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Abstract

Motivation: It is common to get an optimal combination of markers for disease classification and prediction when
multiple markers are available. Many approaches based on the area under the receiver operating characteristic
curve (AUC) have been proposed. Existing works based on AUC in a high-dimensional context depend mainly on a
non-parametric, smooth approximation of AUC, with no work using a parametric AUC-based approach, for high-
dimensional data.

Results: We propose an AUC-based approach using penalized regression (AucPR), which is a parametric method
used for obtaining a linear combination for maximizing the AUC. To obtain the AUC maximizer in a high-
dimensional context, we transform a classical parametric AUC maximizer, which is used in a low-dimensional
context, into a regression framework and thus, apply the penalization regression approach directly. Two kinds of
penalization, lasso and elastic net, are considered. The parametric approach can avoid some of the difficulties of a
conventional non-parametric AUC-based approach, such as the lack of an appropriate concave objective function
and a prudent choice of the smoothing parameter. We apply the proposed AucPR for gene selection and
classification using four real microarray and synthetic data. Through numerical studies, AucPR is shown to perform
better than the penalized logistic regression and the nonparametric AUC-based method, in the sense of AUC and
sensitivity for a given specificity, particularly when there are many correlated genes.

Conclusion: We propose a powerful parametric and easily-implementable linear classifier AucPR, for gene selection
and disease prediction for high-dimensional data. AucPR is recommended for its good prediction performance.
Beside gene expression microarray data, AucPR can be applied to other types of high-dimensional omics data,
such as miRNA and protein data.

Background
Nowadays, it is easy and common to measure thousands of
markers simultaneously through high-throughput technol-
ogies, for example, the microarray study. A disease is
usually related to several markers and the combination of
multiple makers for classifying a subject into different sta-
tuses of a specific disease is widely studied. The perfor-
mance of a combination of markers is frequently measured

by indices related to the Receiver Operating Characteristic
(ROC) curve: sensitivity, specificity, or the area under the
ROC curve (AUC). Sensitivity (specificity) is defined as the
probability of success in classifying a diseased (non-
diseased) individual accurately. By varying the decision
rules (thresholds), different sensitivities and specificities are
obtained. The ROC curve plots all possible sensitivities
against 1-specificities and expresses the trade-off between
sensitivity and specificity visually. AUC is the most popular
summary index for the curve; it has been shown to be the
probability that the score of a randomly chosen diseased
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individual exceeds that of a randomly chosen non-diseased
subject [1].
Therefore, it is natural to construct a combination of

markers in order to maximize the ROC-based metrics. A
number of combinations based on ROC indices have
been suggested by [2-9]. Among these, [3] and [5] devel-
oped distribution-free methods to achieve the best linear
combination for maximizing the smoothed AUC for
high-dimensional situations. They developed algorithms
based on optimizing a sigmoid approximation of AUC.
The sigmoid approximation of AUC relies on a smooth-
ing parameter, which should be carefully chosen, though
there are no theoretical guidelines for choosing this para-
meter. The rule of thumb for the choice of the smoothing
parameter may reduce the power of the method. More-
over, the sigmoid approximation of AUC is not a concave
function and multiple local maxima may exist. The global
maximum is not guaranteed to be attained through com-
monly used numeric algorithms. For example, the perfor-
mance of the linear combination decided by [5] is very
poor for microarray data [9]. To avoid the difficulties of
maximizing a non-parametric approximation of AUC, we
can use a parametric method. To our knowledge, there is
no published parametric method for maximizing the
AUC under a high-dimensional context. This paper tries
to fill this gap.
We suggest an AUC-based approach using penalized

regression (AucPR), based on a classical parametric linear
combination derived by [2] in a low-dimensional context.
The problem is then transformed into a linear regression
framework, and the existing software for solving linear
regression with penalization can be used directly, which
facilitates the implementation of the proposed method.
There are many penalty functions available, for example,
the elastic net criterion [10], which is a mixture of penal-
ties of L1 and L2 norms of the linear coefficients. The lasso
penalty [11] is a special form of elastic net. Both the lasso
and the elastic net have been widely used for marker selec-
tion and disease classification for high-dimensional data
[3,5,9,10,12,13]. In this work, we maximize AUC through
elastic net or lasso penalty. We compare the proposed
AucPR to a logistic regression with elastic net or lasso
penalty and the AUC-based non-parametric method pro-
posed by [3], through four microarray data sets and syn-
thetic data. The performance is gauged on the AUC and
sensitivity given specificity equals to 0.95 on testing sam-
ples. AucPR achieves better prediction performance.

