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Abstract

Background: PDZ domains are one of the most promiscuous protein recognition modules that bind with short
linear peptides and play an important role in cellular signaling. Recently, few high-throughput techniques (e.g.
protein microarray screen, phage display) have been applied to determine in-vitro binding specificity of PDZ
domains. Currently, many computational methods are available to predict PDZ-peptide interactions but they often
provide domain specific models and/or have a limited domain coverage.

Results: Here, we composed the largest set of PDZ domains derived from human, mouse, fly and worm proteomes
and defined binding models for PDZ domain families to improve the domain coverage and prediction specificity. For
that purpose, we first identified a novel set of 138 PDZ families, comprising of 548 PDZ domains from aforementioned
organisms, based on efficient clustering according to their sequence identity. For 43 PDZ families, covering 226 PDZ
domains with available interaction data, we built specialized models using a support vector machine approach. The
advantage of family-wise models is that they can also be used to determine the binding specificity of a newly
characterized PDZ domain with sufficient sequence identity to the known families. Since most current experimental
approaches provide only positive data, we have to cope with the class imbalance problem. Thus, to enrich the negative
class, we introduced a powerful semi-supervised technique to generate high confidence non-interaction data. We
report competitive predictive performance with respect to state-of-the-art approaches.

Conclusions: Our approach has several contributions. First, we show that domain coverage can be increased by
applying accurate clustering technique. Second, we developed an approach based on a semi-supervised strategy
to get high confidence negative data. Third, we allowed high order correlations between the amino acid positions
in the binding peptides. Fourth, our method is general enough and will easily be applicable to other peptide
recognition modules such as SH2 domains and finally, we performed a genome-wide prediction for 101 human
and 102 mouse PDZ domains and uncovered novel interactions with biological relevance. We make all the
predictive models and genome-wide predictions freely available to the scientific community.

Background
Protein-protein interactions are the most essential cellu-
lar process in eukaryotes that involve many important
biological activities such as signal transduction, maintain-
ing cell polarity etc [1-3]. Many protein-protein interac-
tions in cellular signaling are mediated by modular
protein domains. Peptide recognition modules (PRMs)

are an important subclass of modular protein domains
that specifically recognize short linear peptides to med-
iate various post translation modifications [4].
PDZ domains are one of the most widespread peptide

recognition modules (PRMs) that predominantly found in
signaling proteins in multi-cellular organisms and play an
important role in the establishment of cell polarity, neuro-
nal signaling, protein trafficking etc [1-3]. It has also been
reported previously that PDZ domains take a pivotal role
in several human diseases such as schizophrenia, cystic
fibrosis etc [5]. The name PDZ was derived from the
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acronym of three proteins, namely postsynaptic density
protein-95 (PSD-95), disks large tumor suppressor (DLG1)
and zonula occludens-1(ZO-1) [6-8]. PDZ domains are
typically 80-90 amino acids in length, containing 5-6 b
strands and 2 a helices. The second b strand, second a
helix and a GLGF loop of the PDZ domains collectively
form the binding pocket, which recognizes the hydropho-
bic C-terminal peptide of a target protein [9,10]. Albeit
many PDZ domains preferentially recognize the C-term-
inal tails of their target proteins, other interaction patterns
have also been described [3,11]. In earlier studies, PDZ
domains were grouped into different specificity classes
based on their target motif structures: X[T/S]X�-COOH
(Class I motif), X�X�-COOH (Class II motif) and a minor
X[D/E]X�-COOH (Class III motif), where X represents
any natural amino acid and � represents hydrophobic
amino acid [9,12]. Nevertheless, this classification system
is an oversimplification since it is known that every residue
in the target peptide contributes to the binding specificity
[13,14].
To determine binding specificity of PDZ-peptide inter-

