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Abstract

Background: Annotating mammalian genomes for noncoding RNAs (ncRNAs) is nontrivial since far from all ncRNAs
are known and the computational models are resource demanding. Currently, the human genome holds the best
mammalian ncRNA annotation, a result of numerous efforts by several groups. However, a more direct strategy is
desired for the increasing number of sequenced mammalian genomes of which some, such as the pig, are relevant as
disease models and production animals.

Results: We present a comprehensive annotation of structured RNAs in the pig genome. Combining sequence and
structure similarity search as well as class specific methods, we obtained a conservative set with a total of 3,391
structured RNA loci of which 1,011 and 2,314, respectively, hold strong sequence and structure similarity to structured
RNAs in existing databases. The RNA loci cover 139 cis-regulatory element loci, 58 lncRNA loci, 11 conflicts of
annotation, and 3,183 ncRNA genes. The ncRNA genes comprise 359 miRNAs, 8 ribozymes, 185 rRNAs, 638 snoRNAs,
1,030 snRNAs, 810 tRNAs and 153 ncRNA genes not belonging to the here fore mentioned classes. When running the
pipeline on a local shuffled version of the genome, we obtained no matches at the highest confidence level.
Additional analysis of RNA-seq data from a pooled library from 10 different pig tissues added another 165 miRNA loci,
yielding an overall annotation of 3,556 structured RNA loci. This annotation represents our best effort at making an
automated annotation. To further enhance the reliability, 571 of the 3,556 structured RNAs were manually curated by
methods depending on the RNA class while 1,581 were declared as pseudogenes. We further created a multiple
alignment of pig against 20 representative vertebrates, from which RNAz predicted 83,859 de novo RNA loci with
conserved RNA structures. 528 of the RNAz predictions overlapped with the homology based annotation or novel
miRNAs. We further present a substantial synteny analysis which includes 1,004 lineage specific de novo RNA loci and 4
ncRNA loci in the known annotation specific for Laurasiatheria (pig, cow, dolphin, horse, cat, dog, hedgehog).

Conclusions: We have obtained one of the most comprehensive annotations for structured ncRNAs of a mammalian
genome, which is likely to play central roles in both health modelling and production. The core annotation is available
in Ensembl 70 and the complete annotation is available at http://rth.dk/resources/rnannotator/susscr102/version1.02.
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Background
With the sequencing of the human genome it became
evident that protein coding sequences only make up
about ∼1.2% of a mammalian genome [1]. It has since
then been a main challenge to analyze the remaining part
of the genome. A non-negligible fraction of the genome
consist of noncoding RNAs (ncRNAs), an abundant class
of genes which are not translated to proteins and instead
function directly in the RNA form. In spite of the progress
in both computational RNA biology and experimental
techniques, annotating ncRNAs in mammalian genomes
remains a major challenge. The challenge is to carefully
pin point only functional ncRNAs, which can be done
through similarity to existing ncRNAs or de novo through
a combination of RNA structure prediction and RNA-seq
data. The latter may with subsequent effort reveal full
length transcripts, yet with unidentified function [2] and
functional assignment will require tedious lab work on
each instance.
The human genome is the most comprehensively anno-

tated mammalian genome. Yet, the annotation of ncRNAs
is still an ongoing effort, which was initiated with the
release of the human genome more than a decade ago
based on similarity search [3] and have expanded sev-
eral times most noteworthy in the recent ENCODE
and GENCODE projects [4-6]. Within the most recent
GENCODE annotation ∼9300 long ncRNAs (lncRNAs)
have been identified [6] by manual intervention, though
their functionality in general is yet to be uncovered.
More and more mammalian genomes are being

sequenced (the NCBI website as of May 2013 lists assem-
blies for 119 mammalian genomes). Thus it becomes
important to annotate ncRNAs in mammalian genomes
at least in a version containing the most well established
RNAs and RNA families. The annotation of new mam-
malian genomes will in general build upon the existing
annotation of the human genome; however, the corre-
sponding number of years of effort is not feasible and a
more direct strategy is needed.
The most comprehensive collection of structured RNAs

is found in Rfam [7,8], which has been constructed in
a large collaborate effort by the (noncoding) RNA com-
munity. However, even in Rfam the annotations lack
explicit functional annotation and the models for struc-
tured RNAs do not always hold a strong discrimination
power to pseudogenes, as these may be incorporated into
the Rfam seed sequences on which the structure models
are based [9]. It is in general not possible to distinguish
between real genes and pseudogenes, except for a few
cases, exemplified by tRNAs [10].
Analysis on early and incomplete pig sequencing data

for structured RNAs have been carried out previously
both on genomic as well as on EST data [11-13].Whereas,
the annotation of EST sequences was based on de novo

assembly comparison of the resulting contigs to related
organisms, the annotation of genomic DNA as frag-
mented due to low coverage and annotation was carried
out for all of the contiguous pieces in a similar way. Inter-
estingly the EST annotation provided additional expres-
sion profiles as well. These studies on the incomplete
genome included discovery of homologues as well as de
novo predicted ncRNAs. As it was shown for the full
transcriptomic analysis on the pig ESTs, the most diverse
expression is in brain and testes tissues [12] and par-
ticular brain and developmental tissues hold a relatively
higher expression of putative ncRNAs [13]. The search for
lncRNAs in the pig genome has just begun and includes
expression analysis of an mRNA-like ncRNA [14], sugges-
tion of an mRNA-like ncRNA [15] and two other cases in
the lncRNA database [16]. Other studies indicate a larger
number of putative lncRNAs in pig [17]. Also, recent
work has indicated a further potential for ncRNAs in Sus
scrofa, for example, by the use of the genomic sequence
to map small RNAs in the cumulus-oocyte complex and
in early embryos in the pig [18]. Likewise for the discov-
ery of miRNAs in the pig intestine [19] and in pig skeletal
muscles [20]. While these provide initial information, the
sequencing of the full genome for the first time opens for
a systematic analysis and annotation of ncRNAs in pig. By
annotating the pig genome for ncRNAs a range of related
production animals e.g., cow are being annotated as well
using comparative genomics in this study.
When annotating genomes of model animals such as the

pig it is also of interest to narrow down organisms or lin-
eage specific ncRNAs, as one would like to avoid these in
studying basic genetic mechanisms which can be used as
a template in for example human diseases. Conversely, the
lineage specific ncRNAs can potentially be highly relevant
when studying the underlying genetic mechanisms of not
only animal health, but also production.
To address the problem of ncRNA annotation of a

mammalian genome using a reasonable amount of man-
power resources, we here focus on structured RNAs, a
main characteristic of many ncRNAs and regulatory ele-
ments in UTRs of mRNAs. We introduce a pipeline using
the complementing resources of sequence or structure
homology search, and small RNA-seq data analyzed for
the potential of miRNAs. On top of this we address de
novo annotation by employing RNAz [21]. The pipeline
exploits that a range of related organisms exists where the
genomes match up in regions extending beyond the indi-
vidual structured RNAs. This enables manual curation of
the structured RNAs and allows for synteny analysis of the
annotation produced in this paper. The recent sequenc-
ing of the pig genome has provided insight into a range
of medical, production and evolutionary aspects [22]. The
full genome sequence, furthermore, makes it possible to
obtain a good overview of the structured RNAs, genes as
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well as well as regulatory RNA structure, all with relevance
for the mentioned topics.

Results
The modules of the pipeline
In the following section we present a pipeline for annota-
tion of structured RNAs. The pipeline is targeted towards
annotation of complete vertebrate genomes, but could in
principle be used to annotate other types of genomes or
even a collection of individual sequences. The pipeline
also adds additional information to annotation in the form
of synteny and contextual information such as close-lying
protein coding genes.
The pipeline for annotation of structured RNAs

presented in Figure 1 is based on three main modules, (i)

annotation, (ii) pairwise and multiple alignments, and (iii)
tagging of the annotation. The last module adds additional
information to the annotation.
Module (i): the annotation pipeline. Here structured

RNA loci in a given input sequence(s) are annotated (an
RNA locus is in this work defined as a set of overlapping
RNA structure or sequence annotations). The annotation
is based on a number of methods, classified as either
sequence based homology search, structure based homol-
ogy search, RNA class specific methods, or de novo struc-
tured RNA prediction. The sequence based homology
search is presently based on BLAST [23] and a number of
databases of known ncRNA sequences (see Section RNAs
of the individual annotation tools for details). Structure
based homology search is performed with Infernal
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Figure 1 Pipeline. The modules of the RNA pipeline. Module 1 (annotation): The annotation pipeline takes as input any number of sequences and
runs a number of external annotation tools on it (see text for details). This leads to the initial annotation of the RNA loci in the sequence. A naming
and resolving tool decides on the final annotation of the locus. The 3,393 ncRNA genes cover 11 conflicts of annotation, 34 loci moved to the
medium confident annotation during the curation step, 165 novel miRNA loci found exclusively by miRDeep, and 3,183 ncRNA genes found by
homology. LncRNA loci and cis-regulatory elements are annotated separately. Module 2 (multiple alignments): The multiple alignment pipeline runs
on a genomic scale and aligns the genomic sequence of the input genome against any number of other genomes, finally forming multiple
alignments in MAF blocks. Module 3(post processing): The post-processing part of the pipeline adds context to the RNAs, which in many cases will
allow for a curation of the structured RNA loci. The numbers in parenthesis are those obtained after the removal of 34 annotations as part of the
curation procedure: 12 tRNAs, 15 homology based miRNAs, and 7 de novomiRNAs.
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[24] and covariance models (CM) from Rfam [7,8]. Class
specific methods are typically based on sequence or struc-
ture homology search but with some additional knowl-
edge about the RNA, at present tRNAscan-SE [10], and
RNAmmer [25] are built into the pipeline. snoStrip [26]
is another class specific tool used in the present study, but
is not yet fully integrated into the pipeline. The predic-
tion of structured de novo ncRNAs requires information
in addition to the sequence to be reliable, either in the
form of multiple alignment of (part of ) the input sequence
used with tools like RNAz [21] or CMfinder [27], or in
the form of RNA-seq data used with tools like miRDeep
[28]. This submodule of the pipeline thus requires addi-
tional user supplied input data, which sets this submodule
aside from the other three classification methods, which
work on the input sequence alone. Levels of certainty of
the RNA predictions are provided, as high, medium, low
corresponding to the different cutoff levels for the indi-
vidual tools, and the input to the annotator module will
depend on the input from the tools as well as the confi-
dence level. An overview of the cutoff levels are given in
Table 1. The next step is to mark and resolve the conflicts
that are introduced by the individual tools, or introduced
by the merging of the results of the tools. Some tools
are inherently conflict free like RNAmmer,tRNAscan-SE
and snoStrip. Some tools, however, are supposed to
be conflict free, like the Rfam models investigated with
Infernal. Also when employing a tool like BLAST on
a number of databases it is expected that a number of
conflicts are introduced. The conflicts introduced by run-
ning BLAST were partly resolved by choosing the hit
with the lowest E-value within each database and class
of RNAs, e.g., miRNAs or snoRNAs. Conflicts between
Rfam families introduced by running Infernal were
marked. Conflicts of annotation introduced by differ-
ent databases and conflicts introduced by different tools

between databases are only marked if they represent a
conflict in classification, e.g., a genomic locus is marked
as a conflict if annotated as both snoRNA and miRNA.
Different tools may indicate different names for the same
RNA.We assumed that if two tools both classified a loci as
belonging to the same class, but that the name used by the
two tools were different, this did not indicate a real con-
flict, but only a conflict in naming. Therefore a name of
the RNA is chosen based on a specific ranking of the tools
annotating the loci. In general, the class specific meth-
ods add extra information to the RNAs that they annotate
(e.g., tRNAscan-SE tests for the codon) or they anno-
tate full length RNAs, e.g., RNAmmer, where BLAST or
Infernal may be unable to. The predictions made by
high confident BLAST runs will normally be more con-
fident than the ones obtained from Infernal on the
same model. Therefore, in the naming procedure class
specific methods are preferred over BLAST, which in turn
is preferred over Infernal/Rfam. For a full overview
see Additional file 1: Table S1. De novo methods like
miRDeep and RNAz are only used as a last resort in the
naming and classification procedure.
The result of the two steps of module (i) is an uncurated

annotation which is to be analysed and curated in module
(ii) and (iii).
Module (ii): Pairwise and multiple alignments. This

module works on a full genome and aligns the genome
against any number of related genomes. A user supplied
phylogenetic tree is needed as well as a decision on the
parameters to use for the pairwise alignments. Three sets
of parameters for the pairwise alignments are provided: 1)
highly related genomes, 2) related genomes, 3) distantly
related genomes. These parameter choices are based on
those used for the UCSC 46-way alignment of the human
genome, where the three sets approximate the respec-
tive choices made for primates, placental mammals, and

Table 1 Cutoffs for individual tools at different global confidence levels

Comp. strategy High Medium Low

BLAST 95% id 95% length 92.5% id 92.5% length 90% id 90% length

Infernal
BLAST E=1e-3 BLAST E=0.1 No BLAST filter

Infernal E=1e-3 Infernal E=1e-3 Infernal E=1e-3

InfernalmiRNA Not applied
BLAST E=1e-3 BLAST E=0.1

Infernal E=1e-9 Infernal E=1e-6

tRNAscan-SE High High As is

RNAmmer As is As is As is

snoStrip As is As is As is

miRDeep Hand cleaned As is As is

The results from the individual tools are merged at 3 different cutoff levels: high, medium and low. This table shows the correspondence between the cutoff levels of
the merged annotation and those of the tools. For each computational (comp) strategy, we define these levels. Note that Infernal screen have been divided into
Infernal (without miRNAs) and InfernalmiRNA which is only for miRNA families. The Infernal results were filtered by the family specific gathering scores as
well. For As is, we refer to the programs default values for the respective versions (see the Methods section for version numbers) without subsequent cleaning.
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non-placental mammals as well as other vertebrates. The
module is a framework built over pairwise alignments
with LASTZ [29] and subsequent chaining and filtering
with the UCSC [30] tool chain.
Module (iii): This module provides genomic context

to the RNA annotation, or additional knowledge about
the annotations. At present the following submodules
are implemented: 1) Genic context, requires the Ensembl
(protein coding) gene annotation. 2) Clustering of RNA
loci, checks for other RNA loci annotated in the vicinity
of the one in question. 3) Conservation of the sequence in
other organisms derived from the pairwise alignments. 4)
Conservation of structure derived from themultiple align-
ments using RNAz. Based on this information a curation
of particular RNA loci or RNA classes is possible, which
leads to the curated annotation.
The pipeline for RNA annotation presented above in

module (i) is a flexible framework for RNA annotation,
which may be extended by any number of future tools.

