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Abstract

Background: In mass spectrometry-based proteomics, the statistical significance of a peptide-spectrum or protein-
spectrum match is an important indicator of the correctness of the peptide or protein identification. In bottom-up
mass spectrometry, probabilistic models, such as the generating function method, have been successfully applied
to compute the statistical significance of peptide-spectrum matches for short peptides containing no post-
translational modifications. As top-down mass spectrometry, which often identifies intact proteins with post-
translational modifications, becomes available in many laboratories, the estimation of statistical significance of top-
down protein identification results has come into great demand.

Results: In this paper, we study an extended generating function method for accurately computing the statistical
significance of protein-spectrum matches with post-translational modifications. Experiments show that the
extended generating function method achieves high accuracy in computing spectral probabilities and false
discovery rates.

Conclusions: The extended generating function method is a non-trivial extension of the generating function
method for bottom-up mass spectrometry. It can be used to choose the correct protein-spectrum match from
several candidate protein-spectrum matches for a spectrum, as well as separate correct protein-spectrum matches
from incorrect ones identified from a large number of tandem mass spectra.

Background
Peptide and protein identification in mass spectrometry
(MS)-based proteomics involves searching tandem mass
spectrometry (MS/MS) spectra against a protein data-
base using a search engine. In bottom-up MS, most
search engines calculate a similarity score between a
spectrum and a peptide and report a best-scoring pep-
tide-spectrum match (PSM) for each spectrum [1-5]. A
PSM is correct if the spectrum is generated from the
matched peptide. It is vital to distinguish correct PSMs
from those incorrect ones.
Two main approaches have been proposed to address

this problem. In the first approach, a large data set of
MS/MS spectra is searched against a concatenated tar-
get-decoy protein database to find a best-scoring PSM

for each spectrum, and the PSM is reported if its score
exceeds a prespecified threshold. The false discovery
rate (FDR) of the reported PSMs is estimated based on
the fact that the number of decoy hits and the number
of incorrect target hits are approximately the same [6].
This approach is simple and powerful when a large
population of PSMs is reported. However, it fails to
decide the correctness of single PSMs. In addition, it is
unable to compute accurate FDRs when the target pro-
tein database is small (e.g., a database with only one
protein) or when only a small number of PSMs are
reported [7].
In the second approach, the statistical significance (E-

value or p-value) of a PSM is computed for determining
the correctness of the PSM. Due to the complexity of
MS/MS spectra, many statistical models have limited
accuracy. By contrast, Kim et al. proposed a probabilis-
tic method for computing spectral probabilities and
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statistical significance of PSMs [8]. This method
achieves high accuracy, but it is not obvious how to
extend it to PSMs with post-translational modifications
(PTMs).
With the rapid developments in instrumentation, top-

down MS, which analyzes intact proteins or long pep-
tides, has become available in many laboratories. More
than a thousand proteins can be identified in a single
top-down MS experiment [9] and many methods have
been proposed for identification of proteoforms using
top-down tandem mass spectra [10-17]. Although the
evaluation of PSMs in bottom-up MS has been inten-
sively studied, no systematic studies have been carried
out for evaluating protein-spectrum matches (PrSMs) in
top-down MS. Similar to bottom-up MS, there is now
an increasing demand to accurately estimate the statisti-
cal significance of single PrSMs. For instance, a top-
down MS/MS spectrum can be matched to two different
proteins: one contains a PTM; the other does not. Com-
paring the E-values of the two PrSMs can determine
which one is better. Meng et al. developed a Poisson
model for the problem, but the model does not include
PTMs [18]. As top-down MS/MS spectra are often
mapped to proteoforms with PTMs, accurate estimation
of statistical significance of PrSMs with PTMs is useful
and challenging. We proposed a method for E-value
computation of PrSMs by breaking a protein into several
sub-proteins without PTMs, but it is extremely time
consuming [17]. In this paper, we study an extended
generating function method for accurately computing
spectral probabilities and statistical significance of
PrSMs in top-down MS. Our method naturally extends
the generating function method in bottom-up MS [8].
Spectral probabilities reported by the extended generat-
ing function method are further utilized for estimating
FDRs of identified PrSMs using a method proposed in
[7], in which decoy databases are not needed. Experi-
ments show that the extended generating function
method achieves high accuracy in computing spectral
probabilities and FDRs.