actions, several high-throughput techniques (e.g. protein
microarray screening, phage display etc.) have been
employed [15,16]. While the enormous amount of data
generated by these high-throughput experiments have
become invaluable to build powerful computational mod-
els for predicting domain-peptide interactions, these
kinds of data also have some severe caveats. First, data
maybe rich only for certain domains while it is scarce or
completely missing for others. Second, reliable informa-
tion is usually gained only for positive interactions, while
there is lack of negative information, leading to a class
imbalance problem. Thus, it is still an open problem to
build general predictive models that have high specificity
for PDZ-peptide interactions using this kind of data.
We can distinguish two types of approaches to tackle

this problem. The first type uses structural information to
improve specificity. It was recently observed that structural
information can be used to improve the prediction of
binding sites for DNA-binding or RNA-binding proteins
(e.g. [17] for DNA-binding proteins, and [18,19] for RNA-
binding proteins). More specifically for the PDZ domain,
Chen et al. used structural information from a reference
PDZ-peptide complex structure to build a Bayesian model
for predicting PDZ-peptide interactions [20]. Recently,
Bader and coworkers developed several support vector
machine based approaches to predict PDZ-peptide inter-
actions [21-23]. These methods are based on only one
reference PDZ-peptide complex structure and thus do not
perform well for all PDZ domains. Other structure-based
approaches are computational very expensive and depend
on solved structures, which in reality are very few [24,25].
The other type consists of approaches that cope with

the problem of few data points by combining the

experimental evidence for domains with similar binding
preference. As was recently shown by two high-through-
put experiments, PDZ domains can be classified into 16
different specificity classes [15,16] with similar ligand
binding profiles. Stiffler et al. developed a multi-domain
selectivity model (MDSM) in 2007, which uses in effect
a mixture of position specific scoring matrices (PSSMs)
[15]. However, PSSM based models have several draw-
backs as they are essentially linear models and thus unable
to consider the positional correlation between the amino
acid positions in the binding peptides. Furthermore, the
models are based only on the positive interaction data and
hence do not use of information from negative interaction
data. Recently, few methods have been developed to over-
come this problem by using a support vector machine
[26,27]. Li et al. applied a nearest neighbor approach
(based on domain sequence identity and ligand binding
specificity) to extend the training set for each domain,
building models for 174 PDZ domains in total [27].
In this work, we present a cluster based prediction of

PDZ-peptide interactions for human (H. sapiens), mouse
(M. masculas), fly (D. melanogaster) and worm (C. elegans),
using a machine learning approach. The importance of our
method is five fold: (i) clustering of a very large set of PDZ
domains based on their sequence identity. This compre-
hensive study allowed us to construct specialized models
for 43 PDZ families, covering 226 PDZ domains, which are
more accurate compared to the state-of-the-art and offers
models for the largest set of PDZ domains to date. (ii) The
data obtained from high-throughput experiments are often
found to lack of non-interacting data (i.e. negative data)
and thus lead to a great class imbalance problem. Previous
research showed that the performance of many machine
learning methods are significantly poorer on highly imbal-
anced data [28-30]. To deal with this issue we employed a
semi-supervised machine learning approach to identify
high confidence negative interactions. (iii) We allowed
the dependency between the amino acid positions in
the binding ligand. (iv) We built two types of models,
one sequence-based and one based on contact information
from reference structures, and compared the performance
of these models. Surprisingly, no significant difference
in predictive performance was observed. (v) Finally, we
performed a genome-wide analysis for 101 and 102
PDZ domains from human and mouse, respectively and
uncovered novel, biological meaningful, PDZ-peptide
interactions.

Methods
PDZ domain data
For retrieving all the annotated PDZ domains from
human, mouse, fly and worm proteomes, we used Uni-
ProtKB/Swiss-Prot database, which is a well known
manually curated and reviewed database [31]. At the
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time of analysis, the UniProtKB/Swiss-Prot database,
release 2013-01, contained 20248 human (H. sapiens),
16597 mouse (M. masculas), 3182 fly (D. melanogaster)
and 3382 worm (C. elegans) proteins. A large set of 548
PDZ domains, comprising 271 human, 234 mouse, 27 fly
and 16 worm PDZ domains, were derived.

