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Abstract

Background: Identification of genomic patterns in tumors is an important problem, which would enable the
community to understand and extend effective therapies across the current tissue-based tumor boundaries. With
this in mind, in this work we develop a robust and fast algorithm to discover cancer driver genes using an
unsupervised clustering of similarly expressed genes across cancer patients. Specifically, we introduce CaMoDi, a
new method for module discovery which demonstrates superior performance across a number of computational
and statistical metrics.

Results: The proposed algorithm CaMoDi demonstrates effective statistical performance compared to the state of
the art, and is algorithmically simple and scalable - which makes it suitable for tissue-independent genomic
characterization of individual tumors as well as groups of tumors. We perform an extensive comparative study
between CaMoDi and two previously developed methods (CONEXIC and AMARETTO), across 11 individual tumors
and 8 combinations of tumors from The Cancer Genome Atlas. We demonstrate that CaMoDi is able to discover
modules with better average consistency and homogeneity, with similar or better adjusted R2 performance
compared to CONEXIC and AMARETTO.

Conclusions: We present a novel method for Cancer Module Discovery, CaMoDi, and demonstrate through
extensive simulations on the TCGA Pan-Cancer dataset that it achieves comparable or better performance than
that of CONEXIC and AMARETTO, while achieving an order-of-magnitude improvement in computational run time
compared to the other methods.

Introduction
Traditionally, medical science has converged upon cancer
treatment strategies specific for each type of tumor (orga-
nized by the affected tissue), such as breast cancer, lung
cancer, etc. Recently, however, there has been a significant
effort by the research community to mine and discover
shared molecular similarities across different tumors. For
example, a recent study by The Cancer Genome Altas
(TCGA) [1] has shown that basal-like breast cancer has
more similarities, genomically speaking, to high-grade ser-
ous ovarian cancer than to other subtypes of breast cancer.

The statistical evidence for molecular, proteomic and
epigenetic signatures within and across various tumors is
fundamentally interesting, both from the perspective of
scientific discovery and its potential impact on persona-
lized medicine. For instance, discovering such similarities
at various molecular levels can suggest an unified clinical
treatment strategy to combat tumors in different ana-
tomic sites.
Central to our discussion is the knowledge that a small

number of important genes, known as “regulatory” or
“driver” genes, play a crucial role at the molecular path-
way level and directly influence the expression of several
other genes. This network of genes, where these driver
genes are connected with other downstream targets, is
often modeled as a module network [2]. It seems natural
that some of these regulatory genes should be able to
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explain the variability of gene expression in genes that
appear downstream in these biological pathways. Thus,
researchers are attempting to identify the module net-
work structure based on gene expression data in cancer
patients, using machine learning techniques. For exam-
ple, in [3], the authors identify the module network struc-
ture in ovarian cancer. Until now, research efforts have
mainly focused on studying and analyzing tissue depen-
dent genomic patterns. TCGA [4] has collected and ana-
lyzed a large amount of data from different human
tumors to discover molecular aberrations at the DNA,
RNA, protein and epigenetic levels. Recently, the Pan-
Cancer initiative has been created to compare the first 12
tumor types profiled by TCGA. In the era of modern
medicine and big data, there is an additional need to con-
nect the dots across different cancers, which poses a
computational challenge of its own given the large
volumes of patient data. This motivates the requirement
of a scalable solution to the problem of module discovery
in cancer. Motivated by the aforementioned reasons, we
are interested in investigating both intratumor and inter-
tumor genomic similarities by using the Pan-Cancer
TCGA data for our study, with a focus on robustness and
scalability. As a step towards solving this important pro-
blem, we present CaMoDi.
CaMoDi is a novel algorithm for Cancer Module Dis-

