 2012, 150(2):251-263.

14. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M:
Impact of mutant p53 functional properties on TP53 mutation patterns
and tumor phenotype: lessons from recent developments in the IARC
TP53 database. Hum Mutat 2007, 28(6):622-629.

15. Heo WD, Meyer T: Switch-of-function mutants based on morphology
classification of Ras superfamily small GTPases. Cell 2003, 113(3):315-328.

16. Haber DA, Settleman J: Cancer: drivers and passengers. Nature 2007,
446(7132):145-146.

17. Bozic I, Antal T, Ohtsuki H, Carter H, Kim D, Chen S, Karchin R, Kinzler KW,
Vogelstein B, Nowak MA: Accumulation of driver and passenger
mutations during tumor progression. Proceedings of the National Academy
of Sciences of the United States of America 2010, 107(43):18545-18550.

18. Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M,
Johnson BE, Eck MJ, Tenen DG, Halmos B: EGFR mutation and resistance
of non-small-cell lung cancer to gefitinib. The New England journal of
medicine 2005, 352(8):786-792.

19. Chin L, Andersen JN, Futreal PA: Cancer genomics: from discovery science
to personalized medicine. Nature medicine 2011, 17(3):297-303.

20. Getz G, Hofling H, Mesirov JP, Golub TR, Meyerson M, Tibshirani R,
Lander ES: Comment on “The consensus coding sequences of human
breast and colorectal cancers”. Science 2007, 317(5844):1500.

21. Dees ND, Zhang Q, Kandoth C, Wendl MC, Schierding W, Koboldt DC,
Mooney TB, Callaway MB, Dooling D, Mardis ER, et al: MuSiC: identifying
mutational significance in cancer genomes. Genome Res 2012,
22(8):1589-1598.

22. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G,
Davies H, Teague J, Butler A, Stevens C, et al: Patterns of somatic mutation
in human cancer genomes. Nature 2007, 446(7132):153-158.

Reva BMC Genomics 2013, 14(Suppl 3):S8
http://www.biomedcentral.com/1471-2164/14/S3/S8

Page 12 of 13

http://www.biomedcentral.com/content/supplementary/1471-2164-14-S3-S8-S1.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-14-S3-S8-S2.xlsx
http://www.biomedcentral.com/bmcgenomics/supplements/14/S3
http://www.biomedcentral.com/bmcgenomics/supplements/14/S3
http://www.ncbi.nlm.nih.gov/pubmed/20668451?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20668451?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17932254?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17932254?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23000897?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23000897?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22810696?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22810696?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21720365?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21720365?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18772890?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18772890?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16959974?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16959974?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21406553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21406553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20843826?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20843826?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22960745?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22960745?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21430775?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21430775?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22817889?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22817889?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17311302?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17311302?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17311302?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12732140?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12732140?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17344839?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20876136?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20876136?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15728811?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15728811?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21383744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21383744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17872429?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17872429?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22759861?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22759861?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17344846?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17344846?dopt=Abstract


23. Fischer A, Greenman C, Mustonen V: Germline fitness-based scoring of
cancer mutations. Genetics 2011, 188(2):383-393.

24. Illingworth CJ, Mustonen V: Distinguishing driver and passenger
mutations in an evolutionary history categorized by interference.
Genetics 2011, 189(3):989-1000.

25. Forbes SA, Bhamra G, Bamford S, Dawson E, Kok C, Clements J, Menzies A,
Teague JW, Futreal PA, Stratton MR: The Catalogue of Somatic Mutations
in Cancer (COSMIC). Curr Protoc Hum Genet 2008, Chapter 10, Unit 10 11.

26. Linardou H, Dahabreh IJ, Bafaloukos D, Kosmidis P, Murray S: Somatic EGFR
mutations and efficacy of tyrosine kinase inhibitors in NSCLC. Nature
reviews Clinical oncology 2009, 6(6):352-366.