Clustering of PDZ domains
We clustered all the available PDZ domains using Mar-
kov clustering algorithm (MCL) based on their global
sequence identity [32]. MCL is a popular and efficient
method for clustering biological sequences and was suc-
cessfully applied for clustering of protein families [33].
More recently, Li et al. have proposed that PDZ domain
pairs with greater than 50% sequence identity share
similar binding specificity [27]. Thus, we defined 50%
sequence identity as a cut-off value to represent similar
specificity. We used Needleman-Wunsch algorithm in
order to calculate pairwise sequence identity of all PDZ
domains. PDZ domain pairs with less than 50% sequence
identity were discarded to reduce noise [34]. In the MCL
method, PDZ domain sequence identities can be consid-
ered as a weighted graph, where the domains are the nodes
and the identity relationships are the edges. Since the MCL
algorithm specifically designed for the simple and weighted
graphs, clustering of the PDZ domains using MCL is highly
reliable. We applied MCL algorithm with 1.4 inflation
parameter. This parameter was used for controlling the
granularity or the tightness of the clusters and we found
1.4 as the best inflation value for clustering of PDZ
domains. Only families with at least two PDZ domain
sequences were considered. Finally, 515 PDZ domains
from human, mouse, fly and worm were classified into 138
different families.

Domain-Peptide interaction data
Dataset I
We used a protein microarray screening data to analyze
the specificity of PDZ domains, comprising 157 mouse
PDZ domains and 217 fluorescently labeled genome-
encoded peptides [15]. The initial interaction data derived
from microarray screening was further analyzed by fluor-
escence polarization. Apparent equilibrium dissociation
constant (KD value) was applied to determine the positive
and negative classes [15]. A total 731 positive interactions
and 1361 negative interactions were derived that involved
85 mouse PDZ domains and 181 peptides, using a KD cut-
off of 100 µM. We used same KD cutoff value as men-
tioned in [15].
Dataset II
For the human phage display experiment, we considered
a total of 1389 interactions that involved 54 human
PDZ domains and 1211 peptides [16]. Note that this
experiment provides only positive interaction data. Thus

we did not have any negative interaction data for this
dataset.
Dataset III
From PDZBase [35], which is a high quality known
PDZ-peptide interaction database, we extracted non-
redundant 201 interactions, which were composed of 94
domains and 115 peptides. We considered interaction
data only from human, mouse, fly and worm. Note that
PDZBase also contains only positive interaction data
and hence no negative interaction data was available in
this database as well.

Domain-peptide complex structures
For retrieving all the available PDZ-peptide complex struc-
tures, we used Protein Data Bank (PDB), which contains
experimentally solved protein structures [36]. At the
moment of analysis PDB contained 55 PDZ-protein and/
or PDZ-peptide complex structures comprising 47, 5 and
3 structures from human, mouse and fly, respectively.
Note that we were unable to find any PDZ-peptide com-
plex structure for worm. After filtering according to avail-
able interaction data, we were left with 21 human,
5 mouse and 3 fly PDZ-peptide complex structures.

Dataset compilation
We have combined all the positive and negative interac-
tion data from dataset I, dataset II and dataset III. Five
C-terminal residues of the peptides were considered
since they are the most important for determining PDZ
domain specificity [9,16]. Finally, we retrieved a total
3592 interactions involved 194 domains and 1437
peptides.

Semi-supervised negative data
Datasets derived from high-throughput experiments usually
suffer from a lack of reliable negative interaction data. In
our study, we were only able to obtain the negative interac-
tion data from a microarray experiment although the data-
set had an imbalanced problem. Other data sources (i.e.
phage display and PDZBase) provide only positive interac-
tion data. Previous study showed that machine learning
methods work poorly when the dataset is highly imbal-
anced [28-30]. In order to generate more negative data we
have employed a semi-supervised learning approach (SSL)
that was also implemented successfully in our previous
work [30]. The general strategy of SSL is to learn from
a small amount of labeled data and a large amount of
unlabeled data. Here, differently from the general problem
formulation for SSL, we were interested in using the unsu-
pervised material to have a better characterization only of
the minority class; in our case, the negative class. Albeit,
there are several strategy to deal with SSL problem, we
have chosen the self-training approach that relies only on
the good discriminative properties of the base classifier and