Methods
AucPR: An AUC-based approach using penalized
regression
Suppose non-diseased samples {Xi; 1 ≤ i ≤ m} and dis-
eased samples {Yj; 1 ≤ j ≤ n} are independent and identi-
cally distributed (i.i.d.) from multivariate normal

distributions N (µx, Σx) and N (µy , Σy ), respectively,
where µx and µy are p-dimension mean vectors, and Σx

and Σy arep × p covariance matrices.
Under the multivariate normal distribution assump-

tion, [2] showed that, among all possible linear combi-
nation of markers, without a positive constant
multiplier, the combination with the coefficient vector

β = (
∑

x
+

∑
y
)−1(μy − μx) (1)

is optimum for maximizing the AUC. Furthermore,
they also proved that if Σx is proportional to Σy, b is
uniformly optimum, that is, it achieves the highest ROC
curve among all linear combinations for all possible
values of specificity.
Although this approach has been widely used in dis-

ease classification [14-17], it cannot be applied directly
to high-dimensional problems, where the number of
markers (p) are larger than the number of observations
in the sample. Penalized regression methods such as
lasso [11] and elastic net [10], are effective tools for
variable selection in high-dimensional problems. We
thus try to restate our problem in a regression
framework.
Note that from Equation (1), µy − µx = (Σy + Σx)b

holds. Instead of solving this equation, we suggest
approximating b by solving the following linear regres-
sion problem:

μy − μx = (
∑

y
+

∑
x
)β+ ∈, ∈∼ N(0, σ 2I), (2)

where I is a p × p identity matrix. By this transforma-
tion, we can avoid calculating the inverse of a large cov-
ariance matrix in (1), which is intractable due to lack of
samples.
We then propose using a regularized linear regression

method to obtain b. Let Σ = Σy + Σx = ((sij)), 1 ≤ i, j ≤ p,
and µ = µy − µx = (µ1, . . . , µp)ʹ. Then, using the elastic
net, we have

β = arg min
β∈Rp

p∑
j=1

(μi −
p∑
j=1

σijβj)2 + λ(α
p∑
i=1

|βi| + 1 − α

2

p∑
i=1

β2
i ), (3)

where l is a parameter controlling the strength of the
penalty and a is a mixing parameter that determines the
relative strength of the L1 norm to the L2 norm, with
0 ≤ a ≤ 1. When a = 1, the elastic net reduces to lasso.
The elastic net encourages a group of highly correlated
markers to enter the model together, while lasso is quite
parsimonious in selecting correlated markers. Under
some conditions, both penalties were shown to have
consistency in model selection [18,19], or in other
words, the selected model includes the true model with
a high probability.
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In practice, we replace the covariance matrices with
the sample covariance matrices, and the mean vectors
with the sample mean vectors. Formally,

μ̂x =
1
m

m∑
i=1

Xi, μ̂y =
1
n

n∑
i=1

Yi,

�∑
x
=

1
m − 1

m∑
i=1

(Xi − μ̂x)(Xi − μ̂x)′,

�∑
y
=

1
n − 1

n∑
i=1

(Yi − μ̂y)(Yi − μ̂y)′,

and

μ̂ = μ̂y − μ̂x,
∑̂

=
∑̂

y
+

∑̂
x
.

The idea of the proposed AucPR is similar to a proce-
dure proposed by [20] for the sparse linear discriminant
analysis (LDA), where they restrict L∞ error and obtain
the combination by linear programming. When Σx and
Σy are proportional to each other, Σ − 1µ is proportional
to the coefficient vector of LDA. In this sense, AucPR
also provides a solution for sparse LDA.
There are several computationally efficient algorithms

to implement penalized linear regression for high-
dimensional data, for example, program lars by [21] and
glmnet by [22]. In this paper, we use glmnet to solve
Equation (3), since it is more efficient than lars [22].
Remark 1: We use sample mean vectors and sample

covariance matrices, which are quite sensitive to the
outlier observations. Therefore, intuitively, it may lead
to the proposed method being inefficient under a gen-
eral mean and a covariance structure without any
restriction, especially when the sample sizes are small.
However, AucPR can be powerful for some structures of
Σ and µ, for example, when Σ or µ are sparse, which is
common in high-dimensional data. We illustrate this
with numerical studies in the Result and discussion
Section.