Methods
A top-down MS/MS spectrum generated from a protein
consists of a precursor mass, corresponding to the mole-
cular mass of the protein, and a list of peaks, corre-
sponding to fragment ions of the protein. Each peak
represents the mass-to-charge ratio and the abundance
of the fragment ion. The residue mass of a spectrum S
is defined as M(S) = PrecursorMass − WaterMass,
where PrecursorMass is the precursor mass of the spec-
trum, and WaterMass is the mass of a water molecule.
Because top-down MS/MS spectra are very complex,
and the charge states of most fragment ions are high,
high mass resolution and high mass accuracy spectra

are absolutely required. The first step in top-down spec-
tral interpretation is usually spectral deconvolution,
which converts a complex top-down spectrum to a list
of monoisotopic neutral masses (a deconvoluted spec-
trum) [19,20]. The neutral masses are further converted
to a list of prefix residue masses (PRMs) corresponding
to the masses of protein prefixes [21]. For a collision-
induced dissociation (CID) spectrum, the PRM spectrum
is generated as follows: (1) the residue mass of the
experimental spectrum is added to the PRM spectrum;
(2) for each neutral mass x extracted from the experi-
mental spectrum, two masses x and PrecursorMass − ×
are added to the PRM spectrum. If mass x corresponds
to a protein suffix (prefix), then mass PrecursorMass −
× corresponds to a protein prefix (suffix) [22]. The pro-
posed extended generating function method can be
applied to all types of spectra, such as CID and elec-
tron-transfer dissociation (ETD) spectra, because all
these types of spectra can be converted to PRM spectra.
All masses in PRM spectra are discretized by scaling the
masses with a constant and rounding the values to inte-
gers [23]. For highly accurate top-down spectra, a scal-
ing constant 274.335215 is used (e.g. mass(G) =
57.021464 × 274.335215 = 15642.995586 ≈ 15643) to
reduce the rounding error to 2.5 parts per million
(ppm) [22]. In the following analysis, we assume that
only PRM spectra with integer masses are studied and
peak intensities are ignored.

Scores of PrSMs
A PRM spectrum S is represented as an ordered list of
integer masses, in which the largest one is M(S). Let R
be the set of the 20 standard amino acids with integer
residue masses M(r) for r ∈ R (the residue masses of
amino acids are discretized using the same discretization
method for PRM spectra). The residue mass of r is also
denoted as ‖r‖. The residue mass M(P) of a protein P is
the sum of the residue masses of all amino acids of the
protein. It differs from the molecular mass of the protein
by the mass of a water molecule. A protein P with m
amino acids is associated with an ordered list of integer
masses p1 < p2 <. . . < pm, where pi is the sum of the resi-
due masses of the first i amino acids and pm = M(P).
If the residue masses of spectrum S and protein P are the

same value N , the mass count score of S and P is the num-
ber of shared masses (except for the residue mass N) in S
and P, denoted by CScore(S, P). The mass shift of a PTM
is the mass difference between the modified form (with the
PTM) and the unmodified form of an amino acid residue.
When a PTM occurs at the ith amino acid of P and the
mass shift d of the PTM is positive, the modified form of P
is denoted by Qi,d(P) = {p1, p2, . . ., pi−1, pi + d, . . ., pm + d}.
When the mass shift of the PTM is a negative value −d, Qi,

−d(P) = {p1, p2, . . ., pi−1, pi − d, . . ., pm − d}. In addition,

Liu et al. BMC Genomics 2014, 15(Suppl 1):S9
http://www.biomedcentral.com/1471-2164/15/S1/S9

Page 2 of 9



if a mass in pi − d, . . ., pm − d is negative or not greater
than pi−1, the mass is removed from Qi,−d(P). Let
Qd(P) = {Q1,d(P), . . . ,Qm,d(P)} be the set of all modified
proteins of P with a PTM of mass shift d. When the pro-
tein is not ambiguous, we use shortened notations
Qd = {Q1,d, . . . ,Qm,d}. To identify an experimental PRM
spectrum S generated from protein P with a PTM, one can
find the mass shift d of the PTM by comparing the residue
masses of S and P , and compute the mass count score
between S and each of the modified proteins inQd to find
the best match. The PTM mass count score of S and P is
defined as PScore(S,P) = maxQ∈Qd CScore(S, Q), where
d = M(S) − M(P).