RNAs of the individual annotation tools
The pipeline presented above was used to annotate the
pig genome version 10.2. In this section we present and
discuss the results of the RNA annotations obtained from
the individual tools ordered by their classifications as
sequence based homology search tools, structure based
homology search tools, and class specific search tools.
Details about the cutoffs used for the tools at high,
medium and low confident levels are given in Table 1,
while the medium and low confident results are mostly
confined to Additional file 1.
Sequence based homology search using BLAST was per-

formed against a number of databases (see Methods
section for details; an overview of the databases is also
given in Additional file 1: Table S2). The databases have
not been redundancy reduced and the sequences are used
without modifications. The only exception is the miRNAs
from the Rfam seeds, which had special problems and they
were therefore excluded from the high confident results.
The reason is that at least some Rfam miRNA families are
inconsistent with miRBase (an example is mir-28, mir-708
where high confident BLAST Rfam hits are observed on
the same locations on opposite strands, however miRBase
only match one of the two families to a given location and
the families are only weakly related. In the Rfam version
11 the two families are allowed some overlap by declaring
them part of the same clan).
We found 1,032 high confident (95% id over 95% of

the query length) RNA loci belonging to a total of 507
different RNA families see Additional file 1: Table S3
for the high confident sequence homology search results;
the medium and low confident results are included in
the table for completeness. Special care must be taken
when using miRBase for annotation, since it contains both

experimentally determined miRNAs and miRNAs deter-
mined by homology. In a few cases even purely in silico
discovered miRNAs have entered the database (e.g., [31]).
This resulted in removal of 15 miRNA loci, which were
found by homology to sequences without experimental
evidence in miRBase, and which have no experimental
support in this study (see Section Small RNA Sequenc-
ing and novel miRNA predictions). In total we obtained 6
annotation conflicts, within the sequence similarity search
results. The conflicts were always found to be between a
miRNA from miRBase and a snoRNA (scaRNA or HACA
box), or a miRNA from miRBase and SRP RNA from
Rfam. For an overview of misannotation of miRNAs from
small RNA-seq data see Langenberger et al. [32].
Structure based homology search was performed with

Infernal [24] on the covariance models of the RNA
families from Rfam (version 10.1) [7,8]. Here, we only
used the 695 families with seed sequences in vertebrates.
Each Rfam family comes with a family dependent gath-
ering score cutoff, however this alone proved insufficient
for high confidence annotation since without additional
filtering the scan of the Rfam families in the pig genome
with Infernal yielded 709,026 loci, where 8% of them
had conflicting Rfam annotation.
In light of the high number of matches presented by

the unfiltered Infernal results we decided to impose
additional filters on the structure based annotation. The
details are found in the Methods section. In the cur-
rent section, we touch upon the methodology and present
the results of imposing these additional filters. For an
overview see also Table 1.
The miRNA families come with special problems and

must therefore be treated separately. These problems
include families specifying a very broad range of miRNAs,
whichmakes these families unsuitable for specific annota-
tion and the Rfam miRNA families also come with a very
high number of conflict loci without very strict filtering
(see Methods section for details). For the non-miRNA
families we in most cases use the Infernal E-value cut-
offs corresponding to the family specific gathering score
cutoff level. However, for families where this Infernal
E-value cutoff would be higher than 1e-3 we keep it at
1e-3. For a sequence to be matched with high confidence
to a particular family, we require that the sequence shows
overlapping Infernal and BLAST matches to the fam-
ily. For the high confident annotation we set the BLAST
E-value cutoff to 1e-3. For the medium confidence anno-
tation we lower the BLAST overlap requirement to a
BLAST E-value cutoff of 0.1 and for the low confidence
annotation we need no overlap in the BLAST compar-
ison. Even a loose BLAST overlap requirement has the
effect that it anchors the hit to the right family, thereby
greatly reducing the number of conflicts and number of
false family assignments at these levels.
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Just as the Rfam precursor miRNA families were
removed from the high confident sequence based anno-
tation, we also removed them from the high confident
structure based annotation (high confident homology
based annotation of miRNAs is thus only performed for
miRNA sequences from miRBase and only with sequence
based homology search). For the medium and low con-
fident annotations of Rfam miRNA families, we impose
Infernal E-value cutoffs of 1e-9, and 1e-6, respectively.
The miRNA precursor families are further required to
have an overlapping BLAST hit, in both medium and low
confidence annotations.
It is worth noticing some pitfalls of using Infernal

with the Rfam families. First of all, we root out most
problems by imposing a BLAST filter, by discarding the
non-miRNA families, and by only looking at families with
seeds in vertebrates. This causes the loss of a few fam-
ilies that otherwise would have been detected at lower
cutoffs. For example, we find an extra 6 non-miRNA fam-
ilies at the lowest cutoff level. Two of them, VA and
ACAT, are likely false positives without synteny to their
origins in the original organisms. The other four, GAIT,
CoTC_ribozyme, SNORD126 and ACA59, however, are
syntenic to their human counterparts and could well be
true matches that we miss because of the filtering. On
the other hand, some families will still have false posi-
tives, pseudogenes or remote homologs, and we are left
with no clear way to distinguish these by automatic means
alone. We therefore proceed to curate the annotation in
the coming sections. Hence, the high confident annota-
tion represent a conservative automated structured RNA
annotation, without curation of individual RNAs or RNA
families.
We found 2,324 high confident loci with structure based

homology distributed on 317 families (see Additional
file 1: Table S4 for a summary of the structure homol-
ogy based results). In contrast to the sequence similarity
based results, conflicts are marked between overlapping
Rfam families, rather than overlapping RNA classes. How-
ever, with the applied cutoffs we found conflicts only in
the medium and low confident results, while the high
confident results were free of conflicts. If we compare
the 533 high confident BLAST results based on the Rfam
database (see Additional file 1: Table S5) with the high
confidence results of the Infernal run in Additional
file 1: Table S4 we found that an additional 194 Rfam fam-
ilies and an additional 1,791 loci may be annotated with
high confidence using structure based homology search.
Class specific methods were used to further enhance

and extend the annotations of tRNAs (tRNAscan-SE),
rRNAs (RNAmmer), and snoRNAs (snoStrip).
We scanned for tRNAs with tRNAscan-SE [10] in

addition to the pure homology-searchmethods presented
above. In the human genome tRNAscan-SE predicts

a reasonable number of tRNAs (<1,000) but for other
mammalian genomes number of tRNAs predicted by
tRNAscan-SE is often much higher (See, e.g., cow in the
tRNAscan-SE database on the tRNAscan-SE home-
page). Here we adopt the cutoffs used for cow in the
tRNAscan-SE database to gain a set of high confident
tRNA candidates (See Methods section for details). The
unfiltered (or low confident) scan generated 32,303 tRNA
loci compared to the 810 loci of the filtered results (high
confident). 21 different tRNA types were found within
the filtered results; tRNA.SeC were found in addition
among the loci of the unfiltered results. The division of the
tRNAscan-SE results on types are found in Additional
file 1: Table S6.
The combination of tRNAs found by BLAST,

Infernal and tRNAscan-SE produced 822 high con-
fident results. However, as part of the cleanup of the
annotation we changed the 12 tRNAs not detected by
tRNAscan-SE from high to medium confident anno-
tation. Thus reducing the number of tRNAs to 810. It
is noteworthy that 389 of the 810 (48%) high confident
tRNAs were found to be conserved in at least 5 other
organisms (see Section Human and pig synteny analysis
for details), while less than 2% of the 32,320 low confi-
dent tRNA candidates are conserved in at least 5 other
organisms.
The RNAmmer [25] scan generated 182 rRNA loci sub-

divided on two 28S fragments, four 18S fragments and
176 8S fragments. The RNAmmer hits were considered to
be high confident. The results of the RNAmmer scan were
not directly comparable to the sequence similarity search
since RNAmmer detects the larger ribosomal fragments,
which BLAST have difficulties with, unless the hits are
subsequently clustered. However, the 4 large ribosomal
RNAs found by medium confident sequence similarity
search are all included in the RNAmmer results.
snoStrip [26] generated a total of 173 snoRNA

families in 513 loci, these are considered high confi-
dent results. In comparison, Infernal identified 508
Rfam based snoRNA loci. However, out of the 638
combined Infernal and snoStrip loci, 130 are
unique to Infernal and 137 are unique to snoStrip.
The annotation created by snoStrip will like the
Infernal/Rfam snoRNAs include pseudogenes and
possibly false positives as well (see the Methods section
for false positives on shuffled sequence).
The annotation obtained in this section represents

the raw annotation, which in the next section will be
refined.

Merged annotations of the homology based RNA loci
The annotations obtained from the individual tools are
merged in an automated fashion, which will on the one
hand ignore simple naming differences between the tools,
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but will on the other hand highlight real annotational
conflicts.
We merged the high confident results of the individual

tools to obtain the high confident annotation of structured
RNAs (see Table 1 for the applied cutoffs). We found a
total of 3,391 homology based high confident structured
RNA loci and structural RNA elements after moving 12
tRNAs and 15 miRNAs to the medium confident annota-
tion (Table 2). Of these 139 are cis-regulatory elements,
58 lncRNA loci (these are typically sub structures of the
full length lncRNA), 3,183 (full length) ncRNA genes,
and 11 conflicts of annotation. The distribution of the
loci on those found by sequence similarity search, struc-
ture homology search and class specific tools is shown in
Figure 2(a). A similar table with the homology based tools
merged at the medium confident level and low confident
level, respectively, is found in Additional file 1: Table S7.
The high number of loci found by sequence similarity

alone (red area in the figure) are primarily miRNAs found
by similarity to miRNAs in miRBase, but miRNA families
were excluded from the high confident structure similar-
ity search. However, 19 loci found by sequence homology
to sequences from Rfam were unconfirmed by structure
homology. These are indicated by the red and purple areas

Table 2 Results of the homology based pipeline

RNA class High

Families Loci

cisreg-elements 31 139

lncRNA-loci 58 58

miRNA 321 359

ribozyme 3 8

rRNA 5 185

snoRNA 211 638

snRNA 10 1,030

tRNA 51 810

Other 7 153

Conflict 9 11

Sum 706 3,391

The combined results of the sequence similarity search, structure homology
search and class specific tools at the high confident cutoff level (See Table 1).
The column RNA class contains cisreg-elements: cis-regulatory elements from
Rfam/Infernal; lncRNA-loci: Infernal lncRNA structure loci; the next 7 rows
contain (full length) ncRNA genes, miRNA: BLAST frommiRBase and miRDeep
predictions; ribozyme: ribozymes from Rfam/Infernal; rRNA: ribosomoal
RNAs primarily from RNAmmer; snRNA and snoRNA: BLAST results and results
from Infernal/Rfam; tRNA: tRNAs tRNAs from BLAST; tRNAscan-SE and
Infernal/Rfam; lncRNA-loci: structural loci from larger genes(lncRNAs); other:
RNA families from Rfam not belonging to one of the other classes; conflict:
conflicts of annotation. Loci are the number of RNA loci of a given class; Families
are a subdivision of classes into RNAs with the same name. 12 tRNAs and 15
miRNAs were moved to the medium confident annotation as part of the
curation procedure. See text for details. Note that for the final high confident
annotation we add 165 RNA-seq based miRNA candidates, reaching the total of
3,556 high confident RNA loci.