Choice of tuning parameter
The tuning parameter l controls the trade-off between
data fitting and model complexity. Given a larger l,
fewer markers are selected and the data may not be well
fitted, while for a smaller l, a larger number of markers
are chosen and overfitting may occur. We tune l in our
numeric studies by a three-fold cross-validation (CV)
method. Note that when the sample sizes are large, we
can use a K-fold CV with K >3.
For the K-fold CV, we randomly divide the samples

into K subsets of equal size. We select l that maximizes
the following CV score:

CVλ =
k∑
i=1

ÂUC
(i)
λ (β̂(−i)

λ ), (4)

where β̂
(−i)
λ

is the coefficient vector estimated without

the samples in the i-th fold, and ÂUC
(i)
λ

is the empirical

AUC estimator with the data in the i -th fold, for a
given l, i = 1, ... , K. The empirical AUC estimator for a
given b is defined as

∑∑
I(β ′(Yi − Xj) > 0)/nm, with

I (·) being the indicator function.
For the elastic net, a is fixed at 0.5 in this investiga-

tion. We note that although a can be tuned in the same
fashion as l, a simple, fixed a still captures the charac-
teristics of the elastic net and is widely used in the lit-
erature as well [13,23].
Another practical issue about tuning the parameter l

is how to provide the candidates of l for CV, as it has
not been specified clearly in the literature. We propose
finding the range of l using the whole data, and then
generating a fixed number of candidates within that
range such that they are evenly distributed in the log
scale. Denoting the range of candidates for l as [ll, lu],
where ll corresponds to the most complex model (for
example, 100 markers are selected) while lu corresponds
to the least complex model (for example, 1 marker is
chosen). It is easy to use the bisection method [24] to
fix l = lk, such that there are exactly k non-zero coeffi-
cients (k = 1,..., p). To do this, we first have an initial
guess at the value of l. Let r(l) be the number of non-
zero coefficients of the tuning parameter l. If r(l) = k,
we are done. If r(l) < k, we let l = l/2, continuing this
until r(l) ≥ k. Once we have an interval [l1, l2], we
employ the bisection method. We test the middle point
lm = (l1 + l2)/2, and if r(lm) = k, we are done. If r(lm) < k,
set l2 = lm; otherwise, set l1 = lm. Repeat until r(lm) = k.

Results and discussion
Application to gene selection and cancer classification
In this section, we apply our proposed AucPR, the penalized
logistic regressions, and the AUC based non-parametric
method proposed by [3], which maximizes a sigmoid
approximation of AUC, to four microarray datasets for gene
selection and cancer classification. We refer to our
approaches to AucPR with elastic net and lasso penalty as
AucEN and AucL, respectively, the logistic regression
approaches with elastic net and lasso penalties as LogEN
and LogL, respectively, and maximizing the sigmoid approx-
imation of AUC as MSauc in the following content. The
four microarray data sets are:
Brain cancer data: The original data have five different

types of tumors, and 42 samples with 5597 expressions.
This data set was also studied by [25], and we use their
preprocessed data and denote the first two types as the
control group and the other three as the case group.
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It can be downloaded from http://stat.ethz.ch/~dettling/
bagboost.html.

• Colon cancer data: Expression levels of 40 tumors
and 22 normal colon tissues for 2000 human genes,
with the highest minimal intensity from 62 subjects
measured [26]. The data can be downloaded from
colonCA package on the Bioconductor website
(http://www.bioconductor.org).
• Leukemia data: We consider two types of leukemia
cancer: acute myeloid leukemia (AML) and acute
lymphoblast leukemia (ALL). Samples used by [27]
were derived from 47 patients with ALL and 25
patients with AML, with 7129 genes. The data set is
available in the golubEsets package on the Biocon-
ductor website (http://www.bioconductor.org).
• DLBCL data: The diffused large B-cell lymphoma
(DLBCL) data set contains 58 DLBCL patients and
19 follicular lymphoma patients from a related germ-
inal center B-cell lymphoma [28]. The data are avail-
able from the Broad Institute website (http://www.
genome.wi.mit.edu/MPR/lymphoma).