Kundu and Backofen BMC Genomics 2014, 15(Suppl 1):S5
http://www.biomedcentral.com/1471-2164/15/S1/S5

Page 3 of 11



thus fits well with our datasets. The method is a simple
wrapper scheme around a base classifier: the initial labeled
data is used to train the classifier which then assigns a label
to the unlabeled material. Since dataset I was only compris-
ing of mouse PDZ-peptide interaction data, we used all the
C-terminal peptides from mouse proteome as unlabeled
data.
Finally, the predicted unlabeled peptides having the

probability of 0.5 to 0.8 towards the negative class were
considered. We ignored very high scoring (probability
more than 0.8) predicted negative peptides since they
might be very far from positive class and therefore
could produce low quality models. We randomly chose
negative data from the pool of predictive negatives,
added them to the training data, and re-trained the clas-
sifier. In general, there was five times more negative
data than positive data [37].
Note that we need both positively and negatively

labeled data to apply the described SSL approach since
we need to train the base classifier with both positive and
negative data. Hence, we could only employ the SSL
approach to domains that occur in dataset I as it contains
both classes. For those PDZ domains where only the
positive data was available, we chose the negative data
randomly from C-terminal peptides of the respective
organism from UniProtKB/Swiss-Prot [31]. Note that we
only used the negative interaction data from the semi-
supervised learning for the training sets, while our test
sets contained only experimentally verified positive and
negative interaction data.

Feature encoding
Previous studies show that the C-terminal residues of a
peptide are the most important for PDZ-peptide binding
specificity [9]. We followed the literature and restricted
the peptide sequence to 5 C-terminal positions, namely we
extracted the amino acids in positions from P0 to P-4
downstream, where the P0 is the extreme last C-terminal
position. We have developed two types of feature encoding
methods: i) sequence-based and ii) contact-based feature
encoding.
In the sequence-based feature encoding, a peptide

sequence was mapped into a binary vector x, living in a
20 × 5 = 100 dimensional space. I.e., for each position,
we reserved 20 dimensions (one for each amino acid
type) and encoded the amino acid type with a 1 in the
corresponding dimension and 0 elsewhere.
For the contact-based feature encoding, we used an

approach similar to the one described by Chen et al. [20].
Here, the important position pairs (one amino acid from
the domain and another from the peptide) were taken
into account. First, we constructed a cluster-based, PDZ
domain, multiple sequence alignments using MAFFT

[38]. We then considered the core position pairs that are
in close proximity and hence extracted only the position
pairs with distance less than 4.5 angstroms using
domain-peptide complex structures. Note that we have
used different reference structures for different families.
Each position pair was encoded as a binary vector x, liv-
ing in a 20 × 20 = 400 dimensional space. All the position
pairs were then encoded in a binary vector of size 400 ×
n, where n is the number of binding pairs. Finally the
sequence-based encoding was concatenated with the con-
tact-based encoding, which produced a binary vector of
size 100 + 400 × n.
For each domain D, we have compiled a data set

encoded as a set of pairs (x1,c1),..,(xn,cn) where, xi is the
binary feature vector for peptide Pi with the class label
ci ∈ {−1, 1}. The class label is +1 if the domain D inter-
acts with peptide Pi and -1 otherwise.