Class speci c
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1300(1291) 700

219
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(a)  BLAST all databases (b)  BLAST restricted to Rfam

Figure 2 Homology based annotation in overview. The Venn
diagrams for counting the high confident structured RNA loci found
with sequence homology search (BLAST), structure homology
search (Infernal) and class specific tools (tRNAscan-SE,
snoStrip, and RNAmmer). (a) The diagram includes all 3,418 high
confident structured RNA loci obtained by homology. (b) The
similarity search is confined to the Rfam seed sequences (excluding
the miRNA families in Rfam). 19 loci found by high confident BLAST
against the Rfam sequences is missed by high confident structure
homology search (18 + 1 in the red and purple areas of the right hand
side of the figure). The reason is our additional Infernal E-value
cutoff of 1e-3 imposed on all families. See text for detailed discussion.
The numbers in parenthesis are after removal of 12 tRNAs and 15
miRNAs loci removed in the cleanup procedure. A total of 3,391 RNA
loci were found. Of these 1,011 loci were found by sequence
similarity, 2,314 were found by structure similarity, and 1,505 were
detected by class specific methods.

in Figure 2(b). 15 of these 19 loci belong to two cis-
regulatory families (SECIS_1 and IRE), 3 are tRNAs and
1 is a snoRNA belonging to the U3 family. In particular a
cluster of 10 IRE loci located on chromosome 13 appear
to be valid. 8 of these were confirmed by sequence sim-
ilarity alone, however our imposed Infernal E-value
cutoff of 1e-3 filter them out, while 2 were confirmed
by both sequence and structure homology. The three
tRNAs all fail the E-value filter of 1e-3, however, two
of the tRNAs appear to be valid family members, both
confirmed by low confident tRNAscan-SE. The third
sequence might be incorrectly entered into the Rfam seeds
with an Infernal E-value of 3.04e-02. TheU3 locus may
be an incorrectly curated sequence in Rfam with a score
only half of the gathering score cutoff.
The substantial change between the two Venn diagrams

(Figure 2) in the counts of the loci found by class specific
tools and/or sequence and structure homology is caused
by tRNAs found by BLAST against tRNAdb, but not found
by BLAST against the tRNA seeds from the Rfam fam-
ily. Amongst the 701 loci found by class specific tools
alone were 115 rRNAs (16%), 135 snoRNAs (19%), and 451
tRNAs (64%). All but 21 rRNAs found by the class spe-
cific RNAmmer were recaptured by Infernal in the 5S
rRNA family in the complete Infernal scanwithout any
BLAST filtering and using the family specific gathering
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score as cutoff. However, the gathering score cutoff imply
an Infernal E-value cutoff of ∼1000 for the 5S rRNA
family. Similarly, 220 of the 451 tRNA candidates found
by tRNAscan-SE but missed by high confident structure
homology search were also found in the tRNA Rfam fam-
ily in the complete Infernal scan. Here the gathering
score cutoff implied an Infernal E-value cutoff of ∼
30. Finally, 37 of the 135 snoRNAs found by snoStrip
were also found in the complete Infernal scan. For
the 5S ribosomal RNAs, tRNAs and for the snoRNAs
detected by snoStrip, the difference in the loci detected
by Infernal and by the class specific tools, indicates
that sequence based homology search and additional test
for class specific methods is a more optimal way of search-
ing for these classes and genes. As a final remark, 1,127
of the 1,519 (74%) loci found by Infernal, but missed
by the class specific tools, were marked as pseudogenes in
the curation procedure (see the following sections).
Merging the results of the tools at the high confidence

level introduced two kinds of inconsistencies. Firstly,
naming differences due to inconsistent naming of the
RNAs in different databases and by different tools. This
type of inconsistencies were resolved by consistently pre-
ferring one tool over the others within each class of RNAs
(See Additional file 1: Table S1). Secondly, the remain-
ing inconsistencies will be genuine conflicts that needs
to be resolved by hand, if possible. The conflicts within
the high confident results are all between a miRNA and
a non-miRNA. That is, some miRNA and one of the
following snoRNAs: SNORA36, SNORA81, SCARNA4,
SNORD59, SNORA53, SCARNA15, and SNORA18; Mir-
1285 and Metazoa _SRP; and finally 28S rRNA and 4
different miRNAs.
This concludes the homology part of the annotation.

Overall the homology part of the pipeline contributed
3,391 high confident structured RNAs (see Figure 2), after
removal of 12 tRNAs and 15 miRNA loci in the cleanup
procedure. The next section will deal with the small RNA-
seq data, which will not only add confidence to the high
confident miRNAs annotated above, but will also move
a few medium or low confident miRNAs annotated by
homology into the high confident annotation.

Small RNA sequencing and novel miRNA predictions
Ten combined small RNA libraries were sequenced and
scanned for miRNAs using miRDeep (See Methods
section for details). The read profiles are available for
download and online visualisation from http://rth.dk/
resources/rnannotator/susscr102/version1.02.
The raw output from miRDeep indicated 467 putative

miRNA loci with at least 10 reads present. However, due
to duplication of genomic sequence in assembled chro-
mosomes as well as unplaced scaffolds only 421 unique
miRNA precursor sequences and 381 mature sequences

were found. (Note: The 421 miRNA precursors were
given provisional names, pre-1 . . . pre-421, pending cor-
rect names upon addition to miRBase). The cleanup pro-
cedure described in the Methods section reduced the
number of sequences to 388 spanning 431 loci.
Of the 388 precursor sequences 174 are already known

for pig inmiRBase version 18, a further 69 could be identi-
fied by high confident sequence identity to miRNAs from
other organisms in miRBase version 18. Finally 10 precur-
sors without high confident annotations were identified
using a combination of low-confident sequence identity
(90% id), and synteny to other organisms.
The RNA annotations from the pipeline were checked

for overlap with the small RNA library. We required a
block of at least 10 reads overlapping with at least 20
nucleotides of the annotation and found overlap with 780
of the high confident annotations and 819 of the low con-
fident annotations (308 and 329 of those were miRNAs
at the respective annotation levels). See Additional file
1: Table S8 for a complete list of read supported high
confident annotation.
The small RNA-seq data may have reads from ncR-

NAs yet to be discovered, beyond the miRNAs found
by miRDeep. In the next section we present analysis
with a recently developed tool, which may aid in find-
ing new ncRNAs based on reads from small RNA-seq
data.

Annotation of de novo RNA transcripts using read profiles
and deepBlockAlign
Small RNA sequencing data may contain transcripts,
beyond miRNAs. To detect these de novo RNA tran-
scripts, the closely spaced (<30 nt) set of mapped
reads were grouped into distinct so-called block groups
using blockbuster [33] and the resulting block group
structures were compared by their read profiles using
deepBlockAlign [34] to obtain putative RNA annota-
tions of the unknown transcripts. See Methods section for
details.
From blockbusterwe found 1,127 block groups with

a length of at least 50 nt, of which 541 overlapped with
homology based annotations. Out of the 586 unannotated
block groups 40 overlapped with miRDeep predicted
novel miRNAs. By comparing (aligning) the read pro-
files of the annotated and unannotated RNA transcripts
using deepBlockAlign we were able to give putative
annotations to 165 block groups having no high confi-
dent homology annotation. The results are summarized in
Table 3.
deepBlockAlign and miRDeep share 36 predictions

and in most (31) of the cases deepBlockAlign agrees
with the miRNA assignments of the loci, however, 5 pre-
dictions made by miRDeep had read profiles that accord-
ing to deepBlockAlignwere most similar to snoRNAs

http://rth.dk/resources/rnannotator/susscr102/version1.02
http://rth.dk/resources/rnannotator/susscr102/version1.02
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Table 3 Annotation of unannotatedblock groups

miRDeep-unannotated miRDeep-miRNA Sum

dba-unannotated 417 4 421

dba-miRNA 46 31 77

dba-rRNA 1 0 1

dba-snoRNA 37 5 42

dba-snRNA 6 0 6

dba-tRNA 39 0 39

dba-annotated 129 36 165

Sum 546 40 586

The transcripts from the small RNA study without annotation by the homology
based pipeline were analysed with blockbuster resulting in 586 transcripts
(block-groups). The table displays a comparison of the de novo annotation of
these block-groups by deepBlockAlign and with miRDeep. The table shows
a comparison of the deepBlockAlign and miRDeep annotation of the 586
unannotated block groups. The second column contains the 546 block groups
not annotated by miRDeep, the third column the 40 block groups annotated by
miRDeep and the fourth is the sum of the two previous columns, i.e. all 586
block groups. The rows contain the deepBlockAlign annotations: the second
row contains the block groups without deepBlockAlign(dba) annotation,
rows 3–7 contains the deepBlockAlign classifications, row 8 is the sum of
rows 3–7, and finally row 9 is the sum of rows 2 and 8, that is all 586 block groups
and depending on the column, their miRDeep annotation.

and 4 had no matching profiles at the deepBlockAlign
score cutoff of 0.6 [35]. These nine profiles are shown
in Additional file 1: Figure S1 and Figure S2. In general,
the miRDeep predictions with read profiles that align
poorly with read profiles of known miRNAs, either have
unusually long or short loop regions or have read pro-
files different from the two peaks normally observed for
miRNAs.
Five interesting examples among the unannotated read

profiles not overlapping with miRDeep predictions can
be found by requiring both a deepBlockAlign clas-
sification as well as an overlap with a structurally
conserved region as predicted by RNAz. These five exam-
ples are displayed in Additional file 1: Figure S3–S5.
And amongst these examples we find 2 miRNAs that are
missed by both high confident BLAST and miRDeep,
but deepBlockAlign identifies the read profile as
miRNA like, and low confident BLAST identifies the
miRNAs as mir-223 and mir-431. One further miRNA,
mir-1388, is identified by low confident BLAST and by
deepBlockAlign, but is not overlapping with an RNAz
loci (Additional file 1: Figure S6).
The examples presented above show how deep

BlockAlign present an experimentalist with extra
information on top of conventional analysis of small RNA-
seq data. Both the 10 putative miRNAs with uncertain
miRNA profiles, and the 3 miRNAs missed by both
BLAST and miRDeep require additional experimental
scrutiny, which, however, is outside the scope of this
work.

Amultiple alignment of pig and 20 other vertebrate
genomes
This and the following sections are concerned with adding
context to the annotation provided above. We begin with
a synteny analysis of the pig genome and of the structured
RNA annotation.
To investigate synteny between pig and 20 other verte-

brate genomes, we formed LASTZ/UCSC [29,30] pairwise
alignments, which were subsequently cleaned for non-
syntenic alignments. The resulting coverage of the pig
genome ranged from around 1.7% for zebrafish to 64%
for horse measured on the coverage of the non-Ns of
the pig genome (the N’s currently account for 10% of
the 2.8 Giga bases in the assembly). A multiple align-
ment was formed from the pairwise alignments with the
Threaded-Blockset-Aligner (TBA/MultiZ) [36]
using the phylogenetic tree presented in Figure 3 as guide.
This pig-centered multiple alignment featured a coverage
of 79% of the pig genome (Table 4 and Figure 4). Note that
the combined pipeline ofTBA/MultiZ andLASTZ is also
known as multiZ.
The coverage of the pig genome featured in Table 4 and

Figure 4 is a less than ideal measure of the phylogenetic
distance between the pig (target) and the other species
(query). Ideally the distance is measured on the sequence
change within a set of known and carefully selected genes.
The coverage is influenced not only by varying rate of
sequence change depending on the genomic loci but also
on the different alignment parameters used for different
genomes (that is, the more sensitive parameters used for
the more distant genomes will result in a artificially high
coverage), on the size of the completed genomes, and also
on the degree of completion of the genomes.
The multiple alignment obtained in this section will be

further used to find structurally conserved RNAs using
RNAz. An application of the pairwise alignments is the
synteny analysis of the structured RNA annotation in pig.
However, to fully utilize the alignments we need a good
annotation of structured RNAs in the query organism.
The best annotated organism among the vertebrates is
human and we therefore proceed with a more detailed
analysis of the synteny between human and pig.

Human and pig synteny analysis
We performed a detailed synteny analysis of the relation-
ship between the pig and human genomes based on the
pairwise alignment between the two. The analysis lead to
blocks at least 5,000 nt long in which the synteny and
strand information of the pairwise alignments was unbro-
ken. These blocks, referred to as synteny blocks, were
broken at gaps larger than 5,000nt. We identified 40,781
such synteny blocks between human and pig, which cov-
ered 79% of the non-Ns of the assembled pig chromo-
somes. The syntenic blocks contain gaps not covered by
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susScr102(pig)

turTru1(dolphin)

bosTau5(cow)

equCab2(horse)

felCat4(cat)

canFam2(dog)

eriEur1(hedgehog)

hg19(human)

tarSyr1(tarsier)

mm9(mouse)

rn4(rat)

oryCun2(rabbit)

loxAfr3(elephant)

echTel1(tenrec)

dasNov2(armadillo)

choHof1(sloth)

monDom5(opossum)

ornAna1(platypus)

galGal3(chicken)

xenTro2(frog)

danRer7(zebrafish)

Figure 3 Phyologentic tree. Phylogenetic tree for the pig genome multiple alignments. This phylogenetic tree is derived from the human
phylogenetic tree from UCSC based on the 46-way alignment. The organisms has been reordered to put pig on top and the branch lengths have
been ignored. A tree in this form is needed as parameter for the TBA/MultiZ program. The tree is without branch lengths since these have not
been recalculated for the pig genome.

alignments, and the coverage is therefore larger than the
raw coverage of 56% of the pig genome by the human
genome as reported in Table 4. 3,242(97%) of the 3,556
high confident annotations were found on the assembled
chromosomes and of these 78% are in the human syntenic
blocks (See Table 5).
When we merged neighbouring synteny blocks with

identical chromosome and strand information, we found
that the number of blocks could only be reduced to 13,302.
If we instead ignored the strand information and merged
neighbouring synteny blocks based only on a require-
ment of identical chromosome information, the number
of blocks could be reduced to 218 synteny regions between
human and pig, which cover 99% of the pig assembly (note
that we allow large gaps, inversions and even to some
extend rearrangements within these regions). The num-
ber of synteny regions found here, may be compared to
the 51 synteny groups and 173 conserved segments found
in the experimentally based human pig comparative map
in reference [37].
When we did a similar analysis for the horse/human

pairwise alignment we found the initial 27,219 initial syn-
teny blocks could be reduced to 1,786 synteny regions
when we ignored the gaps but respected the strand, and
finally to 203 synteny blocks when gaps and strand were
both ignored. These cover 99% of the horse genome. The

difference lies in the assembly of the two genomes. The
horse contigs are ordered and oriented correctly using
a combination of probe sequences and positional infor-
mation from the comprehensive radiation hybrid and
FISH maps [38]. Notice that the 218 regions represent
a pig-centered view of the pig-human synteny regions.
The corresponding regions in human may contain (large)
gaps and in certain cases overlap. A cleaned up ver-
sion consisting of 377 smaller regions is found on the
webpage (http://rth.dk/resources/rnannotator/susscr102/
version1.02/regions.html). In this version large gaps in
the human regions are ignored, but in some cases small
regions will overlap with large regions when viewed in the
human coordinates.
The analysis of the synteny between human and pig

highlights some issues in the current pig assembly, which
will be touched further upon in the following sections.
These issues however, only makes a detailed synteny anal-
ysis more desirable, since it enables the identification of
some of these issues.