All data sets are further processed using quantile nor-
malization and logarithm transformation (except the
Brain cancer data, since it has been preprocessed). To
save computation time, we screen the genes such that the
1000 genes with the largest absolute moderated t-statistics
[29] are kept. Filtering genes by t-typed statistics has been
widely used in the literature, for example, [3,5,20] among
others. Our empirical study shows that including more
than 1000 genes does not significantly change the patterns
found. LogEN and LogL are also implemented by R pack-
age glmnet and the tuning parameter is chosen by a three-
fold CV, using the CV score defined in Equation (4).
Then, we randomly split the data into training and

testing sets, comprising 2/3 and 1/3 of the sample,
respectively. The AUC value and sensitivity when speci-
ficity = 0.95 are evaluated based on the testing set. This
procedure is repeated 100 times and the box-plots of
the two comparison metrics are plotted in Figures 1 - 4.
We can see that the proposed AucPR outperforms the

other approaches for all the four datasets,. The AucEN
has the best prediction performance. The AucL is
slightly less powerful than the AucEN, but better than

Figure 1 Box plots in Brain cancer data for AUC (left) and sensitivity when specificity equals 0.95 (right).
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Figure 2 Box plots in Colon cancer data for AUC (left) and sensitivity when specificity equals 0.95 (right).

Figure 3 Box plots in Leukemia cancer data for AUC (left) and sensitivity when specificity equals 0.95 (right).
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the other three methods. The penalized logistic regres-
sion and MSauc perform poorly for the Brain and
Colon cancer data. Even though the differences of AUC
between these approaches are small for Leukemia and
DLBCL data, the superiority of the proposed AUC-based
methods becomes larger in sensitivity when specificity is
as high as 0.95. This finding is very meaningful, since
high sensitivity and high specificity are greatly appre-
ciated for real cancer studies.
For the four data sets, Table 1 shows the median num-

ber of non-zero coefficients for each method. The AucPR
selects more markers than the others. The approaches
with the elastic net provide more genes than the lasso
penalized approaches, which is consistent with the litera-
ture [10]. MSauc generally selects more genes than the
penalized logistic regressions, but does not always give a
better prediction performance than the penalized logistic

regressions (Figures 1 - 4). The averaged ROC curves are
plotted in Figure 5, showing that the ROC curve of the
proposed AucPR lies above the curves of others, espe-
cially in Brain and Colon cancer data.
In summary, the proposed AucPR selects more genes

than the other three competing approaches and also have
better prediction performance. Although a sparse model
is good for interpretation, a better prediction perfor-
mance is the primary objective and more appealing in
many real world applications. As pointed out by [20],
sparse models commonly ignore the correlations between
the variables, which are generally inefficient even when
the zero markers (or “unimportant” markers) are known
in advance and all the important markers are selected
correctly. It was demonstrated that those unimportant
markers are in fact useful and even potentially important
for classification because of the correlations. In addition,
including a sufficient number of genes to the model has a
practical implication; more potential important genes
may be incorporated and these genes would have a
higher chance for further investigation. In Table 2 the
top 10 frequently selected genes by AucEN are listed for
Colon, Leukaemia and DLBCL data sets (The gene infor-
mation is not included in the preprocessed Brain cancer
data, so we omit those results). The genes which are
commonly selected by other approaches are marked.

Figure 4 Box plots in DLBCL data for AUC (left) and sensitivity when specificity equals 0.95 (right).

Table 1 The median number of genes being selected in
four microarray studies.

AucEN AucL LogEN LogL MSauc

Brain 42 30 37 3 16

Colon 30 22 3 2 22

Leukemia 51 36 7 5 10

DLBCL 51 35 26 9 17
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Figure 5 ROC curves for four real data sets.

Table 2 Top 10 frequently selected genes by AucEN.

data gene id gene
symbol

description Coverage

Colon Hsa.2097 R14852 Human vasoactive intestinal peptide (vip) mrna, complete cds AucL, LogL, LogEN, [35]

Hsa.3331 T86473 Nucleoside diphosphate kinase a (Human) AucL [36]

Hsa.37937 R87126 Myosin heavy chain, nonmuscle (Gallus gallus) AucL, LogL, LogEN, Msauc,
[3,4]

Hsa.601 J05032 Human aspartyl-tRNA synthetase alpha-2 subunit mRNA, complete cds AucL, LogEN, [4]

Hsa.36952 H43887 Complement factor d precursor (Homo sapiens) AucL,[37]

Hsa.8125 T71025 Human (HUMAN) AucL, [38]

Hsa.8147 M63391 Human desmin gene, complete cds AucL, LogL, LogEN, Msauc,
[3,4,39]