27. Fratev F, Jonsdottir SO, Mihaylova E, Pajeva I: Molecular basis of inactive B-
RAF(WT) and B-RAF(V600E) ligand inhibition, selectivity and
conformational stability: an in silico study. Molecular pharmaceutics 2009,
6(1):144-157.

28. Dixit A, Yi L, Gowthaman R, Torkamani A, Schork NJ, Verkhivker GM:
Sequence and structure signatures of cancer mutation hotspots in
protein kinases. PLoS One 2009, 4(10):e7485.

29. Gonzalez-Perez A, Lopez-Bigas N: Functional impact bias reveals cancer
drivers. Nucleic Acids Res 2012.

30. Reva B, Antipin Y, Sander C: Predicting the functional impact of protein
mutations: application to cancer genomics. Nucleic acids research 2011,
39(17):e118-e118.

31. Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A, Flanagan A,
Teague J, Futreal PA, Stratton MR, et al: The COSMIC (Catalogue of
Somatic Mutations in Cancer) database and website. Br J Cancer 2004,
91(2):355-358.

32. Gonzalez-Perez A, Lopez-Bigas N: Improving the assessment of the
outcome of nonsynonymous SNVs with a consensus deleteriousness
score, Condel. Am J Hum Genet 2011, 88(4):440-449.

33. Gonzalez-Perez A, Deu-Pons J, Lopez-Bigas N: Improving the prediction of
the functional impact of cancer mutations by baseline tolerance
transformation. Genome medicine 2012, 4(11):89.

34. Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N,
Stratton MR: A census of human cancer genes. Nat Rev Cancer 2004,
4(3):177-183.

35. Higgins ME, Claremont M, Major JE, Sander C, Lash AE: CancerGenes: a
gene selection resource for cancer genome projects. Nucleic Acids Res
2007, 35(Database):D721-726.

36. Furney SJ, Higgins DG, Ouzounis CA, Lopez-Bigas N: Structural and
functional properties of genes involved in human cancer. BMC genomics
2006, 7:3.

37. [http://cbio.mskcc.org/Mapback/].
38. Beroukhim R, Getz G, Nghiemphu L, Barretina J, Hsueh T, Linhart D,

Vivanco I, Lee JC, Huang JH, Alexander S, et al: Assessing the significance
of chromosomal aberrations in cancer: methodology and application to
glioma. Proceedings of the National Academy of Sciences of the United States
of America 2007, 104(50):20007-20012.

39. Reva BA, Antipin YA, Sander C: Determinants of protein function revealed
by combinatorial entropy optimization. Genome Biol 2007, 8(11):R232.

40. [http://en.wikipedia.org/wiki/Diversity_index].

doi:10.1186/1471-2164-14-S3-S8
Cite this article as: Reva: Revealing selection in cancer using the
predicted functional impact of cancer mutations. Application to
nomination of cancer drivers. BMC Genomics 2013 14(Suppl 3):S8.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Reva BMC Genomics 2013, 14(Suppl 3):S8
http://www.biomedcentral.com/1471-2164/14/S3/S8

Page 13 of 13

http://www.ncbi.nlm.nih.gov/pubmed/21441214?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21441214?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21900272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21900272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18428421?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18428421?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19483740?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19483740?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19248232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19248232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19248232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19834613?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19834613?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22904074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22904074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21727090?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21727090?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15188009?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15188009?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21457909?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21457909?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21457909?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23181723?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23181723?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23181723?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14993899?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17088289?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17088289?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16405732?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16405732?dopt=Abstract
http://cbio.mskcc.org/Mapback/
http://www.ncbi.nlm.nih.gov/pubmed/18077431?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18077431?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18077431?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17976239?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17976239?dopt=Abstract
http://en.wikipedia.org/wiki/Diversity_index

	Abstract
	Introduction
	Results and discussion
	Method
	The functional impact score
	The statistical measure of the non-uniformity of distributions
	Cancer gene lists

	Conclusion
	Competing interests
	Acknowledgements
	Declarations
	References