Random proteins
Let Pr(r) be the probability that an amino acid r ∈ R is
observed at a position in a random protein. In practice,
the frequencies of amino acids in the Swiss-Prot data-
base [24] can be used to estimate Pr(r). The probability
that a random protein P with amino acids r1r2 . . . rm is
observed is

Pr(P) = Pr(L = m) Pr(P|L = m) = Pr(L = m)
∏m

i=1
Pr(ri),

where L represents the length of the random protein.
To simplify computation, a uniform probability Pr(L =
m) = 1/MaxLength is chosen, where MaxLength is the
length of the longest protein in the Swiss-Prot database.
Despite the difference between the uniform distribution
and the distribution of protein length in the target pro-
tein database, experimental results showed the uniform
distribution does not introduce large errors into the
computation of spectral probabilities.

Spectral probabilities
Let D−/D+ be the set of negative/positive mass shifts of
allowed PTMs. Any number in D = D− ∪ D+ is a valid
mass shift. Let S be an experimental PRM spectrum and
P a random protein. The residue mass difference
between S and P is a random variable D = M(S) − M(P
). The spectral probability of S with respect to a thresh-
old t and one PTM is the probability that the residue
mass difference D ∈ D and PScore(S, P ) ≥ t:

SpecProb(S, t, 1) = Pr(D ∈ D and PScore(S,P) ≥ t)

=
∑

d∈D
Pr(D = d and PScore(S,P) ≥ t) (1)

where 1 in SpecProb(S, t, 1) represents one PTM.
From the definition of PScore(S, P),

SpecProb(S, t, 1) =
∑

d∈D
Pr(D = d and (CScore(S,Q1,d) ≥ t or . . . or CScore(S,Qm,d ≥ t)). (2)

Computing SpecProb(S, t, 1) accurately and effi-
ciently is a problem that has not been solved. In the
following subsections, we propose two upper bounds

of SpecProb(S, t, 1). The two upper bounds can be cal-
culated accurately and efficiently using dynamic pro-
gramming algorithms. The second upper bound is
better than the first one and is used for estimating
SpecProb(S, t, 1). Since the second upper bound is lar-
ger than SpecProb(S, t, 1), a constant K is introduced
for correcting errors in estimated spectral probabilities.
In practice, the value of K can be estimated from train-
ing data sets.

The first upper bound of spectral probabilities
Based on Equation (2) and the union bound of probabil-
ities,

SpecProb(S, t, 1) ≤
∑

d∈D

∑

Q∈Qd

Pr(D = d and CScore(S,Q) ≥ t). (3)

Let q denote the right hand part of the above inequal-
ity. The value of q is an upper bound of SpecProb(S, t,
1). Next, we describe a dynamic programming algorithm
for computing the value of q. The algorithm is an exten-
sion of the generating function method in [8]. In this
algorithm, a spectrum S with a residue mass N is repre-
sented as a 0/1 vector S = s1s2 . . . sN, where si = 1 if the
spectrum has a prefix residue mass i and 0 otherwise.
For example, a spectrum with a PRM list {2, 5, 8, 10}
(10 is the residue mass of the spectrum) is represented
as 0100100100. We first study the case where all mass
shifts are positive; negative mass shifts will be discussed
at the end of this subsection. A three dimensional table
T (i, j, k) is computed to acquire the upper bound,
where i is the number of PTMs in modified proteins.
Let S[1 : j] be the subspectrum s1s2 . . . sj of S. The resi-
due mass of S[1 : j] is j. The value T (0, j, k) is the prob-
ability that M(P) = j and the mass count score CScore(S
[1 : j], P) = k. Let Pj be set of all proteins with a residue
mass j. We define a function: f(S, P, k) = 1 if CScore(S,
P) = k; 0 otherwise. Then,

T(0, j, k) =
∑

P∈Pj

Pr(P) · f (S[1 : j],P, k). (4)

Suppose P contains m amino acids and the residue
mass of P is j. If the last amino acid of P is r, then j −
‖r‖ is the prefix residue mass of the first m − 1 amino
acids of P, where ‖r‖ is the residue mass of r. In the
vector representation of S, if S contains a prefix resi-
due mass j − ‖r‖, sj−‖r‖ = 1; otherwise, sj−‖r‖ = 0. The
recurrence function for computing T(0, j, k) was given
in [8]:

T(0, j, k) =
∑

r∈R
T(0, j − ||r||, k − sj−||r||) Pr(r). (5)