Hsa.3306 X12671 Human gene for heterogeneous nuclear ribonucleoprotein (hnRNP) core
protein A1

LogL, LogEN, [4]

Hsa.26673 R76825 RNA-specific gtpase-activating protein (Homo sapiens) AucL, [40]

Hsa.14069 T67077 Sodium/potassium-transporting atpase gamma chain (Ovis aries) [41]

Leukaemia X59711 at NFYA NFYA Nuclear transcription factor Y, alpha [42]

M30938 at XRCC5 ATP-DEPENDENT DNA HELICASE II, 86 KD SUBUNIT [43]

U57721 at Kynu L-kynurenine hydrolase mRNA [44]

X07834 at Sod2 SOD2 Superoxide dismutase 2, mitochondrial [45]

U37408 at Ctbp1 CtBP mRNA [46]

M98539 at ptgds Prostaglandin D2 synthase gene [47]
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Gene description and related studies in the literature are
shown too. The top frequently selected genes by AucEN
were also reported in the literature.
There are several other popular approaches available for

classification in high-dimensional situation. For example,
the “SIS” function in package SIS (http://cran.r-project.
org/web/packages/SIS/index.html), which first implements
the Iterative Sure Independence Screening [30], and then
fits the final model by penalized regression; tree-based
method “randomForest” in randomForest package [31];
LogEN with alternative CV score (“type.measure =
deviance” in glmnet package). As a demonstration, we
implemented the third approach on the Brain cancer data.
The result is improved and has been updated. However,
Our method still outperforms others (see Figure 1).
Remark 2: Prediction accuracy and interpretation are

two major concerns for microarray cancer classification
study. A sparse model is generally easier to interpret but
may not reflect the true biological phenomena or have
poor prediction. For example, many genes are highly
correlated in microarray data, and these genes may
work together. Therefore, it is worthwhile to identify
these genes jointly to increase prediction performance
and to provide a sufficient number of potential risks for
a further validation study. Note that the lasso penalized
logistic regression is too parsimonious, as it cannot
select a sufficient number of genes in a highly correlated
group and thus, has poor prediction performance, while
our AucL method, although with the lasso penalty,
seems to be able to alleviate this problem by selecting
more genes.

Simulation
In this section, we demonstrate our approaches using
synthetic data under two scenarios; genes are generated

from a normal distribution or a mixture of normal
distributions.
We first simulate gene expressions following a setting

similar to [32], where they mimicked the real microarray
data. We generate data under a different number of
independent blocks (block = 1, 2, 3), and the number of
genes per block (size=5, 20, 40). The data are simulated
from multivariate normal distributions N (µx, Σx(r)) and
N (µy, Σy (r)) for diseased and non-diseased classes,
respectively. All genes have a variance of 1, and the cor-
relation between genes within a block is r (r = 0.3, 0.6,
0.9), whereas the correlation between genes among
blocks is 0. In other words, the covariance matrix is a
block-diagonal matrix

∑
x
(ρ) =

∑
y
(ρ)

⎛
⎜⎜⎜⎝
A(ρ) 0 · · · 0
− A(ρ) · · · 0
...

...
...

...
0 0 0 A(ρ)

⎞
⎟⎟⎟⎠ ,

where

A(ρ) =

⎛
⎜⎜⎜⎝
1 ρ · · · ρ

ρ 1 · · · ρ
...
...

...
...

ρ ρ · · · 1

⎞
⎟⎟⎟⎠

The mean vectors are set as µy = (0.6, 0.6,... , 0.6) and
µx = (−0.6, −0.6, ..., −0.6). Here the mean vectors are
selected such that the AUC of each single gene is 0.8.
After the informative genes described above are gener-

ated, we evenly add a type of non-informative “genes”
from N (0, 1) and another type of non-informative
“genes” from U [−1, 1], for both diseased and non-dis-
eased observations, and make 1000 markers in total.