covery, which discovers the latent module structure for a
given gene expression dataset. Several methods have been
previously proposed in the literature for this purpose, such
as CONEXIC [5] and AMARETTO [3]. CaMoDi displays
multiple advantages over previously proposed methods.
These include its speed, scalability with the size of the
data (both in the number of genes and the number of
patients), as well as its reliability in discovering consistent
clusters of genes across different train-test bootstraps of
the cancer data. These characteristics make the algorithm
suitable for discovering modules within and across tumors
of different types.
We perform an extensive comparative simulation study

between CaMoDi, CONEXIC, and AMARETTO over 11
tumors of the Pan-Cancer data set, and over 8 different
combinations of tumors. To our knowledge, this is the
first systematic appraisal of module discovery algorithms
across a variety of tumors. Our study shows that CaMoDi
is competitive with the other two algorithms, and is in
many cases significantly better on a host of performance
parameters that we describe below. Further, CaMoDi is
able to discover modules in a timeframe that is an order
of magnitude smaller than the other two methods. This
has important implications for applications of CaMoDi
not possible with the other algorithms. For instance, the
current implementation of CONEXIC leads to exces-
sively high run times in module discovery across combi-
nations of several different tumors from the PanCancer

data. On the other hand, as is demonstrated in our
results, CaMoDi is able to discover robust modules of
high quality across several tumors in very short run
times.
The rest of this paper is organized as follows. In Section

we review the previously proposed algorithms for module
identification and introduce the proposed algorithm
CaMoDi. We also describe the format and type of data
used in this study, and discuss the performance evaluation
criteria in detail. In Section we present the comparison
results. In Section we discuss the findings of our study.
Finally, we present concluding remarks in Section.

Materials and methods
We formulate the module discovery problem as an unsu-
pervised clustering problem in the gene space. In other
words, we seek to perform an unsupervised clustering of
the genes so that genes in each cluster are roughly expres-
sible in terms of a small number of regulatory genes. This
is known as a module-based approach to represent geno-
mic profiles of tumors.
In this section, we introduce CaMoDi. We describe our

method in detail, and compare it with two state-of-the-
art techniques in the domain of module discovery,
AMARETTO [3] and CONEXIC [5]. We provide a brief
description of these two procedures, which will act as
benchmarks for comparison, and refer the reader to the
associated references for further details.

Algorithms
As outlined above, the goal of these methods is to search
for genes whose expression across samples (patients) can
be explained well by a small number of regulatory genes.
Even within this framework, there is an important differ-
ence between CONEXIC and the other two methods
(AMARETTO and CaMoDi). While the latter two algo-
rithms cluster together genes whose expression can be
explained as a sparse linear combination of regulatory
genes, CONEXIC considers a probabilistic model in which
each cluster is represented by a regression tree, where
each node is in turn associated to one of the regulators
that belongs to the cluster.
AMARETTO
AMARETTO is an iterative clustering algorithm origin-
ally proposed in [3], where it was applied to dissect
molecular profiles of ovarian cancer. AMARETTO finds
gene clusters whose centroid is well approximated by a
sparse linear combination of the regulatory genes, i.e.,
the center of a cluster is expressible in terms of a few
regulators. We here provide a brief overview of the
method and refer the reader to [3] for details:
K−means clustering step: the genes are clustered into

groups using standard K−means with K clusters
(modules).
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Sparsification step: Then, the centroid of each cluster
is expressed in terms of the regulatory genes using linear
regression with L1 and L2 regularization. This is also
known as elastic net regularization [6]. After this step,
each module (cluster) contains a set of genes whose aver-
age expression is described using a small number of can-
cer driver genes. Finally, the correlation coefficient of
each gene with the sparse representation of all the cen-
troids is calculated.
Gene re-assignment step: Each gene is re-assigned to

the cluster whose centroid it is most positively corre-
lated with. The algorithm repeats the K−means cluster-
ing and sparsification steps until the gene reassignment
process converges based on less than 1% of the genes
being reassigned or a maximum number of iterations
being reached.
It should be noted that in [3], AMARETTO was pre-