Let Dj = j − M(P ), the random variable representing
the difference between j and the residue mass of
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random protein P. The value T(1, j, k) is the sum of
probabilities

T(1, j, k) =
∑

d∈D+

∑

Q∈Qd

Pr(Dj = d and CScore(S[1 : j],Q) = k)

=
∑

d∈D+

∑

P∈Pj−d

∑

Q∈Qd

Pr(P) · f (S[1 : j],Q) = k).
(6)

Suppose the residue mass of protein P is j − d, that is,
P ∈ Pj−d. Let m be the number of amino acids in P and
Qm,d the modified protein of P whose PTM is on the
last amino acid. Because the first m−1 masses of Qm,d

are unchanged compared with P,

f (S[1 : j],Qm,d, k) = f (S[1 : j − d],P, k).

Combined with Equation (4),
∑

d∈D+

∑

P∈Pj−d

Pr(P) · f (S[1 : j],Qm,d, k)· =
∑

d∈D+

T(0, j − d, k). (7)

Let r be the last amino acid of P and P’ the protein con-
taining the first m − 1 amino acids of P. All the m − 1
masses in Ql,d(P’), 1 ≤ l ≤ m − 1, are the same to the first
m − 1 masses in Ql,d(P). While the m − 1th mass j − ‖r‖ in
Ql,d(P) is included in the computation of mass count
scores, the mass j − ‖r‖ in Ql,d(P’) is not included because
it is the residue mass. Thus,

CScore(S[1 : j],Ql,d(P)) = CScore(S[1 : j − ||r||],Ql,d(P′)) + sj−||r||.

It follows

f (S[1 : j],Ql,d(P), k) = f (S[1 : j − ||r||],Ql,d(P′), k − sj−||r||). (8)

Combining the fact that Pr(P) = Pr(P’)Pr(r) and Equa-
tions (6) and (8),

∑

d∈D+

∑

P∈Pj−d

m−1∑

l=1

Pr(P) · f (S[1 : j],Ql,d, k) =
∑

r∈R
T(1, j − ||r||, k − sj−||r||) Pr(r). (9)

With Equations (6), (7) and (9), the recurrence func-
tion for T(1, j, k) is

T(1, j, k) =
∑

r∈R
T(1, j − ||r||, k − sj−||r||) Pr(r) +

∑

d∈D+

T(0, j − d, k). (10)

When PTMs with negative mass shifts d are allowed, j
− d in Equation (10) is larger than j. The value T(1, j − d,
k) has not been computed when T(1, j, k) is computed,
making Equation (10) invalid. To avoid this problem, a
short amino acid sequence g is introduced to guarantee
that j − d − M(g) < j. Let Gd be the set of all amino acid
sequences g = r1r2 . . . rl satisfying M(g) > −d and M(r1r2 .
. . rl−1) ≤ −d (d is negative). Equation (10) is modified to

T(1, j, k) =
∑

r∈R
T(1, j − ||r||, k − sj−||r||) Pr(r)

+
∑

d∈D+

T(0, j − d, k)

+
∑

d∈D−

∑

g∈Gd

T(0, j − d − ||g||, k) Pr(g),

(11)

where ‖g‖ is the residue mass of g, and
Pr(g) =

∏l
i=1 Pr(ri) for a sequence g = r1r2 . . . rl. The

value of q is
∑n

k=t T(1,N, k), where N and n are the resi-
due mass and the number of masses of S, respectively.
The time complexity for computing T(0, j, k) and T(1, j,
k) is O(N · t · z), where z is the sum of the sizes of D+

and all Gd, z = |D+| + ∑
d∈D− |Gd|.

The second upper bound of spectral probabilities
The only difference between two modified proteins Qi,d

and Qi+1,d is the ith mass. If pi in P (which is not changed
in Qi+1,d) does not equal any mass in S, then CScore(S, Qi

+1,d) ≤ CScore(S, Qi,d). Based on this observation, if pi
does not equal any mass in S, Qi+1,d is removed fromQd.
In this way, a new setQ∗

d is acquired containing Q1,d and
all Qi,d satisfying that pi−1 equals a mass in S. It follows
that PScore(S,P) = maxQ∈Q∗

d
CScore(S,Q) = maxQ∈Qd CScore(S,Q).

From Equation (1) and the union bound of probabilities,

SpecProb(S, t, 1) ≤
∑

d∈D

∑

Q∈Q∗
d

Pr(D = d and CScore(S,Q) ≥ t).