Performance measures
We formulated a learning problem for each PDZ domain
family. The predictive performance for each problem
was assessed by computing 5 measures: sensitivity,
specificity, precision, area under the receiver operating
characteristics curve and area under the precision recall

curve. These are defined as: Sensitivity/Recall =
TP

TP + FN
,

Precision =
TP

TP + FP
, Precision =

TP

TP + FP
, where TP

denotes true positive, FP denotes false positive, TN
denotes true negative and FN denotes false negative. The
area under the receiver operating characteristics curve
(AUC ROC) is defined as the area under the curve
obtained by plotting the fraction of true positives out of
the positives (TPR = true positive rate) vs. the fraction of
false positives out of the negatives (FPR = false positive
rate), at various threshold settings. The area under the
precision recall curve (AUC PR) is defined as the area
under the curve obtained by plotting precision as a func-
tion of recall.

Results and discussion
Tree of PDZ domains
In recent years, enormous amounts of interaction data
have been generated by various high-throughput experi-
ments thus computational methods are invaluable to
analyze these data. One of the major problems while
analyzing these data is sufficient amounts of data may
be available for certain domains but completely missing
or much less available for another domain. For example,
there are only two positive interactions for PDZ 1 and
PDZ 2 domains of human DLG2 and DLG4 available in
the literature. To overcome this limitation our first goal
was to combine the PDZ domains that are similar in
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substrate specificity and therefore build a single classifier
for these similar domains. Hence, this approach enables
us to make separate models for each domain family.
First, we aligned all available PDZ domains (human,

mouse, fly and worm) annotated in UniProtKB/Swiss-
Prot by using MAFFT and built a phylogenetic tree [38].
We then clustered all the similar PDZ domains based
on their sequence identity by using Markov clustering
algorithm (MCL) [32]. MCL is a fast and powerful algo-
rithm for clustering biological sequences. 50% sequence
identity was set for the cutoff value as previous research
showed that the PDZ domains with more than 50%
sequence identity have similar binding specificity [27]
(see Material and methods for details). All the available
PDZ domains (548) were classified into 138 families.
Out of all 548 domains, we were unable to classify 33
PDZ domains since the sequences are too diverse. The
biggest family consists of 20 PDZ domains from human,
mouse and fly. Finally, we have mapped the 138 families
on the phylogenetic tree of all PDZ domains for better
visualization (see Figure 1). In this figure each family is
represented by a different color. Additionally, we have
described the peptide preferences for each PDZ domain
family. Amino acid composition of the binding peptides
was visualized using sequence logos [39], showing the
amino acid enrichment at each position in the binding
peptides. See Additional file 1: Figure S1 for the ligand
binding specificity of each PDZ domain family.

Modeling
We used two strategies for modeling our data, namely a
purely sequence-based approach and a contact-based
modeling that uses structural information.

Sequence-based data modeling
For the sequence-based modeling approach, we followed
the literature and considered five C-terminal residues of
peptide sequences as an input, where the position of
C-terminal residue is given P0 and going upstream P-1,
P-2 and so on. To define the positional features, we
extracted amino acids from peptides and mapped them
into a binary vector x living in a 20 × 5 = 100 dimensional
space (see Materials and methods for details). Families
with at least 10 positive interaction data were considered
for modeling. In summary, we built models for 43 families
covering 226 PDZ domains.

Contact-based data modeling
The contact-based modeling approach combines the
peptide sequence information with PDZ-peptide com-
plex structure information. We followed the similar
approach taken by Chen et al. in 2008 [20]. However,
we did not use only one reference structure for all

domains. Instead, we used a specific reference structure
for each family by selecting one representative domain-
peptide complex structure for each family from the PDB
database [36]. For these domain-peptide structures, we
considered only the position pairs (one amino acid from
the domain and another from the peptide) with distance
less than 4.5 angstroms (see Figure 2). The important
position pairs were separately derived for each PDZ
domain family. All position pairs were then encoded in
a binary vector of size 400 × n, where n is the number
of binding pairs (see Materials and methods for details).
We concatenated sequence-based features with contact-
based features and finally, we built models for 10
families covering 70 PDZ domains.