Annotations having duplicated sequence
A particular issue in the current assembly is dupli-
cated sequence, both within the assembled chromosomes,
and between sequence on the assembled and unplaced
scaffolds.

http://rth.dk/resources/rnannotator/susscr102/version1.02/regions.html
http://rth.dk/resources/rnannotator/susscr102/version1.02/regions.html


Anthon et al. BMCGenomics 2014, 15:459 Page 11 of 27
http://www.biomedcentral.com/1471-2164/15/459

Table 4 Pairwise alignments

Genome Species LASTZ/chaining options Coverage Alignment type

danRer7 Zebrafish Distant 1.69 rbest

xenTro2 Frog Distant 1.94 rbest

galGal3 Chicken Distant 3.61 rbest

ornAna1 Platypus Distant 5.97 rbest

monDom5 Opossum Distant 10.70 syntenic

eriEur1 Hedgehog Close 19.08 rbest

echTel1 Tenrec Close 20.43 rbest

rn4 Rat Close 25.76 syntenic

mm9 Mouse Close 27.71 syntenic

dasNov2 Armadillo Close 30.10 rbest

choHof1 Sloth Close 30.94 rbest

tarSyr1 Tarsier Close 36.80 rbest

oryCun2 Rabbit Close 42.11 syntenic

felCat4 Cat Close 43.42 rbest

loxAfr3 Elephant Close 47.52 syntenic

turTru1 Dolphin Close 53.93 rbest

hg19 Human Close 55.93 syntenic

bosTau5 Cow Close 58.13 syntenic

canFam2 Dog Close 58.83 syntenic

equCab2 Horse Close 63.90 syntenic

21way Multiple alignment 78.98

Pairwise and multiple alignments of the pig genome. The other genomes were obtained from the UCSC genome browser website in their lower-case masked form.
Masking was performed by the UCSC with RepeatMasker and Tandem repeat masker. The UCSC genome designation is given in the first column. The options
for the pairwise alignments are given in the third column as either closely or distantly related to the pig in accordance with the choices made by UCSC for the human
genome. The distance to pig has implications for the LASTZ and axtChain options as listed in Additional file 1: Table S19. The coverage of the pig genome is given
in % in the fourth column based on the number of non-Ns covered by the pairwise alignment after cleaning of the alignments as specified. The pairwise alignments
are cleaned either by synteny (small alignment chains are deleted when they would otherwise break synteny) or by deleting all but the best alignments where the
target genome is multiply-covered. Both methods reduces the coverage of the pig genome by the alignment. The choice of cleanup method is given in the last
column. A graphical representation of the coverage is given in Figure 4.

We found that annotations expected only once in a
mammalian genome were found in more than one place
in the pig genome with the exact same sequence. Some-
times these duplicated annotations were found twice on
the same chromosome in close proximity (for example
mir-196b twice on the same strand, and both mir-615
and mir-194 twice, once on each strand) and sometimes
they were found both on the assembled chromosomes and
within the unplaced contigs (for example mir-127, mir-
155). Furthermore, sequence from the unplaced scaffolds
are in some cases largely identical to sequence placed on
the assembled chromosomes. To investigate this problem
we formed a pairwise alignment of the pig genome with
itself using Blat [30] requiring high sequence identity
(>= 98%) and allowing no introns in the alignments. The
result of the alignment of the assembled chromosomes
against unplaced scaffolds were that 63% of the sequence
of the unplaced scaffolds were aligned to sequence on
the chromosomes. The self alignment also allowed the
identification of a number of annotations that were dupli-
cated in the pig genome. Some of these are known to

have many copies in mammalian genomes, like 7SK,
8S rRNA, GP_knot1, Histone-3-prime-UTR, SNORA70,
SNORD116, tRNAs, U1, and U6. However, others like
the miRNAs listed above were not expected to be found
in multiple copies with high sequence identity. A mod-
ule was therefore added to the pipeline which identifies
annotations with identical sequences. We found that 10%
high confident miRNA genes had exact duplicates in the
assembled chromosome or unplaced scaffolds. A full list
of duplicated annotations is found in Additional file 1:
Table S9. Note that, all copies of duplicated genes are used
in the remaining analysis as it raises problems with the
statistics when the genomic context is different between
two copies. For example one copy may be conserved in
another organism, while the other is not.

General synteny analysis of the pig annotation
To further enhance the annotation we performed a gen-
eral analysis of the conservation of the structured RNA
loci. The full benefit of this analysis is only obtained when
we have a good annotation of structured RNAs in the
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Figure 4 Coverage of the pig genome. Absolute coverage of the pig genome by the genomes used for the multiple alignment. The coverage is
based on the cleaned alignments with single best coverage of the pig genome. However, depending on the method of cleaning the coverage of
the target genomes (x-axis) may be multiple in some locations. Far left, in green, is the result of the coverage of the pig genome by any genome in
the multiple alignments.

query organism. Special emphasis is therefore put on the
pig/human conservation of the annotation.
We analyzed the synteny of the structured RNA anno-

tation using the pairwise alignments is to check the cover-
age of a given annotation by transferring the coordinates
to the target species using the pairwise alignment
(liftOver). However, since the alignments are single

best coverage of pig, but may be multiple coverage of the
target genome in some region, the annotation will in some
cases be matched with a paralogous sequence in the tar-
get genome. This problem is to some degree mitigated
by using the cleaned-up pairwise alignments described
above, which should reduce the coverage of paralogous
alignments.

Table 5 Synteny of the RNAs of the homology based pipeline

RNA class # loci
hg19 RNAs conserved in N other organisms

Syntenic Conserved Both 1 5 15

cisreg-elements 139 80 84 65 116 86 31

lncRNA-loci 58 57 53 53 58 57 7

miRNA 369 303 349 292 360 349 102

putative-miRNA 155 121 25 20 65 25 1

ribozyme 8 8 3 3 3 3 0

rRNA 185 143 0 0 6 1 0

snoRNA 638 473 266 221 400 282 43

snRNA 1,030 674 24 13 119 26 4

tRNA 810 549 274 199 389 284 14

other 153 111 10 10 17 11 0

Conflict 11 10 10 10 10 10 4

Sum 3,556 2,529 1,098 886 1,543 1,134 206

The columns are, RNA class, # RNA loci. # loci in human syntenic blocks, # loci conserved in human by 80% sequence identity. # loci both syntenic and conserved that is the
number of ncRNAs in syntenic blocks where the ncRNA is actually conserved in human. # loci RNAs conserved in N other organisms, grouped by number of loci
conserved in at least 1, 5, or 15 other organisms. Conservation is determined by the sequence identity in the pairwise alignments. The RNA loci are located in the
pairwise alignments and the sequence identity is calculated when at least 80% of an RNA locus is covered. The RNA locus is counted as conserved in that organism if
the locus has a sequence identity of at least 80%. In the table the number of RNAs conserved in at least N (N=1; N=5 or N=15) of the other genomes: bosTau5,
canFam2, choHof1, danRer7, dasNov2, echTel1, equCab2, eriEur1, felCat4, galGal3, hg19, loxAfr3, mm9, monDom5, ornAna1, rn4, oryCun2, tarSyr1, turTru1, xenTro2.
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To annotate the RNAs in the non-pig organisms, each
annotation is located in the pairwise alignment and the
per-base identity is calculated. In Table 5 we list the loci
that are conserved in human (left side of the table) and
in depth in the phylogenetic tree (right side of the table).
We have chosen 80% sequence identity as a cutoff for con-
servation between pig and other organisms. This choice is
based on our experiences with the conservation of miR-
NAs between pig and human (see Section miRNAs in the
pig genome for details). In general, deciding on such a cut-
off is difficult if not impossible, and should depend on the
class of the RNA annotation as well as the phylogenetic
distance between the two organisms.

Genic context of the annotations
Another important characteristic of the ncRNA annota-
tions is their contexts of protein coding genes. We there-
fore marked the annotations with genic context as either
UTR, coding-exonic or intronic using the coding genes
from Ensembl version 68. Annotations overlapping a cod-
ing gene were marked as having a) coding-exon context if
at least 50% of the annotation overlapped with a coding
exon or b) 5’ or 3’ UTR context if the annotation over-
lapped with a non-coding exon. If an exon was marked
as both coding and non-coding for different transcripts,
the coding-exonic context was preferred. When an anno-
tation is close to more than one protein coding gene all
genic context designations are kept. We also look for pro-
teins coding genes 10,000 nucleotides up or down stream
of the annotation (similar cutoff as the miRNA genic con-
texts used by miRBase). A summary of the genic contexts
for the different RNA classes are shown in Additional file
1: Table S10.
Note that the protein annotation of the pig genome is

at an early stage and is further made difficult by incor-
rect ordering and strand assignment of the contigs of the
pig genome hinted at in the section about the human/pig
pairwise alignment. Also the UTRs of are not always
well-defined or even known. Therefore the assignment of
context as coding-exonic, UTR, or intronic will in some
cases be immature or even incorrect.
We will touch upon the genic context again when ana-

lyzing conservation of contexts for particular classes of
structured RNAs, e.g. cis-regulatory elements and snoR-
NAs.

Clustering of the annotations
Certain structured RNAs are known to form clusters
based on genomic position. Examples include, miRNA
clusters, snoRNAs spliced from itrons, clusters of tRNAs
and clusters of cis-regulatory elements, e.g. iron response
elements (IRE).
All pairs of high confident annotations less than 10,000

nt apart on the same strand, were used to form clusters

by single linkage. The distribution of the cluster size is
shown in Additional file 1: Figure S7. The cutoff of 10,000
was chosen in accordance with the cutoff used by miR-
Base for the clustering of miRNAs. We found 261 clusters
of which 10 contained at least threemiRNAs. A number of
large snoRNA clusters were also observed. Detailed exam-
ples of the clusters are given in later sections for miRNAs,
and snoRNAs. In Additional file 1: Table S11 the num-
ber of RNAs in different classes and different clustering
distances is shown.

De novo prediction of structurally conserved RNAs
When novel structural RNAs in e.g., UTRs are predicted
by computational methods or by experiments, structural
conservation may help the experimentalist in asserting
their validity and phylogenetic domain. We therefore pre-
dicted de novo structured RNAs in the pig genome using
RNAz and the MAF blocks of the multiple alignment of
pig against 20 other vertebrate genomes. Details are in the
methods section, including a discussion of false positive
rates of RNAz.
We found 95,106 strand specific structurally conserved

loci with a p-score cutoff of 0.9, which could be merged
to 83,869 conserved loci when the strand prediction of
RNAz was ignored. Additional file 1: Table S12 shows the
overall statistics of the RNAz hits. The RNAz predictions
were assigned genic contexts according to the same cri-
teria as for the homology based annotations. Most of the
RNAz predictions were found in intergenic regions (59%)
or were intronic (23%); however a small number are found
to be overlapping with exons of protein coding genes (1%)
or near the beginning or the end of protein coding tran-
scripts (5%) and (6%) respectively, 7% lie in the context of
multiple genes, and their gene context is undecided.
The annotations of the pipeline were marked as struc-

turally conserved, if there was an overlap of at least 20
nt to an RNAz loci irrespective of strand. The results are
show in Table 6. 538 of the high confident annotations
were found to overlap with RNAz loci and as expected the
highly structured miRNA has the highest recovery rate in
the RNAz results. It is, however, somewhat lower than one
might have expected when Table 6 is compared to Table 5,
which shows the statistics of RNAs conserved in genomic
location. For example, based on the pairwise alignments
90% of the high confident miRNA candidates obtained by
sequence homology are conserved in genomic position in
at least 6 organisms including pig, which is included in the
pig-centered alignments by default. However, RNAz only
predicts 62% to be structurally conserved. This is not nec-
essarily a flaw in RNAz, but more likely in the multiple
alignment MAF blocks. For example, mir-30e is found to
be conserved in 17 of the 21 species but is not confirmed
with RNAz. Examination of the sequences shows that
mir-30e is partially sequenced in the tenrec genome,
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Table 6 Overlap of the RNAz predicted de novowith the
high confident annotation

RNA class
Annotation RNAz overlap

Families Loci Families Loci

cisreg-elements 31 139 4 10

lncRNA-loci 58 58 3 3

miRNA 330 369 222 241

putative-miRNA 135 155 14 16

ribozyme 3 8 0 0

rRNA 5 185 2 2

snoRNA 211 638 57 72

snRNA 10 1,030 9 20

tRNA 51 810 36 154

other 7 153 3 4

conflict 9 11 4 6

sum 850 3,556 354 528

Comparison of the strand specific RNAz results with the result of the automatic
annotation pipeline. The columns are, RNA class, # RNA families in the high
confident annotation, # RNA loci in the high confident annotation, # RNA families
that overlap with the RNAz predictions, # RNA loci that overlap with the RNAz
predictions.

which breaks the multiple alignment MAF block and
thereby prohibits the RNAz prediction. Repairing the
MAF blocks on a genome wide scale would in principle be
possible. It is however, not straightforward and is outside
of the scope of the present study.
As a final remark, it is noteworthy that while around

65% of themiRNAs obtained by similarity search are over-
lapping with RNAz loci, the same is only true for around
10% of the novel miRNAs. 16% are conserved in 6 organ-
isms and 10 or 6% appear to be conserved in human
and may thus represent miRNAs in human yet to be
discovered.

Lineage specific structured RNA loci
The lineage specific structured RNAs are important for
the pig, both for the understanding of pig specific traits
and when considering the pig as model organism as these
can help pointing towards potential concerns in some
pathway modelling.. We therefore investigated the lineage
specificity of structured RNAs inside and outside of the
Laurasiatheria (which contains pig, cow, dolphin, horse,
cat, dog, hedgehog amongst the genomes investigated in
the pairwise alignments).
The bulk part of the structured RNAs obtained here

were found by homology search, and will therefore not be
pig specific. However, the de novo RNAs may be lineage
specific and both homology and de novo based annota-
tions may be found in lineage specific loci, that is loci
preserved only in a branch of the phylogenetic tree. Our
search will therefore initially focus upon lineage specific
regions in the pig genome.