Let q’ denote the right hand part of the above inequality.
Compared with q, the value of q’ is a better upper bound
for SpecProb(S, t, 1). Similar to the method for computing
q, we fill out a three dimensional array T(i, j, k) for comput-
ing q’. The recurrence function for filling out T(0, j, k) is the
same to Equation (5). We change the definition of T(1, j, k)
by replacingQd withQ∗

d in Equation (6). To compute T(1, j,
k), the second and third terms of the right-hand part of
Equation (11) should be changed so that only the probabil-
ities for the modified proteins inQ∗

d are summed up.
Similar to the proof of Equation (7), consider a random

protein P ∈ Pj−d. Let Qm,d be the modified protein of P
whose PTM is on the last amino acid, and r the last amino
acid of P. If Qm,d ∈ Q∗

d, then j − d − ‖r‖ is a mass in S or j
− d − ‖r‖ = 0 (in the extreme case that P contains only
one amino acid, j − d − ‖r‖ = 0), and vice versa. Therefore,
if j − d − ‖r‖ = 0 or sj−d−‖r‖ = 1, then Pr(P ) · f(S[1 : j], Qm,
d, k) is included in the computation of T(1, j, k).
For a positive mass shift d, we define Rj,d as the set of

amino acids r ∈ R satisfying that j − d − ‖r‖ = 0 or the
element sj−d−‖r‖ = 1. For a negative mass shift d, we
introduce a set Gj,d of amino acid sequences g = r1r2 . . .
rl satisfying: (1) M(g) > −d, (2) M(r1r2 . . . rl−1) ≤ −d,
and (3) j − d − ‖g‖ = 0 or the element sj−d−‖g‖ = 1. Then
Equation (11) is changed to:

T(1, j, k) =
∑

r∈R
T(1, j − ||r||, k − sj−||r||) Pr(r)

+
∑

d∈D+

∑

r∈Rj,d

T(0, j − d − ||r||, k) Pr(r)

+
∑

d∈D−

∑

g∈Gj,d

T(0, j − d − ||g||, k) Pr(g),

(12)
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and q′ =
∑n

k=t T(1,N, t). The time complexity for com-
puting T(0, j, k) and T(1, j, k) is similar to the method
in the previous subsection.
Since the scores CScore(S, Q) for Q ∈ Q∗

d are not
independent, q’ is usually larger than the spectral prob-
ability SpecProb(S, t, 1). To estimate SpecProb(S, t, 1)
more accurately, q’ is multiplied by a constant value K
for correction:

SpecProb(s, t, 1) ≈ Kq′. (13)

P-values and E-values
Let N = {N + d : d ∈ D}, where N is the residue mass of
S. From table T(0, j, k) described in the previous subsec-
tion, we can compute the probability that the residue
mass difference D between S and P is in D:

Pr(D ∈ D) =
∑

j∈N

n∑

k=0

T(0, j, k). (14)

Using Equations (13) and (14), the conditional spectral
probability of S with respect to threshold t and one PTM is

CSP(S, t, 1) = Pr(PScore(S,P) ≥ t|D ∈ D) ≈ Kq′

Pr(D ∈ D)
. (15)

Intact proteins may have N or C-terminal truncations,
e.g., the removal of a signal peptide. If a top-down MS/
MS spectrum is matched to an intact protein without
N- or C-terminal truncations, the PrSM is called a com-
plete PrSM. A PrSM matched to an intact protein with
an N-/C-terminal truncation is called a suffix/prefix
PrSM. An internal PrSM corresponds to an intact pro-
tein with both N- and C-terminal truncations.
Similar to the E-values defined in BLAST [25], the E-

value of a PrSM describes the number of hits one can
“expect” to see by chance when searching the spectrum
against a protein database of a particular size. Suppose a
complete PrSM contains one mass shift (PTM) in D
and its PTM mass count score is t. We count the num-
ber Z of proteins in the target database with a residue
mass in N . The E-value of the complete PrSM is esti-
mated as Z · CSP(S, t, 1). The p-value of the PrSM is
estimated as 1 − (1 − CSP(S, t, 1))Z.
For prefix, suffix and internal PrSMs, we count the

numbers Zp, Zs, and Zi of prefixes/ suffixes/internal sub-
proteins in the target database with a residue mass in
N . Because some prefixes/suffixes/internal sub-proteins
are not independent, a constant factor Cp/Cs/Ci is multi-
plied in the computation of E-values of prefix/suffix/
internal PrSMs for correction. For example, if a prefix
PrSM contains one mass shift (PTM) in D and its PTM
mass count score is t, the E-value of the PrSM is esti-
mated as Cp · Zp · CSP(S, t, 1).