Predictive model and performance evaluation
We employed a Gaussian kernel support vector machine
to build predictive models [40]. SVMlight software was
used to build the SVMs [41]. We used a 5-fold stratified
cross-validation in order to evaluate the predictive per-
formance of each model. Here, the data is partitioned
into 5 parts ensuring the same proportional distribution
of positive and negative instances in each part. Each part
is then used in turn as a held out test set, while the
remaining 4/5th of the data is used as training set. In the
cross-validation step, only the families with at least 10
positive data and 10 negative data were taken into
account so that each test set contains at least 2 positive
and 2 negative interactions.
For the sequence-based approach comprising models

for 43 families covering 226 PDZ domains, only 22
families covering 136 PDZ domains met this criteria and
therefore used in cross-validation. The hyper parameters
(i.e. g and the cost parameter C) for each fold were opti-
mized using 5-fold grid search method over the training
sets. See Additional file 1: Table S1 for the perfor-
mances of all 22 families. We computed area under the
ROC curve (AUC ROC) and area under the precision
and recall curve (AUC PR) for the 22 families. Using
sequence-based feature encoding, we achieved a very
good average AUC ROC of 0.92 and AUC PR of 0.94
(see Figure 3).
For the contact-based feature encoding method com-

prising initially 10 families with 70 PDZ domains, only 6
PDZ families covering 39 PDZ domains met the selection
criteria for the cross-validation. No significant differences
were observed when we compared the performances
(AUC ROC and AUC PR) of sequence-based and con-
tact-based approaches (see Additional file 1: Table S1, S2
and Figure S2). Therefore, we can conclude that the
peptide sequence information is sufficient to define the
binding specificity of a PDZ domain on the current avail-
able data.
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Benchmarking of published methods
We compared our results with two state-of-the-art tools,
namely MDSM (multi-domain selectivity model) [15]
and DomPep [27], on an independent test set. The inde-
pendent test set contained 493 positive interactions and
3059 negative interactions that involved 74 mouse PDZ
domains and 48 peptides [15]. Among them, we used
interactions for 50 PDZ domains that were common in
all three methods (MDSM, DomPep and our method).

We make sure the peptides were not included in our
training sets. Our models achieved a true positive rate
(TPR) of 0.67, false positive rate (FPR) of 0.14 and AUC
ROC of 0.85 with a true-positive/false-positive (TP/FP)
ratio of 0.87 outperforming the other two approaches:
MDSM achieved TPR of 0.55, FPR of 0.17 and AUC
ROC of 0.74 with TP/FP ratio of 0.55; the DomPep
achieved TPR of 0.66, FPR of 0.15 and AUC ROC of
0.84 with TP/FP ratio of 0.79 (see Figure 4).

Figure 1 Clustering of PDZ domains. Phylogenetic tree of all available PDZ domains from human, mouse, fly and worm. The MCL clustering
output was mapped onto the phylogenetic tree. A total number of 138 PDZ families are presented by 138 colors. iTOL was used for the
visualization [45].

Kundu and Backofen BMC Genomics 2014, 15(Suppl 1):S5
http://www.biomedcentral.com/1471-2164/15/S1/S5

Page 6 of 11



In another experiment, we tested our method with
MDSM on a validated dataset. We could not test Dom-
Pep since many of the test instances were present in the
DomPep training set and hence a fair comparison was
not possible. The test data was retrieved from an experi-
mentally validated database, called PDZBase [35]. We
compared 20 mouse PDZ-peptide interactions derived

from PDZBase that were neither included in MDSM nor
in our training set. Out of 20 interactions, we successfully
predicted 14 interactions with a true positive rate (TPR)
of 0.70, compared to only 4 interactions predicted by
MDSM with a true positive rate (TPR) of 0.20. For calcu-
lating MDSM score, an unit threshold was defined as the
ratio of the original prediction score (�) over a scoring

Figure 2 PDZ-peptide complex structure. Representative PDZ-peptide complex structure (PDB-id: 4G69) for PDZ family 1. 2nd PDZ domain
from human DLG1 binds with C-terminal peptide of human APC protein. Green lines indicate the binding pairs with distance less than 4.5
angstroms. UCSF Chimera was used for the visualization [46].