In general, determining lineage specific RNAs is non-
trivial since it require clear annotation in one or several
closely related organisms, however, at some cutoff the
annotation is not to be found in organisms outside the
organism or the closely related organisms. Furthermore,
determining the lineage specific annotations might be
impacted by the lack of genomic coverage and the qual-
ity of the genomic sequences, as it is the case between
human and Neanderthal [39]. The search for lineage spe-
cific structured RNA is further complicated by the fact
that many structured RNAs can hold the same struc-
ture while being highly divergent in sequence. Structural
(re-)alignment of genomic sequence is in these cases
required to elucidate the structural conservation e.g.,
[40-44]. Hence, we employ a conservative strategy where
the sequences within the Laurasiatherian branch should
exhibit relatively high sequence identity (>60%) between
all pairs of organisms considered while at the same time
have relatively low sequence identity (<30%) to all organ-
isms outside the branch.
To find lineage specific structured RNAs, we calculated

the sequence identity of the obtained structured RNAs
between pig and the organism for which we have pair-
wise alignments, preferably, using the synteny cleaned
pairwise alignments where available. The RNAz results
are particularly well suited for this analysis, since struc-
tural conservation in at least 3 organisms including pig
is required to yield a result in the first place. In concor-
dance with our strategy, we need to find a lower cutoff in
sequence identity for the loci to be not considered with
the organisms in question.
In Additional file 1: Figure S8 we plotted the number

of RNAz loci grouped by a given identity cutoff outside
the Laurasiatherian branch (these are the lineage specific
candidates). Up until 30% sequence identity cutoff the
number of grouped loci remains fairly constant (and rel-
atively small), but from around 50% quickly increase. We
therefore choose a conservative sequence identity cutoff
of 30% outside the lineage, which corresponds to around
1.5% of the RNAz loci.
In Additional file 1: Figure S9 we plot the number

of RNAz loci that have at most 30% sequence identity
to pig outside the lineage versus the minimum pairwise
sequence identity between pig and the other species found
in the pairwise alignment. The number quickly drops
above 60% sequence identity and we therefore decide on
a cutoff of 60% and reach a final number of 1,004 lineage
specific loci containing RNAz predictions.
The high confident annotation was investigated for lin-

eage specificity by the same criteria, however, only the
annotations with at most 5 occurrences in the genome
were investigated, as highly repetitive sequences are often
skipped in the alignments. Furthermore, annotations
with exact duplicates in the genome and annotations
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found in the unplaced scaffolds were excluded as well.
With these criteria, we found 23 lineage or pig spe-
cific structured RNA loci on the assembled chromosomes
within the high confident annotation shown in Addi-
tional file 1: Table S13. These are miRNAs mir-1949
and mir-2320, four de novo miRNAs, 16 snoRNAs and
one vault RNA. Only four of these are conserved in
other species within the lineage, three HACA box snoR-
NAs (SNORA22, SNORA23, SNORA81) and one known
miRNA (mir-2320), specific for the cow/pig/dolphin part
of the tree. The vault RNA found on chromosome X
is likely a pseudogene since it lacks a polII promoter
sequence. It does, however, score very high according to
Infernal (69 compared to 82 for the real gene on chro-
mosome 2). For further discussion about the vault RNAs
see the Section Curation based on the detection of PolII
and PolIII promoter sequences. One miRNA, mir-1949, is
previously known only for rodents, and could also be a
mis-annotation induced by the otherwise strict filtering of
the BLAST results.
Lineage specific ncRNAs is still a relatively unexplored

area, which is expected to grow as more analysis is per-
formed on new genomes and organisms. MiRNAs are one
class of ncRNAs where lineage specific ncRNAs have been
discovered in pig, but more classes are expected to fol-
low when the tools for novel ncRNA detection in small
RNA-seq data are developed further.

miRNAs in the pig genome
In this and the following sections we discuss the curation
of the structured RNA annotation utilizing the different
types of contexts added to the annotation in the preced-
ing sections. We begin with the miRNAs in pig and the
synteny between pig and human miRNAs, which in con-
clusion will allow us to curate the 125 miRNA genes that
were found to be part of miRNA clusters common to
human and pig.
The high confident homology pipeline provided 359

miRNA loci and the miRDeep pipeline adds an addi-
tional 165 de novo miRNA loci for a total of 524 miRNA
loci. 10 of the miRDeep loci where renamed and reclas-
sified by homology to human or by low confident (90%
id) sequence identity to sequences frommiRBase. See also
Additional file 2.
MiRNA clusters are known for a number of organ-

isms. In the analysis of the pig genome we observed 58
miRNA clusters, i.e. multiple miRNA loci within 10,000
nucleotides of each other, all on the same strand. In cer-
tain cases, miRNAs in clusters are found like pearls on
a string. In the pig genome we found 10 miRNA clus-
ters with at least three miRNAs. 6 had a cluster size of
up to around 300 nucleotides per miRNA, while the last
4 had sizes of approximately 1,000-2,000 nucleotides per
miRNA.

In comparison to the 58 pigmiRNA clusters, a total of 89
of strand specific miRNA clusters are known in the human
genome according to miRBase version 19. In the follow-
ing, we have analyzed how many of these miRNA clusters
were conserved in human using a combination of BLAST,
and the genome scale pairwise alignments between the
two organisms.
MiRNAs are often well conserved between mammalian

genomes, however, a simple BLAST of the miRNAs will
either include too many false positives or occlude the
more distant homologs. In Additional file 1: Figure S10 we
have plotted the conservation in pig of the 1,595 human
miRNA loci from miRBase 19 using the genome scale
human-pig pairwise alignment. From the figure we con-
clude that there is no clear indication of a identity cutoff
where a miRNA may be said to be conserved between
human and pig. However, if we restrict the plot to the
miRNAs from human miRNA clusters (Additional file 1:
Figure S11) a steep drop-off in the number of conserved
miRNAs is observed at around 80–90% identity. Through-
out the paper, we will use a cutoff of 80% sequence
identity in the pairwise alignments to accept conserva-
tion between pig and human. This results in a total of 168
miRNAs from the human miRNA clusters that are con-
sidered conserved in pig. These form 51 clusters in pig,
which again contains 151 miRNAs, i.e., 17 miRNAs are
conserved, but no longer a part of a miRNA cluster in pig
at this cutoff level.
The 13 miRNA clusters from human with at least 4

miRNAs are shown in Additional file 1: Table S14. In the
following, we discuss the conservation of these clusters in
pig.
The mir-512 cluster is known to be primate specific

according to miRBase, and we see no evidence to the con-
trary. The mir-379 cluster is incomplete in pig (Additional
file 1: Figure S12), where it is found in an unplaced scaffold
in pig missing part of the sequence. A similar issue is seen
with the mir-450 cluster. The mir-493 cluster appear to be
broken in pig. Most of the miRNAs are found in a clus-
ter on chromosome 7, however they are located on both
strands (Additional file 1: Figure S13). The cow, dolphin
and horse genomes, which are phylogentically close to the
pig genome, all harbors near complete mir-493 clusters, so
this is likely an assembly issue in pig.
A more difficult case is the mir-532 cluster located on

chrX in human (Additional file 1: Figure S14), which con-
tains 8 known miRNAs from miRBase: mir-532, mir-188,
mir-500a, mir-362, mir-501, mir-500b, mir-660, mir-502.
In pig we found a cluster on chrX of mir-532, mir-
188, mir-500, mir-362, mir-500, mir-660, and a mature
unknownmiRNA picked up by miRDeep. Investigation of
the human-pig alignment revealed that mir-501 is poorly
conserved with a pairwise identity of 57%, while the
unknown miRNA picked up by miRDeep is mir-502 with
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a pairwise identity to human of 87%.Mir-501 is also poorly
conserved in cow (65%), but somewhat better in horse
(78%).
The mir-17 and mir-363 clusters are well conserved

and supported by reads (Additional file 1: Figure S15 and
S16). In the mir-367 cluster only 3 of the 5 miRNAs are
identified by high confident BLAST, however, the cluster
appears complete in the pairwise alignment (Additional
file 1: Figure S17).
The mir-513a and mir-514b clusters are incomplete in

the pig genome (See Additional file 1: Figure S18), lead-
ing to several problems in the pairwise alignments. Three
miRNAs are observed in the miRDeep analysis of these
clusters, which may be assigned as mir-506, mir-508 and
likely mir-509.
The mir-450b cluster is incomplete in the assembly, but

the miRNAs that we find are supported by BLAST and
reads (Additional file 1: Figure S19). mir-3601 found on
the opposite strand of the cluster is obtained by sequence
similarity from cow.
The cluster containing mir-892c appear at first glance to

be missing in pig. However, the six miRNAs in the mir-
892 cluster on chrX in human, are conserved in a cluster
on chrX in pig (See Additional file 1: Figure S20). The pair-
wise identities between the human and pigmiRNAs in this
cluster are in the 55–70% range and are thus under the
cutoff chosen above. Themir-891a/b are two different loci
in human but only one of them is observed in the pairwise
alignments in the pig. The cluster is supported in the pig
by 6 de novo structured RNA predictions by RNAz.
In conclusion, we include the 125 miRNA loci in the

curation annotation, for which we have high confident
annotation and which are are part of miRNA clusters in
both pig and human.

snoRNAs in the pig genome
The conservation and curation of snoRNAs in pig are dis-
cussed in this section. Using synteny between pig and
human we curated 268 or 42% of the snoRNAs loci in pig.
We annotated 645 snoRNA loci (including 7 conflicting

loci) in the pig genome using a combination of BLAST,
snoStrip and Infernal on snoRNA families from
Rfam.
Like miRNAs, snoRNAs are often found in clus-

ters and we identified 73 clusters containing multiple
snoRNAs within a distance 10,000 nt. In two particu-
lar cases large snoRNA clusters identify snoRNA host
genes in pig, which are at present missing from the
Ensembl annotation. In human these two transcripts,
called SNHG1 and GAS5, are known to harbour a
number of snoRNA. The human version of SNHG1
harbours SNORD25, SNORD26, SNORD27, SNORD28,
SNORD22, SNORD29, SNORD30, SNORD31, and the
same genes in the same order are observed in pig. GAS5,

similarly displays exactly the same genes in human and
pig. The 23 snoRNAs contained in these two host genes
were curated based on this information.
The snoRNA database contains a set of curated

human snoRNAs. Using the syntenic pairwise alignments
between human and pig, we manually inspected the auto
generated snoRNA annotations. We obtained the human
coordinates for the pig snoRNAs and calculated the cov-
erage using the methods explained in the synteny section
above. We filtered the results by 60% sequence iden-
tity between human and pig and considered the coordi-
nates of the curated human snoRNAs from the snoRNA
database. In total we curated 268 loci, corresponding to
189 snoRNA families. The 278 non-curated members of
these families were marked as pseudogenes. While the
cutoff for sequence identity is 60%, all curated mem-
bers were found to have a sequence identity above 70%
between pig and human. It is noteworthy that only 64
(23%) of the curated snoRNAs are found with high confi-
dent BLAST.
This kind of synteny analysis limit ourselves to known

genes in other organisms, here human. As an example we
find 8 copies of SNORD14 in pig. A closer inspection,
however, reveals that 3 of them have exact copies close to
each other. These copies are likely to be the result of incor-
rect assembly. We thus find two SNORD14 clusters in
pig, one with two members and one with three members,
all scoring about equally well with Infernal. In human
we find only two curated copies in the snoRNA database,
which we are able to match and curate in pig using syn-
teny. However, a full Infernal search reveals a total of 5
copies in human all scoring about equally well. And these
form two clusters with 2 and 3 members, respectively,
each cluster syntenic to those in pig.
In summary, we curated 42% of the snoRNAs in pig.

However, it is expected that more snoRNA genes may be
curated as the snoRNA discovery methods improve.

Ribosomal RNA clusters in the pig genome
The ribosomal RNAs (rRNAs) are known to have a num-
ber of pseudogenes in the mammalian genomes, often
only as part of the full length rRNA genes. For the rRNAs
we only found one full length copy of the rRNA clus-
ter. On chromosome 6 we found 28S, 18S, and 5.8S
clustered closely together, and the finding is further con-
firmed by the existence of a pRNA locus upstream of the
28S locus on chromosome 6. Ribosomal RNAs part of
this cluster are curated, all other rRNAs are marked as
pseudogenes.

Cis-regulatory elements in the pig genome
The cis-regulatory elements are regions of the RNA (and
DNA) that regulate genes on the same chromosome, often
on the same transcript or located relatively close up- or
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down-stream.Here, we only annotate those cis-regulatory
elements that have RNA structure as extracted fromRfam.
The genic context of the annotated cis-regulatory ele-
ments allowed us to curate 66% of them. For the remaining
34% the genic context could not be ascertained and the cis
regulatory elements were marked as pseudogenes.
Normally close proximity between the cis-regulatory

element and the gene is observed. Accordingly, the genic
context of the cis-regulatory elements are of particular
interest. As expected, we found that most of the anno-
tated cis-regulatory elements are close to or overlapping
with protein coding genes. Only 31 of the total 139 cis-
regulatory elements are more than 10,000 nucleotides
away from a protein coding gene, while 12 are between
1,000 and 10,000 nucleotides away. Of these 12 cis-
regulatory elements 9 belong to the ubiquitous GP_Knot1
family. 1,000 nucleotides is therefore chosen as the cutoff
for the curation procedure of the cis-regulatory elements.
Of the 139 annotated cis-regulatory elements, 20 cis-
regulatory elements are found to be antisense to protein
coding genes. However closer inspection reveal all but
two to be sense to a protein coding gene as well. Many
of the intergenic cis-regulatory elements are found to be
from highly repetitive families like GP_Knot1 and IRE,
while others are very confident and highly specific like e.g.,
SECIS-1 and IRES-c-sis. Only detailed analysis can reveal
if these are true positiveswhere the corresponding protein
coding gene is undetected by for what ever reason.
In all 93 (63%) cis-regulatory-element loci were curated

based on having sense genic context within 1,000
nucleotides. 31 cis-regulatory elements more than 10,00
nucleotides away from a protein were marked as pseudo-
genes.
As a final remark, the annotation of protein coding

genes in the pig genome is at an early stage and is further
complicated by the incorrect ordering and strand of the
pig genome contigs. Therefore, we are unable to curate
the cis-regulatory elements according to their exact genic
contexts (coding-exonic, UTR or intronic), and just note
in passing that certain elements are expected to have cer-
tain contexts, e.g., IREs are supposed to be part of the
UTRs, and we were not always able to confirm this.