Multiple PTMs
The dynamic programming algorithm for computing the
second upper bound can be extended to estimate E-
values of PrSMs with multiple PTMs. When multiple
PTMs are allowed, we replace T(0, j, k) and T(1, j, k) in
Equation (12) by T(i, j, k) and T(i − 1, j, k) to estimate
spectral probabilities with respect to i PTMs:

T(1, j, k) =
∑

r∈R
T(i, j − ||r||, k − sj−||r||) Pr(r)

+
∑

d∈D+

∑

r∈Rj,d

T(i − 1, j − d − ||r||, k) Pr(r)

+
∑

d∈D−

∑

g∈Gj,d

T(i − 1, j − d − ||g||, k) Pr(g),

(16)

Results
The extended generating function method, TD-GF
(Top-Down Generating Function), was implemented in
JAVA and tested on a desktop with a 3.3GHz (AMD
Opteron 6204) CPU and 16 GB memory.

Data sets
A Salmonella typhimurium (ST) data set [13] was used
to test TD-GF. A protein mixture of ST was analyzed
using an LTQ-Orbitrap (Thermo Fisher Scientific). MS
and MS/MS spectra were collected at a resolution of
60,000 and 30,000, respectively. The experiment was
repeated using gas-phase fractionation. A total of 14,041
collision-induced dissociation (CID) MS/MS spectra
were acquired. The detailed experiment procedure can
be found in [13].
The performance of TD-GF on proteoform identifica-

tion was tested on an Escherichia coli (EC) data set. An
EC cell lysate was separated by an intact protein
reversed phase liquid-chromatography (RPLC) system
and analyzed by an LTQ-Orbitrap Velos (Thermo Fisher
Scientific). MS and MS/MS spectra was collected at a
resolution of 60,000. A total of 3,704 higher-energy C-
trap dissociation (HCD) MS/MS spectra were obtained.

Spectral probabilities for PrSMs with one PTM
The accuracy of TD-GF was evaluated using two
approaches based on conditional spectral probabilities
(defined in Equation (15)) and FDRs.
Evaluation based on conditional spectral probabilities
To evaluate TD-GF, we generated a set of PrSMs with
“correct” conditional spectral probabilities and com-
pared the “correct” conditional spectral probabilities
with those reported by TD-GF.
Selection of PrSMs Previous analysis results in [17]

showed that most PrSMs identified in the ST data set
contained no PTMs. To increase the number of identi-
fied PrSMs with one PTM, a mutated ST protein
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database was generated by adding a glycine residue to
the middle of each protein sequence in the ST pro-
teome. When the mutated ST protein database is used,
a PrSM without PTMs can be identified as a PrSM with
one PTM.
All MS/MS spectra in the ST data set were deconvo-

luted using MS-Deconv [20] and searched against the
mutated ST proteome using MS-Align+ [17]. The error
tolerances for precursor masses and fragment masses were
set to 15 ppm, and carbamidomethylation was set as the
fixed PTM. By restricting the search space to only com-
plete PrSMs with one PTM, MS-Align+ identified 4,291
PrSMs. For each of 4,291 PrSMs, TD-GF was employed to
compute the conditional spectral probability, which was
used only for selecting PrSMs, not for evaluating TD-GF.
The parameter K in Equation (13) was set to 1. Since blind
PTM search was used in MS-Align+, the allowed mass
shifts were set to D− = {−α,−α + 1, . . . ,−1} and
D+ = {1, 2, . . . ,α}, where a is the mass of a tryptophan
(W) residue. The running time for computing conditional
spectral probabilities was 726 minutes (about 12 hours).
For 203 of the 4,291 complete PrSMs, the conditional
spectral probabilities reported by TD-GF were in [10−5, 10
−4]. The 203 PrSMs were selected for computing “correct”
conditional spectral probabilities.
Computation of “correct” conditional spectral probabil-