Figure 3 Performance. (A) The AUC-ROC and (B) the AUC-PR curve obtained by sequence-based feature encoding method.
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threshold (τ), specific for each domain [15]. A peptide was
then predicted to bind with a PDZ domain i, if �i/τi >1.
Table 1 lists the scores for all 20 validated interactions as
calculated by MDSM and by our method.
The advantages of our approach compared to afore-

mentioned tools are threefold: i) using an accurate clus-
tering approach allows our method to achieve a higher
domain coverage; ii) we have employed a powerful semi-
supervised learning technique to identify high confidence
negatives, which increase the model quality; and iii) our
approach is based on a non-linear model to address the
issue of the correlation between amino acid positions.

Genome-wide prediction of PDZ domains
We performed a genome-wide prediction of PDZ domain
mediated interactions in human and mouse proteomes.
The idea was to identify novel interaction partners for
human and mouse PDZ domains. In order to do so, we
extracted the set of peptides from UniProtKB/Swiss-Prot
database [31], release 2013-01, which is a manually curated
and reviewed database. We retrieved 20248 and 16597
proteins from human and mouse proteomes, respectively.
The last 5 C-terminal residues were taken from each pro-
tein to build the peptide sets separately for human and
mouse. In this analysis we have used prior knowledge to

avoid peptides that are not likely to interact with their
respective PDZ domains. Therefore, we considered two fil-
ters for selecting the probable binding peptides for a given
PDZ domain: i) structural location of the peptides and ii)
co-cellular localization of domain and peptide containing
proteins.
Previous study showed that PDZ domains have a ten-

dency to bind with intrinsically unstructured proteins
(IUPs) [42], thus we considered only those peptides that
reside in a disordered segment of a protein. For determin-
ing the structural disorder of a protein region we ran the
IUPred algorithm over the full-length protein sequence to
get a disorder score between 0 and 1 for each residue of a
protein [43]. Finally, an average score for the last 5 resi-
dues (peptide sequence in our study) was obtained to
determine putative candidate regions for interaction. A
cutoff value of 0.4 was chosen based on the analysis done
by Akiva et al. [42]. To this end, we ignored all the pep-
tides having the IUPred score less than 0.4.
As a second filter, co-cellular localization was applied to

avoid unlikely interactions. More clearly, we have consid-
ered only those interactions where the peptide containing
proteins and the PDZ containing proteins share at least
one cellular localization term annotated in Gene Ontology
Database [44].

Figure 4 Performance evaluation on an independent test set. Performance comparison of tree different tools. Red, green and blue bars
indicate the predicted performances by our tool (SVM), DomPep and MDSM, respectively. The figure clearly shows that our tool (SVM) achieved
better performance.
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Finally, the eligible peptides were scored by the trained
models and sorted according to SVM scores. We have
observed C-terminal peptide (IETHV) from Connector
enhancer of kinase suppressor of ras 2 protein (Q8WXI2-
Human, Q80YA9-Mouse) was targeted by 40 PDZ
domains, represented 16 families, in human and mouse.
See Additional file 1: Table S3 and Table S4 for top five
peptides targeted by most number of human and mouse
PDZ domains. The top predictions for each human and
mouse PDZ domains are freely available to the scientific
community.

Conclusions
In our comprehensive study, we propose a cluster based
computational method to accurately predict the binding
partners of PDZ domains using support vector machine
(SVM). First, we used an efficient MCL algorithm to
cluster all PDZ domains from different organisms and
thereafter built prediction models for each PDZ family
found by our clustering. Our method offers the largest
number of prediction models for PDZ domains to date.
We showed that our clustering method maximizes the
training datasets, which is important to build powerful
prediction models. In the clustering method, we com-
bined all the PDZ domains that share high sequence