sented as a method that integrates the copy number and
DNA methylation data. However, in the current and latest
implementation of AMARETTO, only the gene expression
data is used, which is also the case for CaMoDi. This
allows for an objective comparison of the two algorithms.
CaMoDi
We now present the main focus of this work CaMoDi, a
novel approach towards fast cancer module discovery. The
main purpose of the algorithm is identical to that of
AMARETTO, and other procedures for module discovery,
i.e., it seeks to find combinations of genes whose expres-
sion can be explained as a combination of regulatory
genes. Specifically, CaMoDi attempts to create clusters of
genes whose expression can be explained through sparse
linear combinations of the expression of regulatory genes.
The four steps of the proposed algorithm are described
below. Details of the parameters used in CaMoDi appear
in the Additional File 1.
Gene sparsification step: Each individual gene is

expressed in terms of a few regulatory genes via elasticnet
regression [6] with a specified maximum number of regu-
lators. Specifically, the L2 regularization and the maximum
number of regulators, denoted as C1, are user-specified
parameters. Thus, via elastic-net regression, we express
each gene as a linear combination of {1, 2, . . . , C1} regula-
tory genes. That is, every gene is mapped to C1 vectors in
which the first vector has only one non-zero value, the
second has two non-zero values, and so on, i.e., the
expression of each gene is approximated as a weighted
sum of the expression of one, two, and up to C1 regulators.
We call the vector that contains p non-zero values (i.e.,
only p regulators are used to describe a gene), a p−sparse
representation of this gene.
K−means clustering step: A standard K−means clus-

tering of the S1−sparse representations of all the genes is
performed, where S1 is a parameter provided by the user,
referred to as the initial sparsity. We calculate the

centroids of each cluster as the average of the S1−sparse
representations of the genes that belong in said cluster.
Centroid sparsification step: The centroid of each

cluster is expressed in terms of the regulatory genes
using elastic-net regression. In particular, the user speci-
fies the L2 regularization and the maximum number of
regulators to explain the centroids’ expression, denoted
as C2. The final p−sparse representation of each centroid
is cross-validated in the following way: the average
expression of all the genes that belong to the cluster (by
using the initial gene expressions and not their S1−sparse
representation) is computed, and the representation of
the centroid which gives the highest average R2 using a
10−fold cross validation over the genes of the cluster is
found. This is then used to rank the clusters by their R2

performance across all the genes affiliated with those
clusters.
Cluster filtering step: In this step the best P % of the

clusters are retained. Alternatively, CaMoDi also retains
those clusters that exhibit an R2 greater than Rthresh and
contain between Nmin and Nmax genes. Finally, the algo-
rithm repeats the Gene Sparsification, K−means Cluster-
ing and Centroid Sparsification steps on the genes
contained in the remaining clusters after incrementing
S1 by 2.
In summary, first CaMoDi identifies possible sparse

representations of each gene expression as a linear combi-
nation of different number of regulators. Second, it clus-
ters the genes using only their S1−sparse representation,
and identifies if the clustering leads to any module of high
quality (quantified through the R2 metric calculated using
the initial gene expressions). Finally, it discards the
remaining clusters, and decreases the sparsity (i.e.,
increases S1 in the S1− sparse representation of each gene)
for the remaining genes, and performs another clustering.
In each step it keeps at least P % of the clusters. In sum-
mary, CaMoDi tries to find good clusters of genes which
are expressed with the same number of regulators, starting
from clusters which need few regulators and iteratively
adding complexity with more regulators.
The intuition behind the above steps is the following:

The gene sparsification step provides different ways of
representing each gene as a function of a small number
of regulators. This leads to clusters with high consistency
across random train-test sets, since only the most strong
dependencies are taken into account in the K−means
clustering step. The latter is a very simple and fast step,
since the vectors being clustered are sparse. The clusters
created in this step contain genes whose sparse represen-
tation contains the same “most informative” regulators.
Then, in the centroid sparsification step, CaMoDi does
not use the sparse representation of the genes any more,
but reverts to using the actual gene expressions and the
“crude” clusters created before, to find a good sparse
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representation of the centroid of each cluster via cross-
validation on the training set. Only the best clusters are
kept, and the remaining ones discarded. Then, the spar-
sity level of the remaining genes is decreased. This step
allows for cluster discovery over genes which need more
regulators to be correctly clustered together. The reason
that CaMoDi starts from very sparse representations is
that it searches for the simplest dependencies first and
then moves forward iteratively to discover more compli-
cated clusters.
Fig 1 presents the flow of the algorithm. There are 6

main parameters which could non-trivially affect the per-
formance of CaMoDi: the two L2-penalty regularization
parameters, the initial sparsity S1 of the genes, the mini-
mum sparsity of the centroids C2, K in the K−means
algorithm, and P , the percentage of clusters to be
retained in each step.
Both CaMoDi and AMARETTO use similar building

blocks (e.g., elastic net regularization) in order to dis-
cover clusters of genes which are co-expressed using a
few regulatory genes. Therefore, we highlight here the
main algorithmic differences between the two approaches
and the impact of these differences on the expected
performance.
CaMoDi clusters the genes based on their sparse

representation as a linear combination of regulators.
Genes are first mapped to sparse vectors of varying
sparsity levels, and then K−means clustering is per-
formed on this sparse representation to identify mod-
ules. In other words, we combine the genes, not by
using their expression across patients, but rather using
their sparse projection onto the regulatory gene basis.
This leads to a fast implementation that scales well with
the number of patients and genes. On the other hand,
AMARETTO performs the clustering in a patient-
dimension space. This entails significant complexity for
AMARETTO when the number of patients associated

with the data set is large, as is typical of large data sets
such as for Pan-Cancer applications.
In AMARETTO, the iterations continue as long as

there exist genes which are more correlated with the cen-
troids of other clusters than with the one they belong to.
In CaMoDi, every iteration discards bad clusters, and a
new sparse representation of the genes is employed to
discover different clusters using the fast K−means algo-
rithm. The iterations in CaMoDi explicitly allow for
module discovery with different, and in fact increasing,
model complexity, which is not the case in AMARETTO.
So CaMoDi has the tendency to provide simpler mod-
ules, since it explicitly searches for good clusters, which
arise from gene sparsification with only a few regulators.
CaMoDi essentially splits the problem of clustering

into two subproblems: In the first, it uses the sparse
approximations of each gene to create clusters with the K
−means algorithm. In the second, it finds the best sparse
approximation of the centroid of each cluster by using
the original expression values. In AMARETTO, both the
clustering and the centroid sparsification steps are per-
formed sequentially using the gene expression data until
the algorithm converges. Using the initial gene expres-
sion data leads to high dependency of the clusters created
from the random split of train-test data.
In AMARETTO a gene is re-assigned to the cluster

with which it is most positively correlated, whereas in
CaMoDi we use the Euclidean distance between the
sparse representation of the genes in order to cluster
them in the same module.
CONEXIC
We now describe CONEXIC, introduced by [5]. This will
serve as a benchmark for comparing against CaMoDi and
AMARETTO in order to demonstrate the properties of
each algorithm. CONEXIC is a Bayesian network-based
computation algorithm which integrates matched copy
number (amplifications and deletions) and gene