ities For each of the 203 PrSMs (spectra), a random
database of 106 proteins was generated. In the random
database, the residue masses of all proteins are in
{N + d : d ∈ D}, where N is the residue mass of the spec-
trum. The PTM mass count score between the spectrum
and each protein in the database was computed; and the
number x of proteins satisfying that the PTM mass
count score ≥ t was counted. The conditional spectral
probability of the PrSM with respect to one PTM and
threshold t was estimated as x/106. Since the above
method follows the definition of conditional spectral
probabilities, the results are treated as “correct” condi-
tional spectral probabilities. Finally, one PrSM was
removed from the list of 203 PrSMs because the esti-
mated conditional spectral probability (using a random
database) was 0.
Evaluation of TD-GF The 202 PrSMs were randomly

divided into a training data set (101 PrSMs) and a test
data set (101 PrSMs). The training data set was used to
estimated the value of K in Equation (13). We set K = 1
(the value of K will be determined later) and used TD-
GF to compute the conditional spectral probabilities for
the training PrSMs. Let p1 and p2 be the conditional
spectral probabilities of a PrSM estimated by the ran-
dom database-based method and TD-GF, respectively.
The error of p2 is defined as e = | log(p1) − log(p2)|
(base 10). To minimize the average error of the condi-
tional spectral probabilities reported by TD-GF, the best

value of log(K) is the average of the log ratio
log( p1p2 ) = log(p1) − log(p2). Using the training data set,

K was set to the best value 0.55. In practice, the default
values of K are learned from various types of training
data, such as CID and ETD data, and are provided so
that the users do not need to estimate K for their own
data sets. With K = 0.55, TD-GF was employed to com-
pute the conditional spectral probabilities for the test
PrSMs. The errors of these conditional spectral prob-
abilities were obtained by comparing them with the
“correct” ones (Figure 1). The errors for 98 test PrSMs
(97%) were ≤ 0.5. When the error is 0.5, there is about
a three fold difference between the conditional spectral
probabilities reported by the two methods. The results
show that the spectral probabilities estimated by TD-GF
are accurate for most of the test PrSMs.
Evaluation based on FDRs
With the spectral probabilities reported by TD-GF, the
“estimated” FDR of a set of identified PrSMs for a cut-
off p-value can be computed using the functions in [7].
For the same cut-off p-value, the “correct” FDR can be
obtained by the target-decoy approach. Because the
“estimated” FDR is based on the spectral probabilities
reported by TD-GF, if the “estimated” FDR is similar to
the “correct” FDR, then the spectral probabilities
reported by TD-GF are accurate.
Using all the 4,291 complete PrSMs with one PTM,

we computed “estimated” FDRs for cut-off p-values in
{0.0001, 0.0002, . . ., 1.0000} based on spectral probabil-
ities. In the target-decoy approach, all spectra were
searched against a concatenated target and shuffled
decoy protein database. Because the FDR reported by
the target-decoy approach was 0 when the cut-off p-

Figure 1 A comparison of the conditional spectral probabilities
(for PrSMs with one PTM) estimated by the random database-
based method and TD-GF. For each of the 101 test PrSMs, the
error of the conditional spectral probability reported by TD-GF is
computed. For each cut-off of e, the number of PrSMs with an error
< e is counted.
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value was smaller than 8.27 × 10−4, we compared only
the FDRs for cut-off p-values greater than 8.27 × 10−4

(Figure 2). The FDRs estimated based spectral probabil-
ities were consistent with those reported by the target-
decoy approach. For example, the target-decoy approach
and the spectral probability approach reported cut-off p-
values 0.0327 and 0.0262 for 1% FDR, respectively. The
difference between the two p-values is only 0.0065,
which is evidence that the spectral probabilities reported
by TD-GF are accurate.

Prefix, suffix and internal PrSMs
In this subsection, we describe the methods for estimat-
ing parameters Cp, Cs and Ci introduced in Section
Methods. A substring aiai+1 . . . aj of a string S = a1a2 .
. . an is denoted by S[i : j]. To estimate the parameter
Cp for prefix PrSMs, a new random protein database
was generated for each of the selected 202 PrSMs: (1) a
total of 1,000 long random protein sequences with 1,200
amino acids each were generated, and (2) prefixes S[1 :
201], . . ., S[1 : 1200] were extracted from each of the
1,000 long protein sequences. In total, 106 prefixes were
added to the random protein database. The conditional
spectral probabilities estimated using the new random
databases are different from those using the random
databases in Subsection “Computation of correct condi-
tional spectral probabilities” because the protein
sequences in the new random databases are not inde-
pendent. Parameter Cp was estimated as the average
ratio 0.693 between the probabilities computed based on
the new databases and the random databases in Subsec-
tion “Computation of correct conditional spectral prob-
abilities” for the 202 PrSMs. Parameter Cs can be set to
the same to Cp.