Curation based on the detection of PolII and PolIII
promoter sequences
In the preceding sections we presented the curation of
specific classes of structured RNAs. We now present
a more general class of ncRNAs, namely those where
active genes are expected to have PolII or PolIII promoter
sequences. This class includes ncRNAs such as snRNAs,
vault RNA, RNaseMRP, and Y RNAs.
A number of ncRNAsmay be curated based on the pres-

ence of PolII/PolIII promoter sequences. For this we used
Position Weight Matrices (PWM) extracted from human

sequences to detect PolII- and PolIII-specific sequence
elements derived from known human PolII and PolIII
transcripts (see Additional file 1: Table S21–S26 and
Methods section for details). Based on the PolIII-PWM,
a total of 19 out of the 800 U6 candidates returned by
the Infernal/Rfam search, were selected. Among these
5 are found to be well conserved in the same genomic
location in other species, and 5 are located in introns.
Single instances of U6atac, RNaseMRP, RNaseP_nuc were
similarly found. Finally even though two 7SK were found
to have satisfactory TATA-boxes and Proximal Sequence
Elements (PSE), only one sequence was highly similar to
other mammalian 7SK sequences.
For snRNAs, 17 U1, 14 U2, 3 U3, 6 U4, 7 U5, 2 U7, 2

U8, 1 U11, 1 U12 and 2 U13 were found to have PolII pro-
moters sequences. In case of U4atac, the PSEB and PSEA
segments were spatially inverted, i.e. PSEB was located
upstream of PSEA. Still, due to the high conservation of
U4atac in all other mammals, U4atac was kept in the
annotation.
The structure based homology search picks up 3 vault

RNAs. Two copies on chromosome 2 where one is an
active copy with a degraded copy nearby conserved in pig,
cattle, and dolphin (in pig it is not even part of the low con-
fident annotation, but found in the complete set of BLAST
supported Infernal/Rfam results with an Infernal
E-value of around 0.2). It appears to be a common thread
amongst the species within the Laurasiatherian lineage
that only one good copy of the vault RNA gene exists
within the vault RNA cluster, unlike the one in human
which feature 4 good copies (chr2 in pig, chr14 in horse,
chr7 in cow, scaffold111177 in dolphin, chr11 in dog,
chrA1 in cat, and chr5 in human). A high scoring pseudo-
gene is found on chromosome X, in pig, as well as human.
A lower scoring vault RNA is found on chromosome X
in cow, and possibly in dolphin, however in the latter
the genome is not assembled on chromosomes. Note that
these pseudogenic copies on chromosome X cannot be
related through the genome wise pairwise alignments.
Y RNAs are Pol-III transcripts with the canonical copies

transcribed from a single gene cluster, see [45]. We find
8 Y RNAs in the pig genome using structure based
homology search. 4 are low-scoring and are scattered
over the genome. In most mammalian genomes they are
accompanied by a large number of retro-pseudogenes
[46]. In the pig these numbers are relatively small (8 Y
RNA candidates detected in pig in total with Infernal
and the cutoffs applied for the high confident annota-
tion, compared to 690 in human detected with the same
cutoffs).
The pig genome harbours a complete Y RNA cluster:

The arrangement on pig chromosome 9 Y1(+ strand), Y3(-
strand), Y4(- strand), Y5(- strand) conforms to the ances-
tral eutherian prototype (with Y1 inverted relative to the
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ancestral mammalian arrangement). It is unclear, how-
ever, whether the Y5 locus is still functional in the pig
genome or already a pseudogenized remnant. The diver-
gence from the human sequence is much higher than that
of the other three pig Y RNAs, indicating a drastic reduc-
tion of stabilizing selection: Y1 1.8%, Y3 3.0% Y4 4.3% Y5
13.6% based on UCSC browser repeat annotation. This
is to be compared with the situation in cow and dolphin
were Y5 is deteriorated to a degree were it is almost cer-
tainly non-functional. To further test this we tested the
Y RNAs with cmalign for all seven organisms includ-
ing pig where the pairwise alignment points to complete Y
RNA clusters. The seven organisms are pig, cow, dolphin,
horse, dog, human and rabbit. Alignment to the covari-
ance model (CM) clearly shows that Y1 and Y3 fits the
model consistently in all organisms, while the Y4 and Y5
RNAs are all somewhat divergent in the pig/cow/dolphin
part of the tree. However, only the cow and dolphin Y5
RNAs scores badly in the Rfam Y RNA model. The Y
RNA alignments in Stockholm format are available on the
website of this paper.
This section concludes the discussion about specific

classes of structured RNAs and the curation of these
RNAs. We proceed with a summary of the complete
curated annotation

Curated annotation
The high confident annotation is a combination of the
results of the high confident homology pipeline and the
miRDeep detected miRNA candidates. We obtained a
total of 3,556 high confident loci (Table 7). Using a variety

of methods presented above we were able to curate 13% of
the annotated RNA loci while 37% of the annotations are
marked as pseudogenes. Pseudogenes are either ncRNAs
expected, but failing, to be PolII or PolIII transcripts,
cis-regulatory elements not in the vicinity of annotated
protein coding genes, or ribosomal RNAs not part of the
cluster on chromosome 6.
The curated annotation presented in Table 7 contains

the 571 genes that passed the curation procedures pre-
sented in the preceding sections. The same curation
procedures marked 1,581 ncRNA genes as pseudogenes.
The curated annotation represents a substantial manual
annotation effort, which considered several aspects of the
different classes of structured RNAs discussed in the pre-
vious sections, including the context of protein coding
genes, clustering of neighbouring RNA loci, synteny, as
well as sequence and structural conservation of the anno-
tation in other organisms. The curated structured RNAs
are clearly those that comes with the highest certainty,
however, fields such as small RNA-seq, will benefit from
the high confident annotation, and in some cases even
from the medium or low confident annotations.

Discussion
Annotating genomes for functional elements is in general
a non-trivial problem, in particular, if this is considered
to include full functional annotation. A recent conserva-
tive effort to characterize proteins, CharProtDB, contains
only 213 human entries [47], approximately one percent of
the total number of protein coding genes. Clearly the use
of sequence homology to screen the genome for known

Table 7 Curated annotation

# high confident loci # curated loci # pseudogenes # loci,#pseudogenes subtracted

cisreg-elements 139 93 31 108

lncRNA-loci 58 0 0 58

miRNA 369 125 0 369

putative-miRNA 155 0 0 155

ribozyme 8 1 5 3

rRNA 185 3 182 3

snoRNA 638 269 278 360

snRNA 1,030 69 960 70

tRNA 810 0 0 810

Other 153 3 125 28

Conflict 11 8 0 11

Sum 3,556 571 1,581 1,975

The high confident annotation is a combination of the results of the high confident homology pipeline and the miRDeep results. See Table 2 for row labels. Column
labels: high confident is the high confident annotation prior to curation; curated are the number of loci curated by methods explained in the text; pseudogenes are
the loci expected to be PolII/PolIII transcript, but failing to be so, ribosomal RNAs not part of the cluster on chromosome 6, and cis-regulatory elements without gene
context. In the column overlaps to structured RNA loci annotated by homology as well as putative miRNAs are given. Curated annotation contains loci that are a)
curated or b) loci not tested in the curation procedure, e.g., miRNA loci. High confident: is the complete high confident annotation (homology + miRDeep). 8 miRNAs
detected by miRDeep, but not by high confident BLASTwhere re-annotated in the sectionmiRNAs in the pig genome. A table with the 3,877 medium confident loci
and 36,647 low confident loci are found in Additional file 1: Table S20.
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sequences is useful. However, in contrast to protein cod-
ing genes, search for structured RNAs is a much harder
task, partly due to the long ranging interactions in RNA
(secondary) structure.
Other protocols for annotating ncRNA exists, such as

RNAspace, but it is not feasible for full genome-wide
analysis of a mammalian genome [48].
Our pipeline utilized sequence and structure homol-

ogy search, small RNA-seq and de novo RNA structure
prediction in genomic sequence. We obtained high con-
fident annotation of 3,556 structured RNAs distributed
over 3,348 (full length) ncRNA genes, 11 conflict loci, 139
cis-regulatory elements, as well as 58 lncRNA loci. The
11 conflict loci are all identified as very good matches to
either snoRNAs, to SRP RNAs or to the rRNA subunit
28S. However, part of these RNA sequences have been
identified as miRNAs in other studies and added to miR-
Base. Deciding if the 11 conflict RNAs can also serve as
miRNAs is outside the scope of this study. We chose to
keep these annotations as high confident as we have no
doubt about their annotation, only their possible func-
tion as miRNAs are yet to be determined. Note, that 5
of the conflicts are also annotated as conflicts between
snoRNAs andmiRNAs in human ormouse; 3 conflicts are
found by high confident BLAST to be between miRNAs
and seed members of the SRP RNA family; and the anno-
tation of 28S is beyond dispute as it is part of a full rRNA
cluster. This leaves 2 conflicts unaccounted for, which
are the results of more recent additions to miRBase from
organisms besides mouse and human.
We found 524 miRNA loci from 465 different (puta-

tive) miRNAs precursor sequences, of which 174 were
annotated for pig already. 151 are so far annotated only
in pig, however, only 5 appear to be confined to the
Laurasiatheria, 4 found only in pig and one specific to the
cow/pig/dolphin part of the tree.
The sequence based part of the pipeline complete the

highly conservative part of the pipeline, by employing
BLAST cutoffs of 0.1 in E-value, 95% identity with a
coverage of at least 95% coverage of the RNA query
sequence. Correspondingly, for the Infernal screen we
employed only the family specific gathering score cutoffs
and ran Infernal directly on the genomic sequence,
which is in contrast to the official Rfam annotation
where BLAST pre-filtering is performed. Our Infernal
screened yield 709,026 loci matches, and we found that
BLAST filtering as well as additional Infernal E-value
filtering were needed to obtain confident results. Our
results are not directly comparable to those of Rfam,
because the exact filtering procedure used by Rfam
is unpublished and thereby not directly available for
assessment.
The high confident annotation is the result of an

automated pipeline, while the manual annotation is

presented in the form of the curated genes. In particu-
lar the results of the Infernal and snoStrip results
will contain pseudogenes and the Infernal results
may contain false positives as well. We therefore ran all
tools on a local (120 nt window) shuffled version (see
Methods) of the pig genome to obtain an estimation of
the false positives on random data. We found that most
tools, even at their lowest confidence levels produced no
results on the shuffled sequence. This includes,RNAmmer,
tRNAscan-SE, snoStrip, and BLAST (with the excep-
tion of 6 very short CRISPR sequences not expected in
vertebrate genomes). The exception is Infernal, which
produces a high number of hits on the shuffled sequence
without filtering in addition to what is offered by the fam-
ily specific gathering score cutoffs. However, by introduc-
ing a global Infernal E-value cutoff of 1e-3 in addition
to the gathering score cutoff, we were able to cut the
number of false positives in the shuffled data down to
just one low confident hit and no high confident hits. A
second potential problem using Infernal is the pos-
sibility for incorrect family assignment (e.g., a snoRNA
or miRNA assigned with a wrong family name). How-
ever, with zero conflicts in the high confident Infernal
results on the unshuffled data and only 7 within the low
confident results, this appears not to be a problem with
Infernal used as we do here.
This work represents a substantial computational effort.

While most of the annotation tools, and the post pro-
cessing could be run for the whole genome on a fast
stand-alone workstation, two major parts of the pipeline
precludes this. Firstly, running Infernal for all Rfam
models takes around 25 CPU years. Secondly, the pair-
wise alignments take in the order of 1 CPU year per
genome we aligned against the pig genome. Infernal
has recently achieved a substantial speed up by taking
full advantage of the recent developments in the HMM’er
code [49]. The improved HMM’er filtering will hopefully
replace the need for BLAST filtering of the Infernal
results since a much better false discovery rate is reported
in the cited paper. However, we will have to wait for
a later version of the Rfam database as even the lat-
est version (11.0) is constructed with Infernal version
1.0.2. With the improved Infernal code the annotation
part of the pipeline could be run on a normal work-
station within a few weeks. However, the pairwise and
multiple alignments, and thereby the synteny analysis
will still require access to a high-performance computing
cluster.
To further ensure confidence, we manually or semi-

automatically inspected a selected subset of the 3,556
annotated RNA loci to reach a total of 571 curated struc-
tured RNA and 1,581 pseudogenes. One class of genes
inspected was Y RNAs for which the inspection gave rise
to the observation that the Y5 loci, in contrast to the
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others, already might have mutated into a non-functional
state.
Ensembl version 68 provides ncRNA annotation for

the pig genome as part of their annotation pipeline.
Ensembl version 68 contains 2,965 structured RNA loci
for the pig genome divided on rRNAs, miRNAs, misc-
RNAs, snoRNAs and snRNAs. Of the 3,418 high confi-
dent annotations obtained by our homology search only
1,955 are present in the Ensembl annotation. In par-
ticular all tRNAs are missing entirely or are annotated
as miRNAs, though the basis for annotation is unclear
to us. Likewise the cis-regulatory elements are miss-
ing completely from the Ensembl annotation. In the
other end of the spectrum, we find that 522 of the
2,965 Ensembl annotations are not found in the low
confident annotation. The ncRNAs found extra in the
Ensembl annotation are in most cases miRNAs without
an assigned gene name, indicating that they are proba-
bly low confident miRNAs from Rfam. A comparison of
the two annotations is found in see Additional file 1:
Table S15.
To further search for de novo RNA structures we

employed RNAz [21]. RNAz uses a sliding window based
approach which chop out sections (typically of 120 nt) of
multiple (sequence) alignments and measure the struc-
ture potential over a background in that window. A main
concern is the input MultiZ MAF blocks, which are
typically used as outset. The more organisms the MAF
blocks contain, the more fragmented they become and
the input space is not covered optimally. Another con-
cern is the heterogeneous distribution of the evolutionary
distances between the organisms in the alignments. Ide-
ally RNAz should be fed with equally distanced organisms.
The RNAz search provided 83,869 structurally conserved
RNA loci of which 528 overlapped with the high confident
homology based annotation or novel miRNAs. The class
best covered by RNAz loci were the miRNAs, where 65%
of the loci were recovered. Most RNAz loci were found in
the intergenic or intronic regions, however, around 10%
were found near the beginning or end of protein coding
transcripts.
A second source of novel candidate RNAs in pig

comes from the small RNA-seq data presented in
this work. Here, the main analysis of the sequenc-
ing data is performed with miRDeep and we therefore
only annotate novel miRNA candidates. However, with
deepBlockAlign (DBA) we also found novel RNA can-
didates in other classes of RNAs, but without more com-
putational support or experimental evidence these are not
annotated with high confidence and are therefore only
presented as a special track. For miRNAs, the RNA-seq
profiles are particularly specific and the mirDBA tool [35]
for aligning miRNA RNA-seq profiles directly against a
compiled database of RNA-seq profiles was developed in

parallel with this work. Future updates will use the full
potential of mirDBA.
Early versions of the pig genome have been investi-

gated for ncRNAs, these studies investigated a low (0.66x)
coverage version of the genome [11] in which 51 miR-
NAs were identified and a later study investigated the pig
ESTs [13] in which 8 additional miRNAs not found in the
previous study were identified. We confirm all these 59
miRNAs in this paper, except for 3 where the sequence is
missing in the current assembly of the pig genome. The
study of the low coverage version of the genome did not
include a search for other types of ncRNAs, while the
ESTs from the second study were selected with a bias
against small ncRNAs and a comparison of the obtained
full ncRNA annotations with the present is therefore not
entirely meaningful.
Here, we focused on annotating structured RNAs (ncR-