Figure 1 Graphical representation of CaMoDi’s steps.
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expression data from tumor samples to identify driver
mutations. Inspired by [2], it constructs modules in the
form of regression trees based on a Bayesian score-
guided search to identify combinations of genes that
explain the expression behavior across tumor samples.
Particularly, each regression tree contains two building
blocks: the decision nodes and the leaf nodes. A decision
node is described by a regulatory gene and a threshold
value which specifies how the tree should be traversed.
For each tumor sample, one starts from the root node
and compares the gene expression of the regulatory
genes in each decision node with the corresponding
threshold value to move to the right or left child. Each
leaf node contains a conditional probability distribution
which models the distribution of the expression of the
genes of this module that have reached this specific leaf.
CONEXIC uses a NormalGamma distribution to model
the joint statistics of the genes and the candidate drivers;
conditioned on a specific module, the expression of the
genes belonging to the module is modeled as a Gaussian
distribution. Next we give an overview of the two main
steps of CONEXIC.
Single modulator step: The goal of this step is to

produce an initial clustering of the genes that will serve
as input to the next step. Specifically, each gene is asso-
ciated to the single driver gene that fits it best. Then, a
cluster is created by putting together all the genes for
which the same driver gene was found to be the best fit.
The input to this step is a list of candidate modulators
(driver genes), the copy number variation (CNV) data
and the gene expression data.
Network learning step: This step is based on the

Module Networks algorithm by [2,7], and it takes as
input the candidate modulator list, the gene expression
data and the modules generated by the Single Modula-
tor step. These modules serve as a starting point for the
Network learning step, whose goal is to improve the
score of the modules and their regulator programs. To
do this, the algorithm iterates between learning the reg-
ulation program of each module, and re-assigning each
gene into the module that best models its behaviour.
The re-assignment is based on a scoring function, and
the algorithm finishes when the number of re-assign-
ments is below a threshold.
Main differences between CaMoDi and CONEXIC
Even though both algorithms aim to discover clusters of
genes whose gene expression is driven by a small num-
ber of regulators, the approach followed by each of
them is significantly different.
First, CONEXIC uses a Bayesian approach to identify

the modules, whereas CaMoDi uses linear regression mod-
els. In theory, the former could potentially describe more
complex dependencies in a data set, but as we observe in
this work, this comes at the price of a significantly more

complex algorithm, without a commensurate improve-
ment in the quality of the discovered modules. Second,
unlike the other two approaches, CONEXIC combines
gene expression data and Copy Number Variation (CNV)
data to identify modules and their driver genes, whereas
CaMoDi (or AMARETTO) only uses the gene expression
data. Despite this difference, we show that CaMoDi gets
the same and even better performance, with respect to
several performance criteria, as compared to CONEXIC
with a significant lower run time and algorithmic com-
plexity. Third, CaMoDi’s parameters are explicitly related
to the important characteristics of the discovered modules,
such as the maximum number of regulators in each clus-
ter. Conversely, CONEXIC’s parameters only implicitly
influence the final clusters, with the performance results
being highly dependent on the particular parameter
configuration.

Notation
To argue the merits of the above methods, we need to
place the above algorithms on a common platform.
Let’s denote by n the number of genes and by p

the number of regulatory genes. Denote a module
M = {G,R}, where G and R are the set of indices of genes
and regulators that belong to it, respectively. Finally, we
refer to the m-dimensional vectors gi, i ∈ 1, . . . , n, and

g(r)j , j ∈ 1, . . . , p, as the expression of the ith gene and the

jth regulatory gene across m samples, respectively, and to
the (n + p)-dimensional vector s(k) as the vector expression
corresponding to the kth patient.
For simplicity of the exposition, fix any module

M = {G,R} generated by either algorithm. For any
given sample s(k), the module discovery algorithm is try-

ing to predict the value of {s(k)i }i∈G, that we denote by

{s̃(k)i }i∈G, based on {s(k)j }j∈R, i.e., s̃(k)i = f ({s(k)j }j∈R),∀i ∈ G,
where the function f (·) captures the model considered
by a given procedure.
AMARETTO and CaMoDi cluster together genes

whose expression is well approximated by a linear com-
bination of the same few regulatory genes, and therefore
the module M is associated with a set of nonnegative

coefficients {αj}pj=1. Thus the jth regulator is part of the

set R iff aj ≠ 0. Given a new sample s(k), the predicted

value of all the genes in G is s̃(k)i =
∑

j∈R αjs(k)j
,∀i ∈ G.