To estimated the parameter Ci for internal PrSMs, a
third type of random protein databases were used: (1) a
total of 4 long random protein sequences with 1200
amino acids each were generated, and (2) 2.5 × 105 sub-
strings S[i : j] (1 ≤ i ≤ 500, i+201 ≤ j ≤ i + 700) of the
each long protein sequence were added to the random
database. Using the same method for computing Cp,
parameter Ci was estimated as 0.508.

Spectral probabilities for PrSMs with two PTMs
Similar to PrSMs with one PTM, a mutated protein
database was created to increase the number of identi-
fied PrSMs with two PTMs. Two glycine residues were
added each protein in the ST protein database: one is at
the one-third position of the protein; the other at the
two-thirds position. MS-Align+ identified 2,404 com-
plete PrSMs with two PTMs, and TD-GF was used to
compute the spectral probabilities for the 2,404 PrSMs.
The running time for computing spectral probabilities
was 1,317 minutes (about 22 hours). Because it is
extreme slow to find the best PrSM with two PTMs by
searching a spectrum against a large random protein
database with 106 proteins, the evaluation method based
on conditional spectral probabilities was not used. Only
the evaluation method based on FDRs was applied.
With all the 2,404 identified PrSMs, FDRs based on
spectral probabilities and based on the target-decoy
approach were computed for cut-off p-values in {0.0001,
0.0002, . . ., 1.0000}. When the cut-off p-value is smaller
than 0.016 (− log p-value >1.80), the FDRs estimated by
the two methods are similar. For 1% FDR, the target-
decoy approach and the spectral probability approach
estimated similar cut-off p-values 0.0164 and 0.0116,
respectively. However, the FDRs based on spectral prob-
abilities are not consistent with the “correct” FDRs
(reported by the target-decoy approach) when the cut-
off p-value is larger than 0.016 (Figure 3). One possible
reason is that the filtering method implemented in MS-
Align+ fails to keep the best PrSMs when their p-values
are not small enough. From the above analysis, the spec-
tral probabilities estimated by TD-GF are accurate when
they are smaller than 0.016.

Comparison with ProSightPC
All MS/MS spectra in the EC data set were deconvo-
luted by MS-Deconv [20]. The EC proteome database
was downloaded from the Swiss-Prot database; a com-
bined protein database was generated by concatenating
the EC proteome database and a shuffled decoy data-
base. To test the performance of TD-GF on proteoform
identification, MS-Align+ coupled with TD-GF was
applied to search the deconvoluted spectra against the
combined database. The error tolerances for precursor
masses and fragment masses were set as 15 ppm and

Figure 2 A comparison of the FDRs of PrSMs with one PTM
estimated by the target-decoy approach and computed based
on spectral probabilities. For a given cut-off p-value, the two
reported FDRs are compared, and − log(FDR) (base 10) is plotted
against − log(cut-off p-value) (base 10).
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two unknown PTMs were allowed. Using 1% spectrum-
level FDR, 1,478 spectra were identified.
ProSightPC [10] was also applied to analyze the EC data

set. ProSightPC provides several search modes for top-
down spectral identification, including the absolute mass
mode and the biomarker mode. Since some spectra in the
EC data set were generated from truncated proteins, the
biomarker mode was chosen for the analysis of the EC
data set. The error tolerances for precursor masses and
fragment masses were set as 15 ppm. ProSightPC identi-
fied 627 spectra with 1% spectrum-level FDR. All the 627
spectra were identified by MS-Align+ coupled with TD-
GF. The test results show that MS-Align+ coupled with
TD-GF outperformed the biomarker mode of ProSightPC.

Conclusions
The experiments showed that the extended generating
function method achieves high accuracy in computing
spectral probabilities of PrSMs with PTMs. It is a non-
trivial extension of the generating function method pro-
posed in [8]. With accurate spectral probabilities and E-
values, one can easily choose the correct PrSM from
several candidate PrSMs for a spectrum, as well as sepa-
rate correct PrSMs from incorrect ones identified from
a large number of spectra. In addition, it provides a way
to evaluate single PrSMs efficiently.
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