NAs and RNA structural regulatory elements in UTRs of
mRNAs) and we did not include lncRNAs with the excep-
tion of partial lncRNAs included in Rfam. LncRNA in
contrast to the many structured RNAs are just emerging
and systematically characterized by genomic coordinates,
e.g., [50]. These lncRNAs have been obtained through
comprehensive transcription studies. Given that lncRNAs
in general are poorly conserved and similar studies have
not been carried out in pig, we in this study focused on
structured RNA (of which some de novo RNA structure
candidates may overlap lncRNAs).
Overall our ncRNA annotation is of further interest in

the light of pig as production and model animal. The
known ncRNAs holds potential to be studied in specific
problems, where for example mapped RNAs can be use-
ful in subsequent studies, such as differential expression
of ncRNAs, e.g., in necrotic lung tissue [51] and skele-
tal muscle tissue [52]. Furthermore, as next generation
sequencing will make it possible to increase the quality
of Quantitative Trait Loci (QTL) and genome-wide asso-
ciation studies, these regions can be analyzed for ncRNA
content. For example we considered all QTL contribut-
ing regions less than 500,000 nt listed in the pigQTLdb
[53] and by Fischer Exact test we found 55 QTL regions
to be enriched (p<0.01) with RNAz candidates (RNAz p-
score>0.9) (data not shown). A similar, but weaker trend
is observed for a few cases when testing the enrichment
for only the annotated families and classes of structured
RNAs.
As an example of what one can do with an ncRNA anno-

tation in relation to a larger set of genes, we analyzed the
46 regions of the pig genome containing olfactory receptor
genes [54]. The regions overlapped with 249 of our high
confident ncRNA candidates, including, 170 tRNAs, 8
known miRNAs, 1 miRNA predicted by miRDeep, 25
snoRNAs and 7 cis-regulatory elements. In particular the
miRNAs and cis-regulatory elements could be involved in
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regulation of the olfactory receptor genes. The genome
structure can be relevant for further studies aiming at
mutually to elucidate the functionality as well as themech-
anisms underlying these traits.

Conclusions
We have conducted the, to date, probably most compre-
hensive ncRNA annotation of a mammalian genome in a
single analysis, and we have obtained an extensive anno-
tation of structured RNAs in Sus scrofa. We constructed
a semi-automated pipeline enabling manual curation at
reasonable level while also incorporating RNA-seq data
and including a layer of de novo RNA structures. Over-
all we annotated 3,556 high confident structured RNAs
of which a subset was inspected leading to 571 curated
annotations. In additionwe found 83,869 structurally con-
served loci using RNAz, of which 528 overlapped with
the homology based annotation or novel miRNA can-
didates. These structured RNAs constitute an essential
resource for studying and generating hypothesis of genetic
mechanisms underlying the various production traits. All
the data resources are available at http://rth.dk/resources/
rnannotator/susscr102/version1.02.

Methods
Example command lines and program options for call-
ing of the different tools are given in Additional file
1: Table S16 for the annotation pipeline in general,
Additional file 1: Table S17 for the Infernal runs, and
Additional file 1: Table S18 for the alignment pipeline.

Sequence based homology search
The sequence based homology search was performed
using blastall (blastn) from the BLAST [23] tool
version 2.2.23 and a number of databases (miRNA hair-
pins from miRBase (version 18.0) [55-58], the vertebrate
rRNAs from Silva (version 102) [59], snoRNAs from
snoRNAbase (version 3) [60], tRNAs from tRNAdb (ver-
sion 2009) [61], and seed sequences from Rfam (version
10.1) [7,8]). The databases were not redundancy reduced
prior to the search and there may therefore be overlap-
ping hits on a given genomic position. Redundant overlaps
were resolved as follows: Within each database the hits
were classified as miRNAs, tRNAs, snoRNAs, snRNAs,
rRNAs, cis- regulatory elements, or as other for those
without a clear classification while still keeping track of
the origin. Within the classified hits of each database the
hit having the lowest BLAST E-value was chosen. For
example, SNORA81 resides on chromosome 13 in pig.
Two overlapping high confident BLAST hits from the
Rfam version 10.1 seed sequences were found. One from
small brown bat, and one as it turns out from pig. Not sur-
prisingly, the hit having the lowest E-value is the sequence
from pig. At the same genomic position and strand, a

high confident hit from miRBase is found, eca-mir-1248
is found. The sequence was thus annotated twice, once as
a snoRNA and once as a miRNA. Therefore this region
will be marked as a conflict. For the high confident results,
we required that a minimum of 95% align length and
95% identity of the BLAST hit, For the medium confident
results, we required 92.5% length and 92.5% identity, and
for the low confident results 90% length and 90% iden-
tity. All BLAST searches were performed with an E-value
cutoff of 0.1.

Structure based homology
The structure based homology search was based on the
Infernal 1.02 [24] models from Rfam 10.1 [8]. A scan of
the complete pig genome without any BLAST pre-filtering
and with all models was performed. The Infernal
options for a default search is given in the CM model files
provided by Rfam, and depends on the model with the
following parameters as variants: -g (global/local(default)
alignment), -T (score cut off, set at the so-called gather-
ing score cutoff for the given model), and –fil-no-hmm
(turns of HMMpre-filtering, speeding up the search at the
cost of sensitivity). The Infernal options were used as
specified in the CM model file, except for three models
Intron_gpI, RNase_MRP, and SSU_rRNA_bacteria where
HMM pre-filtering was enforced because of the excessive
time consumption posed by these models.
The Rfam families are generally constructed with sensi-

tivity in mind. Each family comes with a gathering score
cutoff, which is the recommended cutoff for scanning for
new members of the family. This cutoff will by the very
construction be too sensitive, but it is the only alternative
that Rfam provides.
Initially the scan was performed with the models of

Rfam version 10.0 against a pre-release of the pig genome
version 10. Models added or updated in Rfam version 10.1
were later applied to the full genome (pig genome ver-
sion 10.2). The unchanged models from Rfam version 10.0
were applied to new or altered sequence between the pre-
release of the pig genome and the final version of the
genome otherwise used in this paper. Because of this, the
exact run time for the pig genome is unknown, however,
a corresponding scan of the human genome took 25 CPU
years. The latest version of Infernal is claimed [49] to
be a 100 times faster than the version used in this study,
which would put the entire annotation pipeline within
reach of a small computational cluster.
The raw output of the Infernal scan of the Rfam fam-

ilies on pig yielded a total of 709,026 loci, where 8% of
these had conflicting Rfam annotation. Additional filter-
ing is obviously necessary even at the lowest of confidence
levels. The first thing one should notice is that the con-
struction of the families and setting of the cutoffs by
the Rfam consortium includes a BLAST filtering step,

http://rth.dk/resources/rnannotator/susscr102/version1.02
http://rth.dk/resources/rnannotator/susscr102/version1.02


Anthon et al. BMC Genomics 2014, 15:459 Page 22 of 27
http://www.biomedcentral.com/1471-2164/15/459

and the exact procedure of which is unpublished. This
vastly enhances the selectivity of the families and allows
much lower Infernal score cutoffs thanmay be reason-
able if the families are used without BLAST pre-filtering,
which for the pig genome results in the 709,026 matches
reported above.
We therefore chose to apply 4 additional filters as

explained below, 1. using only families for which we
expect a hit (i.e. only families with seeds in vertebrates),
2. Infernal E-value filtering for families with very loose
E-value cutoffs implied by the gathering score, 3. a BLAST
filter, 4. special filtering for the miRNA families.
Filter 1. Not all families are known for vertebrate

genomes. We limit the analysis to the 695 families with
seed sequences in vertebrates.
Filter 2. We normally used the family’s gathering score

as cutoff. However, in some cases this cutoff was very
loose when translated to Infernal E-values. The score
cutoff on an Infernal CM model implies an equiva-
lent Infernal E-value cutoff. The relationship between
the two is found by calibration of each family. In some
cases we find the model gathering score cutoff to imply
Infernal E-value cutoffs up to around 1e6 (the extreme
case is S_pombe_snR97). For non-miRNA families we
therefore impose an additional Infernal E-value cutoff
of 1e-3 in the cases where the E-value cutoff implied by
the gathering score cutoff is above 1e-3. The cutoff was
chosen because with stricter E-value cutoffs we quickly
start to remove valid candidates from tRNA and snoRNA
families.
To further justify the global E-value cutoff, we ran the

514 Infernal models with (low) confident hits in pig
on shuffled sequence (see the Subsection False positive
rate of the homology search pipeline for details on the
shuffling procedure). 208 or about 40% of the families pro-
duced hits in the shuffled sequence at their family specific
score cutoffs. The worst being mir-684 with 3,212 hits
and 5S_rRNA with 719 hits. When we reduce the global
Infernal E-value cutoff, we gradually reduce the num-
ber of families that have matches in the shuffled sequence
to 161 at an Infernal E-value cutoff of 1 where the
worst family is Histone-3-prime-UTR with 47 hits. Down
to only two hits in two different families at a cutoff of
1e-3 (See the graph in the Additional file 1: Figure S21).
This means that we only observe two false positives in the
shuffled sequence at the low confident cutoff prior to the
BLAST filtering. At our the cutoffs used for the low con-
fidence annotation a single false positive is found, while
none are found at the more strict cutoff levels.
Filter 3. The specificity and sensitivity of a family is

highly dependent on the BLAST filtering, and using the
models score cutoff alone will often be far too loose.
However, even a very loose BLAST filter was suffi-
cient to greatly enhance specificity without affecting the

sensitivity of most models. That is the sequence based
homology filter anchored the families to the right genomic
locations and greatly reduce the number of hits. For
each family we applied a BLAST filter based the family’s
seed sequences. We tested the implications of a com-
mon BLAST E-value cutoff for all non-miRNA families.
By gradually relaxing (increasing) the cutoff, we found
that conflict of annotation occurred at an E-value of 1e-
1 (two different Rfam families annotated the same locus).
By gradually decreasing the cutoff we found that with a
BLAST cutoff value of 1e-5 we loose valid annotations.
The worst case is the Histone-3-prime-UTR family, where
17 of 21 matches are lost and since these 17 matches are
part of three clusters of Histone-3-prime-UTR annota-
tions, we believe them to be valid family members. We
therefore settled on an intermediate BLAST E-value cutoff
of 1e-3 for all non-miRNA families, which by observation
corresponds to an exact sequence match of length 24. A
100% identical sequence match of this length was con-
sidered sufficient to filter the structure matches down to
those matching the correct Rfam family by being in the
order of the shorter sequence motifs, e.g., the length of a
mature miRNA. The BLAST cutoff reduced the number of
loci with conflicting families to zero. For the medium con-
fident results we filtered with an E-value of 1e-1, which is
the limit of the BLAST run we did above. And for the low
confident results, the BLAST filter is turned of completely.
Note that, the HMM filtering that some families provide
is in a sense a refinement of the BLAST filtering.
Filter 4.We found the miRNA families to be particularly

troublesome Rfam families. This may not be too surpris-
ing given their simple hairpin loop structure, which is
ubiquitous in the mammalian genomes. In any case, we
exempt the Rfam miRNA families from the high confi-
dent results, both for the structure similarity search and
for sequence similarity search. We do, however, include
the Rfam miRNA families at the medium and low confi-
dent annotation levels. See also the subsection RNAs of
the individual annotation tools for a specific example of a
problematic mir-family.
While, we apply a maximum Infernal E-value cutoff

of 1e-3 for most families, we can use more strict cutoffs
of 1e-6 or 1e-9, for low and medium confident annotation
of Rfam miRNA families since we observed that the seed
sequences of the miRNA families in general have much
lower Infernal E-values. However, with Infernal E-
value cutoffs lower than 1e-9 we loose validmiRNA family
members observed with high confident BLAST against
miRBase. We furthermore require a BLAST cutoff at all
confidence levels. Without this requirement, we found
that about 40% of the miRNA loci would contain conflicts
even after imposing the extra Infernal E-value filters.
In summary, annotating full vertebrate genomes with

Rfam and Infernal is a difficult task, albeit without
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Infernal it is hard to annotate structured RNAs at all (a
specific example is discussed in the Results section under
snoRNAs). The automatic annotation that we present in
here is, even with the extra filters, is likely to contain a
few pseudogenes or in worst case uncertain annotations.
Thus, the curated genes always contain the annotation
with the highest certainty.