CONEXIC does not assume a linear dependency
model between regulators and genes. Recall that CON-
EXIC models each module as a regression tree, where
each node is associated with a regulator and a threshold
value, and the leafs are associated with a Gaussian dis-
tribution of some mean and variance. So, the set of all
the different regulatory genes that appear on the deci-
sion nodes of the tree constitutes the regulator set R of
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this module. Given a new sample s(k), we traverse the
tree until we reach a leaf based on the expression of the
regulatory genes of the specific sample. The mean value

of the corresponding leaf, denoted as μ
(k)
leaf , indicates the

expected value of all the genes in s(k) which belong to
the module. Therefore, in CONEXIC, the predicted

value of {s(k)i }i∈G based on {s(k)j }j∈R is given by the mean

value stored on the leaf reached when s(k) traverses the

tree, i.e., s̃(k)i = μ
(k)
leaf ,∀i ∈ G.

Data
We now describe the data upon which we will evaluate
the different approaches that were discussed above. As
stated in the Introduction, in this work we use the Pan-
Cancer data to help uncover underlying genomic pat-
terns in several different tumors and combinations of
tumors. Next we describe this data in more detail:
Gene expression data: This data is part of the Pan-

Cancer initiative provided by The Cancer Genome Atlas
(TCGA). It consists of the expression value of 19451
genes for 3452 patients (also referred to as samples)
spanning a total of 12 tumor (cancer) types. In our work,
we combined the Colon Adenocarcinoma (COAD) with
the Rectum Adenocarcinoma (READ) and considered it
as one cancer (COAD-READ), since the latter had only
71 samples and it is very similar to the former as far as
gene expression is concerned.
Regulatory genes: These are a subset of genes which

are identified via certain biological regulatory mechan-
isms and are known to drive other genes. This set has
been created based on transcription factor data extracted
from the HPRD database [8]. Our data-set consists of
3609 regulatory genes. Note that the set of regulatory
genes constitutes a small fraction of the set of all genes.
Copy Number Variation data (CNV): Copy Number

Variations (CNV) refer to genomic alterations of the
DNA of the genome that has been used to implicate
genes in cancer growth and progression. CNVs generally
correspond to relatively large regions of DNA, usually
containing many genes, which have been deleted or
duplicated. They often influence the expression of genes
in a cluster via changes in the expression of the driver.
This data is also part of the Pan-Cancer initiative.
The CNV data is only used by the CONEXIC algo-

rithm, both for the single modulator step and the Net-
work learning step. Note that neither AMARETTO nor
CaMoDi make use of this data. However, since we want
to use the same data for each of the methods, we only
use the gene expression of those genes and patients for
which CNV data was available. In this respect, CON-
EXIC has an explicit advantage in identifying good mod-
ules of genes, since it uses more data than the other two
approaches.

Performance and evaluation criteria
In this section, we introduce and explain the perfor-
mance criteria that will be used in our computational
study to test the quality of the modules that each of the
methods introduced above discovers. We argue that
each of these performance metrics are highly relevant to
the problem of identifying statistically significant geno-
mic profiles from given data.
R squared and adjusted R squared (R2, R̄2): We use

the standard coefficient of determination from statistics
to quantify the goodness of approximation of our
regression problem. The coefficient of determination,
known as R2, measures how well the expression of the
genes which belong to the module are explained by the
corresponding regulators. This translates to measuring

the Euclidean distance between s̃(k)i
and s(k)i

,∀i ∈ G:

R2 = 1 −

∑m
k=1

∑

i∈G
||s̃(k)i − s(k)i ||2

∑m
k=1

∑

i∈G

∥
∥
∥
∥
∥
s(k)i − 1

|G|
∑

i∈G
s(k)i

∥
∥
∥
∥
∥

2 ,

where m is the number of samples for which we are
trying to make a prediction. High R2 means that the
residual energy that is not explained by the assigned
regulatory genes is relatively small, so we are interested
in clusters with high R2 values. In order to adjust for
the number of regulators relative to the number of
patients (samples), we compute the adjusted R2 for each
module M, defined as

R̄2=̇R2 − (1 − R2)
|R|

m − |R| − 1
.