Table 2 Top 10 frequently selected genes by AucEN. (Continued)

U35113 at Mta1 Metastasis-associated mta1 mRNA [48]

X13973 at rnh1 RNH Ribonuclease/angiogenin inhibitor [49]

D49817 at pfkfb3 Fructose 6-phosphate,2-kinase/fructose 2,6-bisphosphatase [50]

M83233 at TCF12 TCF12 Transcription factor 12 (HTF4, helix-loop-helix transcription
factors 4)

LogL, LogEN, [51]

DLBCL U96113 at WWP1 Nedd-4-like ubiquitin-protein ligase WWP1 mRNA, partial cds AucL, [52]

U46006 s at CSRP2 Smooth muscle LIM protein (h-SmLIM) mRNA AucL, LogL, LogEN, [53]

M35878 at igfbp3 INSULIN-LIKE GROWTH FACTOR BINDING PROTEIN 3 PRECURSOR AucL, [54]

U77949 at cdc6 Cdc6-related protein (HsCDC6) mRNA AucL, [55]

L41067 at Nfatc3 Transcription factor NFATx mRNA AucL, [56]

U95006 at STRA13 D9 splice variant A mRNA [57]

U64863 at Pdcd1 HPD-1 (hPD-1) mRNA AucL, [58]

AB002409 at ccl21 SLC AucL, MSauc, [28]

HG2279-HT2375
at

TPI1 Triosephosphate Isomerase AucL

U17969 at eif5a EIF5A Eukaryotic translation initiation factor 5A [59]

The “Coverage” column shows the genes frequently selected by other methods or reported in the literature.
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We generate n = m = 40 i.i.d. individuals as a training
set for diseased and non-diseased samples, respectively,
from the above distributions. Under the same structure
as the training set, another n = m = 20 samples are
simulated independently as a testing set. Each method is
applied to the training set and the prediction perfor-
mance is measured on the testing set. We repeat this
procedure 100 times, as we have done in the examples
with real data.
For the synthetic data, the AucPR shows better predic-

tion accuracy than the other three approaches in most
scenarios. The median values of AUC, sensitivity when
specificity = 0.95, the number of true informative mar-
kers being selected (nIMS ), and the number of total
markers being selected (nTMS ), are summarized in
Tables 3, 4, 5. There are some facts we can state, based
on the simulation results:

1 Given r and the number of blocks (block), as the
block size increases, our AucPR dominates the other
approaches. We summarize the results when size = 5
and size = 40 in Table 3.
2 Given block size and the number of blocks, as r
becomes larger, the performance of our methods do
not vary much, while those of the other three meth-
ods become worse. Specifically, the sensitivities of
our methods are getting larger than others when r
is getting larger. The results for r = 0.3 and r = 0.9
are given in Table 4.
3 As the number of independent blocks increases, all
methods have improved performances. When the
number of blocks is 3, except LogL and MSauc, the
other three methods seem to be similar in each case
with AucEN performing slightly better (Table 5).
4 Penalized logistic regression performs better only
when r is small (for example, 0.3) and the number

of the informative genes is small. Approaches with
elastic net penalty always lead to better results than
the approaches with lasso penalty (Tables 3, 4, 5).
5 Generally, our AucPR approaches select more
informative genes, and the approaches with elastic
net penalty incorporate more informative genes than
the approaches with lasso penalty (Tables 3, 4, 5).
Note that as block and/or size increase (or equiva-
lently, as the number of informative genes increases),
the number of selected informative genes for our
AUC-based methods increase faster, but logistics
regression based approaches and MSauc do not.
This fact may be interpreted as that our approaches
show better prediction accuracy.

Next, we also study the scenario where the genes are
generated from a non-Gaussian setting. We simulate 50
informative genes from 0.8N (µy, Σy (0.8)) + 0.2N (0, I)
and 0.8N (µx, Σx(0.8))+0.2N (0, I) for diseased and non-
diseased groups, respectively. The non-informative genes
are generated in the same way as in the first scenario.
Similar patterns can be found as in the normal distribu-
tion scenario (data are not shown).

Table 3 Summary of simulation results for different sizes
of each block, when r = 0.6 and block = 1 under a
normal scenario. nIMS and nTMS stand for the number of
the true informative markers selected and the total
number of markers selected, respectively.