identity and therefore have similar binding specificity.
There are, however, additional cases where the binding
preference is very similar despite a low sequence iden-
tity. For example, MAGI1-5 and MAGI3-4 domains
share similar specificity despite of low sequence identity
(24% in mouse) [27]. Since these cases are hard to
detect automatically, we used a conservative approach
by considering a threshold of 50% sequence identity.
Even using this conservative threshold, we were able to
achieve a very good prediction accuracy. We also
applied semi supervised learning (SSL) strategy for
selecting high confidence negative data to re-balance
our training sets. In our study, we have developed mod-
els based on two feature encoding methods; i) sequence-
based and ii) contact-based methods. Since the
sequence-based approach does not depend on domain-
peptide complex structures, it covers more PDZ
domains but may fail to predict binding peptides of a
mutated domain with completely different specificity.
For mutated domains we can efficiently use our contact-
based approach, which considers binding pairs of
domain and peptide and thus should be able to more
precisely evaluate the effect of mutations. Our method
is also able to predict binding peptides of newly charac-
terized PDZ domains. Moreover, our approach is gen-
eral enough to be easily applicable to other PRMs (i.e.
SH2, SH3, WW etc.). We compared our tool with pub-
lished state-of-the-art methods and achieved better per-
formance. Finally, we performed a genome-wide analysis
and predict several novel interactions for human and
mouse PDZ domains. The predictive models and the
genome-wide top predictions are freely available to
scientific researchers.

Availability and requirements
Models are available under the URL:
http://www.bioinf.uni-freiburg.de/Software/PDZPe-

pInt/PDZPepInt.tar.gz
Genome-wide predictions are available under the URL:
http://www.bioinf.uni-freiburg.de/Software/PDZPe-

pInt/Genome-wide-predictions.tar.gz
Datasets are available under the URL:
http://www.bioinf.uni-freiburg.de/Software/PDZPe-

pInt/PDZ-datasets.tar.gz
Operating systems: Linux

Additional material

Additional file 1: Figure S1: Peptide logos for each PDZ domain cluster.
Figure S2: Performance comparison of sequence-based and contact-
based approach. Table S1: Performance of sequence-based approach.
Table S2: Performance of contact-based approach. Table S3: List of
proteins that targeted by highest number of PDZ domains in human.
Table S4: List of proteins that targeted by highest number of PDZ
domains in mouse.

Table 1 SVM and MDSM scores for validated set.

PDZ domain Peptide SVM
score

MDSM
score

Pubmed
Ref.

Cipp-(3/10) IESDV 0.44 -0.7 9647694

Cipp-(3/10) LESEV 0.30 -0.62 9647694

Cipp-(3/10) QQSNV 0.29 -0.78 9647694

Cipp-(3/10) KEYYV 0.51 -0.34 9647694

Dvl1-(1/1) SETSV -1.27 -0.74 12490194

Pdlim5-(1/1) DITSL -0.24 -0.15 10359609

Erbin-(1/1) LDVPV 0.99 0.61 10878805

Magi-2-(5/6) KESSL 1.76 0.19 10681527

MUPP1-(10/13) IATLV 1.00 0.46 11000240

MUPP1-(10/13) GKDYV 1.00 1.68 11689568

NHERF-1-(1/2) FDTPL 1.06 0.01 10980202

LIN-7A-(1/1) IESDV 0.33 0.29 10341223

Lin7c-(1/1) IESDV 0.33 1.00 10341223

ZO-3-(1/3) GKDYV 0.99 0.09 10601346

a1-syntrophin-(1/
1)

VLSSV -1.47 0.16 11571312

PSD95-(1/3) LQTEV 0.38 1.41 11937501

PSD95-(1/3) NETVV -1.35 1.19 12067714

PSD95-(1/3) GETAV -1.32 1.23 12067714

PSD95-(1/3) EESSV -2.23 0.77 11134026

PSD95-(1/3) RTTPV 1.00 0.61 12359873

SVM and MDSM scores for experimentally validated interactions derived from
PDZBase [35]. A peptide is predicted to bind to a PDZ domain if the score is
more than 0 for SVM and more than 1 for MDSM. Bold numbers indicate true
positive interactions.
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