Consistency (S): When evaluating the performance of
an algorithm, it is important to quantify how consistent
the algorithm is with respect to the selection of the
training set. Specifically, given a gene expression dataset,
a typical way of testing the consistency of the model
generated by a statistical learning algorithm is to ran-
domly use 70% of the samples for training and 30% for
testing. Ideally, we would like the algorithm to generate
similar modules independent of the random split of the
data. A standard measure used for comparing the simi-
larity of two sets is the Jaccard index. The Jaccard index
between two sets A and B is given by

J(A,B) = |A ∩ B|
|A ∪ B| ,

i.e., by the ratio of cardinalities of the intersection and
the union between the two sets. In our case, the two
sets A and B will consist of the sets of genes (or regula-
tors) that belong to two different modules. Denote two
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different modules as M1 = {G1,R1} and M2 = {G2,R2}.
We define the average Jaccard index between M1 and
M2 as

J̄(M1,M2) =
J(G1,G2) + J(R1,R2)

2
.

To demonstrate how the consistency measure S is cal-
culated, assume we run the algorithm two times (2 ran-
dom bootstraps), and each run produces Na and Nb

modules, respectively, denoted as {Ma
i }Na

i=1 and {Mb
i }Nb

i=1.

Then, for every module Ma
i , find the Mb

j module which

maximizes J̄(Ma
iMb

j ), i.e., the module in the second run

to which it is most similar to on the average. Perform
the same procedure after interchanging the role of the
first and the second bootstrap. These steps lead to Na +
Nb pairs of modules, each one of which has a corre-
sponding average Jaccard index. Averaging over all the
pairs computes the consistency S. In the general case of
B bootstraps, we will repeat the above procedure for
every pair of bootstraps, and compute the final robust-
ness S as the average of the robustness of each pair of
bootstraps.
Homogeneity (H): This performance metric captures

whether the genes inside a module demonstrate fairly
correlated expression with each other or not. We use
the standard Pearson Correlation coefficient for this
purpose, denoted by r. Specifically, given a module and
the set of genes that belong to it, we compute for each
gene the correlation coefficient of that gene with all the
rest. Thus for each gene we have a r value. The homo-
geneity of that module is given by the average of all the
computed coefficients across all the genes that belong to
the module. Finally, the homogeneity metric H is com-
puted as the average of the homogeneity values across
the clusters.

Simulations
Preprocessing of the data
Before making use of the data, we normalize each gene
expression vector to have zero mean and standard
deviation one. We make sure that all the samples that
we use have both gene expression data and CNV data.
Finally, we apply a variance filter to the training set to
retain only the 15% most varying genes (approximately
3000 genes). The reason for choosing only 15% of the
genes is mainly due to the high run time of CONEXIC
and AMARETTO for larger datasets. We use 70% of the
samples as training and evaluate the results on the
remaining 30% of the samples.
Parameter selection
When comparing different algorithms, choosing the cor-
rect parameter configuration is an important issue, espe-
cially when it comes to methods which have many

parameters which could potentially affect the results.
We perform an optimization procedure to identify the
parameter configuration for CONEXIC, CaMoDi and
AMARETTO: starting from a predefined parameter con-
figuration, in each iteration, we identify the parameter
which leads to the highest increase in the average R̄2

performance, until no parameter could lead to a signifi-
cantly better performance. We then use that configura-
tion for all the simulations performed in this work. For
a detailed description of our optimization procedure see
the Additional File 1.
Machine specifications
The machine used to conduct the experiments has the
following specifications: 16 GB RAM, Inter Core i5-4430
CPU at 3.00GHz × 4 and Ubuntu 13.14. AMARETTO
and CaMoDi are written in Matlab, and CONEXIC in
Java. However, all the methods are called from Matlab
(version R2011a). The run time of each method is cap-
tured while running 4 Matlab sessions concurrently,
each session running all the methods for a specific data-
set. Spasm Toolbox [9], a Matlab toolbox for sparse sta-
tistical learning, is employed for the elastic-net
regression in both AMARETTO and CaMoDi.