Class specific tools
RNAmmer [25] version 1.2 tool were used for rRNA
detection and the results were used as is. In this mode the
tool detects a number of 8S, 18S and 28S fragments which
will need hand curation.
tRNAscan-SE version 1.23 [10] was used to search for

tRNAs. For mammalian genomes it is often necessary to
apply additional filtering of the tRNAscan-SE results.
For the high and medium confident results we apply the
filtering used for the cow genome in the database on the
tRNAscan-SE website: The high confident results we
report are filtered by HMM Score 10.0, 2’Str Score 5.0,
and COVE Score 20 when the tRNA is found by both first
time parsers and by COVE Score above 55 when the tRNA
is only found by one. The low confident results are the
unfiltered results of the tRNAscan-SE.
snoStrip [26] in a pre-release version was used as

a specialized tool for identifying snoRNAs from incom-
plete BLAST hits. The BLAST search for snoRNAs was
done using all snoRNAs from an internally curated
snoRNA database. BLAST-hits were accepted as homolo-
gous snoRNAs with a sequence identity higher than 85%
and a minimal length of at least 90% of the given query,
the E-value cutoff was 1e-10. Iteratively, we searched
with this method as long as we were able to find new
snoRNA homologs. In order to further remove pseudo-
genes, snoRNA-boxes were scored based on PWM gen-
erated with the curated snoRNA sequences contained in
the database. The false positive rate of the snoStrip tool
was gauged by running the release version on a shuffled
version of the pig genome. No results were found in the
shuffled sequence when running snoStrip at the same
cutoffs as those applied on the real pig genome.

Detection of active PolIII and PolII transcribed RNAs
PolIII transcribed RNAs like U6 may behave like repeti-
tive elements, making it difficult to know which annotated
element undertakes the expected cellular function.
Based on the assumption that only transcribed elements

should actually be functional, we devised a method based
on the detection of the Proximal Sequence Element (PSE)
and TATA-Box upstream of the annotated transcript, two
sequence elements that are essential for the successful
transcription of PolIII elements (see Additional file 1:
Figure S22). A slice of 100 nts directly upstream of the
annotated element of curated human PolIII transcripts

(7SK,U6, U6atac, Y RNA, RNaseP, RNaseMRP), was taken
and searched for PSE and TATA (See Additional file 1:
Table S21)
A strong TATA box signal was observed at the 3’end of

the upstream region of the full set of high confident U6
snRNAs for the preliminary annotation when compared
to a set of 1,000 random sequences(see Additional file 1:
Table S23, Table S22 and Figure S23).
Similar to PolIII transcripts, PolII transcripts also pos-

sess promoter sequences upstream of the transcript.
Those are called Proximal Sequence Element A, PSEA,
(-50 nts upstream) and Proximal Sequence Element B,
PSEB, (-25 nts upstream) (see Additional file 1: Table S24
and Figure S24).
It should be noted that PSEA with high scores on

the set of raw PolII transcripts is significantly different
from the PSEA distribution of the random sequences (see
Additional file 1: Table S25, Table S26 and Figure S23). In
the case of the putative PolII transcripts, the high-scoring
PSEA elements preferentially locate 50 nts upstream of
the transcript start.
Based on these PWMs the reported PolIII (U6, U6atac,

7SK, RNaseP_nuc, RNaseMRP) transcripts were filtered.
Finally, alignments of the selected sequences were gener-
ated either with clustalw [62] and/or cmalign [24]
in order to better spot sequences that might not be
functional.

Genome alignments
The pairwise alignments were performed using LASTZ
version 1.02, and the alignments were subsequently
chained using Kent’s axtChain, which is part of the
UCSC tool chain with code base dated September 2011
[30].
The alignment is performedwithLASTZ [29] on smaller

chunks of the genomes involved. The target genome(pig)
is cut down to fragments of at most 80,010,000 with an
overlap between chunks of 10,000 nucleotides. The source
genome (see Table 4 for at list of source genomes) is cut
down to fragments of at most 80,000,000. The parameters
used for the LASTZ alignments are divided into closely
and distantly related genomes. See Table 4 for which
genomes implies which parameters and Additional file 1:
Table S19 for the exact options used.
TheLASTZ alignments are chainedwith theaxtChain

tool and merged into one big chain file containing all
the chained alignments(chains). These chainsmay overlap
due to duplication of sequence in either target or source.
The chained alignments were converted to single coverage
alignments(nets) of the pig genome using chainNet. The
netted alignments, which are only single coverage of the
pig genome not the source genomes, were cleaned for
non-syntenic alignments with netFilter or by forming
reciprocal best nets, in which only the best alignment is



Anthon et al. BMC Genomics 2014, 15:459 Page 24 of 27
http://www.biomedcentral.com/1471-2164/15/459

kept in case of multiple coverage of the source genome.
(axtChain, chainNet and netFilter are all part of
the UCSC tool chain [30]).
The pairwise alignments were joined to a multi-

ple alignment with the roast program from the
Threaded-Blockset-Aligner (TBA/MultiZ) [36].
Default parameters were used for the program, i.e., a
dynamic programming range of 30 and a minimum MAF
block size of 1. The pairwise alignments were cleaned for
synteny prior to running roast; either by using the syn-
tenic nets or by using the reciprocal best nets in the cases
of many unplaced contigs in the source genome, a scaf-
fold based genome, or low coverage of the pig genome.
See Table 4 for the nets used. A phylogenetic tree without
branch lengths is required as part of the input to roast,
see Figure 3.
The UCSC tool chain allows an automatic cleanup of

the best single coverage alignments of the pig against
other genomes in which alignments of gap-filling char-
acter has been deleted. These so-called syntenic nets are
ideal for identification of synteny. The synteny blocks
from the syntenic nets were identified by merging neigh-
bouring alignments with identical source chromosome,
target chromosome and strand information. The align-
ments were onlymerged when the gap between themwere
smaller than 5,000 nt. Only merged alignments at least
5,000 nt long were used in the further analysis.

RNAz
RNAz version 2.1 [21] was used for de novo prediction.
RNAz identifies loci of conserved structure based upon a
multiple alignment. RNAz ran on windows of the MAF
blocks from themultiple alignment.Windows were of size
120, step size 40. Amaximum of 6 sequences were allowed
in each window. In case of more than 6 sequences in a
window, the alignments were optimized for an average
sequence identity of 80%. RNAz was used with the di-
nucleotide option and with strand identification. At least
three sequences were required to make a prediction. The
results are filtered according to a RNAz p-score 0.9. The p-
score is a reliability score for the RNA prediction and not
a p-value. RNAz is known to have a high false positive rate
[21] and we therefore ran RNAz on MAF windows shuf-
fled using multiperm [63]. We found false positive rates
of 61% and 52% with p-score cutoffs of 0.5 and 0.9, respec-
tively (with the false positive rates defined as the number
of shuffled windows with RNA structures divided by the
corresponding number on the unshuffled windows). In
accordance with the original paper where the respective
false positive rates where 59% and 54% [21].

False positive rate of the homology search pipeline
To gauge the false positive rate of the pipeline, we cre-
ated a shuffled version of the pig genome and ran the

prediction tools with the original settings on the pig
genome.
The approximate size of the typical structured RNAs

that we find is around 120 nt. Accordingly, the contigs
of the pig genome were shuffled in 120 nt windows with
uShuffle [64] set to preserve the di-nucleotide con-
tents. The shuffled windows were then put together in the
corresponding order in the contigs to create a shuffled
pig-genome with the exact same (di-)nucleotide contents,
local GC content bias and contig size as the unshuffled
one. The false positive rate of the tools were then found as
the number of hits obtained in the shuffled genome.

Preparation of small RNA libraries
Total RNA was isolated from liver, lung, kidney, colon,
small intestine, spleen, lymph node, cerebellum, frontal
lobe, and placenta of Pinky, a genetically identical clone
of TJ Tabasco, using mirVana miRNA™ Isolation Kit
(Ambion). Ten micrograms of RNA from each tissue
was separated on 15% polyacrylamide Tris-Borate-EDTA-
Urea gels (Bio-Rad), stained with SYBR® Safe DNA gel
stain (Invitrogen) and visualized using a Dark Reader
Transilluminator (Clare Chemical Research). Small RNA
in the 15–30 nt range was excised, eluted from the gel slice
in 0.3 M NaCl, precipitated in ethanol, and finally dis-
solved in DEPC-treated water. Next, small RNA libraries
were prepared for next-generation sequencing using the
AIR™ Small RNA Sequencing Kit (Bioo Scientific Corpo-
ration) in combination with AIR™ Barcoded Adenylated
Adaptors (Bioo Scientific Corporation) to enable multi-
plex sequencing. The 5’ adaptor and 3’ adaptors were
sequentially ligated to the small RNA and the ligation
products were gel purified between each ligation step
on 10% Tris-Borate-EDTA-Urea polyacrylamide gels. The
gel-purified ligation products were reverse transcribed
and amplified by 20 cycles of PCR. The resulting 100
bp PCR fragments were separated on 4% high resolution
agarose gels (Metaphor Agarose, Lonza), purified using a
QIAquick gel extraction kit (QIAGEN), eluted in 30 µl
10mM Tris-HCl pH 8.5 (EB buffer) and dried down to a
volume of 15 µL using a SpeedVac. The size distributions,
qualities and quantities of the libraries were measured
using a NanoDrop ND-1000 Spectrophotometer and an
Agilent 2100 Bioanalyzer. Finally, the concentrations were
adjusted to 10 nM using EB buffer.

Illumina Genome Analyzer Sequencing and primary
sequence analysis
The ten barcoded libraries were cluster amplified using an
Illumina Cluster Station followed by 50 cycles of sequenc-
ing on an Illumina Genome Analyzer IIx Sequencer and
primary data analysis using the Illumina Pipeline software
(CASAVA 1.7). The sequence reads were first processed
by demultiplexing and trimming of adaptor sequences,
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using only reads with full length 3’ adaptor sequences.
Sequence reads shorter than 15 nt were discarded, leaving
approximately 40M reads for further analysis. Identical
reads were collapsed into unique reads that were quan-
tified (558K), and subsequently aligned to build 10.2 of
the Sus scrofa reference genome using Megablast (-W 12,
-p 100). Sequences mapping to more than five genomic
loci were discarded, and only sequences with perfect,
full-length alignment (100% identity) to the genome were
retained for evaluation, yielding 210K collapsed reads that
represent 27.7M reads.

miRDeep analysis of the small RNA data
Annotation of the reference pig genome with known
and candidate miRNA genes was accomplished with
miRDeep version 1 [28,65-68]. The sequences of the
miRNAs will be submitted to miRBase for annotation.
The raw output from miRDeep indicated 467 putative

miRNA loci with at least 10 reads present. However, due
to duplication of genomic sequence in assembled chro-
mosomes as well as unplaced scaffolds only 421 different
miRNA precursor sequences, and 381 mature sequences
were found. (Note: The 421 miRNA precursors were
given provisional names, pre-1 . . . pre-421, pending cor-
rect names upon addition to miRBase).
Exact mapping of these 421 sequences resulted in 459

loci, 7 of them ambiguous because of overlapping pre-
cursor sequences. In 5 of the seven cases the ambiguity
could be resolved by noting that both star and mature
sequences were identical between the conflicting precur-
sor sequences. In the last 2 cases the star reads were
missing and both precursors discarded. In one particular
instance a precursor was reportedwith to differentmature
sequences, one two nucleotides longer than the other. The
shortest mature sequence was discarded in this instance.
The 459 loci were compared to the high confident anno-

tation obtained in Table 2 and were found to overlap
with snoRNAs, U5 or 28S in a total of 9 instances and
the corresponding precursor sequences were discarded.
Loci overlapping with conflicts already marked in the
homology search based results were kept.
In 7 instances of novel miRNAs, we found that the pre-

cursor sequences overlapped with protein coding annota-
tion, which led to the move of 6 precursor sequences to
the medium confident annotation.
All mature sequences weremapped against all precursor

sequences to identifymisplaced reads. That is, reads map-
ping to multiple places in the genome or reads incorrectly
placed because of mapping issues. Careful examination of
the mapping results lead to the deletion of a further 10
precursor sequences.
9 sequences were deleted because they would intro-

duce conflicts of annotation, and 8 sequences were deleted
due to overlapping pre-miRNA coordinates. 10 sequences

were deleted because they originated from misplaced
reads. Finally 6 sequences were moved to the medium
confident annotation due to overlap with protein coding
annotation. Resulting in a final 388 precursor sequences,
of which 232 where found to have both star and mature
reads. The 388 precursor sequences mapped to a total of
431 loci. All details are found in Additional file 2.

deepBlockAlign
The mapped reads from the small RNA library were
grouped into block groups using blockbuster version
1.0 (with parameters: -distance 30, -minBlockHeight 2,
-minClusterHeight 10, -scale 0.5 -blockHeight abs) [33].
The block groups were aligned using deepBlockAlign
version 1.0, which aligns the relative read expressions and
arrangements of reads of the two block groups. The align-
ment score from deepBlockAlign lies between 0 that
suggests perfect dissimilarity and 1 that suggests perfect
similarity between the two block groups. We require that
the length of block groups were at least 50 to make sure
that structure could be obtained from the read profile and
for example singular peaks of stacked reads could be fil-
tered out). deepBlockAlign scores are only considered
meaning when >= 0.6. This cutoff is based on an empir-
ical study of two biological replicates, where 95% of the
read profiles had an alignment score >= 0.6 between the
two samples.

Note added in proof
During completion of this paper a release version of the
program snoStrip was published. We have employed
this updated version, which resulted in minor changes for
the annotated snoRNAs. Thus, the number of high confi-
dent annotated snoRNAs is now changed from 638 to 621,
in which the subset of curated snoRNAs now consist of
289 compared to the previous 269. Overall the total num-
ber of high confident annotated RNAs has correspond-
ingly changed from 3,556 to 3,539. These changes are
now included in a further release, 1.03 (see http://rth.dk/
resources/rnannotator/susscr102/version1.03/ where we
describe the changes to the previous version (1.02) pre-
sented in the paper).
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Supplementary Figures S1–S24. Additional data and tracks for genome
browser visualisation also available on http://rth.dk/resources/rnannotator/
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Additional file 2: Spreadsheet containing data for the miRDeep
detection of miRNAs.
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