Size Method Auc Sensitivity nIMS nTMS

5 AucEN 0.84 0.50 3 4

AucL 0.82 0.45 3 4

LogEN 0.82 0.45 2 2

LogL 0.80 0.40 1 1

MSauc 0.81 0.40 1 4

40 AucEN 0.86 0.55 20 24

AucL 0.86 0.55 13 18

LogEN 0.85 0.50 4 4

LogL 0.82 0.45 2 2

MSauc 0.81 0.45 1 3

Table 4 Summary of simulation results for different r,
when size = 5 and block = 1, under a normal scenario.

r Method Auc Sensitivity nIMS nTMS

0.3 AucEN 0.81 0.45 3 12

AucL 0.81 0.45 3 6

LogEN 0.85 0.50 3 3

LogL 0.85 0.50 2 2

MSauc 0.82 0.45 2 6

0.9 AucEN 0.81 0.45 3 4

AucL 0.81 0.45 2 2

LogEN 0.80 0.40 2 2

LogL 0.80 0.40 1 1

MSauc 0.79 0.40 1 3

Table 5 Summary of simulation results for different
block, when size = 20 and r = 0.6, under a normal
scenario.

block Method Auc Sensitivity nIMS nTMS

1 AucEN 0.86 0.55 12 14

AucL 0.85 0.55 10 12

LogEN 0.83 0.47 4 4

LogL 0.81 0.40 2 2

MSauc 0.81 0.40 1 4

3 AucEN 0.96 0.85 25 40

AucL 0.95 0.85 20 32

LogEN 0.95 0.85 16 16

LogL 0.94 0.75 8 8

MSauc 0.92 0.70 10 31
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In summary, through selecting more genes, the pro-
posed AucPR performs better when there are a lot of
informative genes or the correlations between them are
high (larger than 0.6 for example).
Remark 3: Note that the penalized logistic regressions

are very powerful for marker selection in the sense that
all the selected genes are the true informative genes,
that is, nIMS = nTMS. For AucPR, the nTMS is larger
than the nIMS, that is, there are some noisy genes
selected. If the sample size increases, this phenomenon
can be avoided or become negligible. Figure 6 shows
that when the sample size is larger than 100, the num-
ber of noisy genes selected by AucL becomes very small.

Discussion
Note that, in our comparison study, the tuning para-
meters for all methods are tuned with an empirical
(non-parametric) AUC estimator as the CV score. When
sample size is very small, some difficulties may occur for
calculating such AUC estimators as we did in the brain
cancer study. Alternatively, parametric AUC estimators
or the deviance from a distribution model can be used
as the CV score. Different CV scores may lead to differ-
ent results, especially when the sample sizes are small. It
is worthy of investigating this issue as a future research
topic.
Although we only use gene expression microarray

data, AucPR can also be applied to other types of high-
throughput omics data, such as miRNA and protein
data.
AucPR methods rely on sample mean vectors and

sample covariance matrices, which may not be stable
enough, specifically when only a small number of

samples are available. An improvement may exist in
practice by replacing them with, for example, sample
median and the positive-definite estimator of a large
covariance matrix proposed by [33]. This can be a topic
of future research.
Note that after the transformation, we try to solve a

regression problem with p “samples” and p “predictors.”
Thus, the computation cost would grow quickly as p
increases. Although screening the original p genes to a
smaller number (1000 in our numerical studies) of
genes is widely used and does not affect the prediction
performance, as seen from our empirical study and the
relevant literature [3,5,13,20], it is still worthwhile to
develop fast algorithms for large scale and high-dimen-
sional regression problem. This, too, needs further
investigation.

Conclusions
We propose a powerful parametric and easily-imple-
mentable linear classifier AucPR, for gene selection and
disease prediction for high-dimensional data. We trans-
form a classical parametric AUC estimator into a linear
regression and thus, the existing packages for regular-
ized linear regression can be used directly. This novelty
makes the implementation of the proposed methods
very easy and efficient, since the regularized regression
has been well studied. The proposed parametric method
also avoids maximizing a non-concave objective function
and elaborately choosing the smoothing parameter in a
conventional non-parametric method. Comparisons
among the AucPR, the penalized logistic regression, and
a non-parametric AUC-based approach shows that our
methods lead to better classifiers in the sense of predictive

Figure 6 The number of noisy genes selected by AucL vs. the sample size of the simulation study, with r = 0.6, block = 2, and size =
20.
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performance, through application to real microarray and
synthetic data. In addition, the proposed AucPR selects
more markers than the others and thus, could include
more potential important markers for further investigation.
In addition, [34] demonstrated that the linear combi-

nation of multiple markers based on maximizing AUC
generally performs better than logistic regression when
the logistic model does not hold, and the two methods
are comparable when the logistic model is satisfied, but
their analysis was done under the condition that a very
limited number of markers would be considered. This
paper states that the AUC-based approach could also be
advocated in high-dimensional setting, since it achieves
better prediction ability than the penalized logistic
regression.
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