Results
To analyze the different performance of the three meth-
ods and understand the strengths and weakness of each
of them, it is important to perform exhaustive simula-
tions with datasets of different characteristics. With this
in mind, in this work we present several simulation
results, which can be divided into three groups. First, we
compare the performance of all the methods across all
the individual tumor datasets (11 in total), and compare
the modules found by each of the methods. Then, we
consider combinations of the individual tumors, in an
attempt to discover intertumor modules. We present
the results for eight different tumor combinations across
the three methods. Finally, we employ CaMoDi across
all tumors on the complete TCGA Pan-Cancer dataset,
to demonstrate its capabilities as a scalable cancer mod-
ule discovery algorithm.
Individual tumors: For the individual tumors we run

each method using the samples of each tumor separately.
Specifically, to make the comparison fair across all meth-
ods, for every bootstrap (a random 70 - 30 train-test
split), we perform the following procedure: we retain the
clusters that contain between 5 and 1000 genes, and sort
them based on their R̄2. We filter the best clusters which
cover at least 80% of the genes and average all the results
over these clusters. The choice of 80% is not crucial and
similar results are obtained for different choices, as
shown in the Additional File 1. Furthermore, note that
the purpose of the three approaches is not to create a
module network which explains all the genes, but to
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identify a set of good modules which contain co-
expressed genes (a similar argument is made in [5]). For
example, in CONEXIC it is possible to create “garbage”
modules containing the “bad” clusters. The results are
summarized in Fig.2. Specifically, we show for each
method and tumor the average R̄2, Consistency S,

homogeneity H, run time and number of regulators per
module. The remaining results are collated in the Addi-
tional File 1.
Combination of tumors: With this set of simulations

we address the problem of module identification across
tumors. In this case, for every bootstrap (10 in total), we

Figure 2 Performance comparison. CORE stands for COADREAD, and HNLUALUS for HNLUADLUSC.
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combine 70% of the data of the tumors under considera-
tion in the train set and leave the remaining 30% in the
test set. Then, we perform the preprocessing steps
described in Section. Finally, the methods treat each
sample in the same way to construct modules of genes
that are agnostic to the tumor knowledge. Fig.2 presents
the results for: BLCA-KIRC, COADREAD-LAML,
GMBHNSC, HNSC-LUAD, HNSC-LUAD-LUSC, HNSC-
LUSC, LUAD-LUSC and OV-UCEC. Due to space lim-
itations, we only show the results related to the average

R̄2, Consistency S and run time, and refer the reader to
the Additional File 1 for the remaining metrics.
Pan-Cancer dataset: CaMoDi performance: For com-

pleteness, and to show the potential of CaMoDi when
applied to large datasets, we perform one last simulation
that combines together the data of all the tumors pre-
sented in the Pan-Cancer dataset. We combine the sam-
ples in the same way as for the combination of tumors.
However, in this case we only present the results for
CaMoDi, since CONEXIC required prohibitively long
times (more than 48 hours of run time for each bootstrap
as compared to less than 1.5 hours for CaMoDi). Due to
space limitations, these results are shown in the Addi-
tional File 1.

Discussion
The performance results from the individual tumor
experiments (Fig. 2) demonstrate that CaMoDi outper-
forms CONEXIC and AMARETTO in the average homo-
geneity and consistency metrics across all the individual
tumors except in the GBM data for the homogeneity and
the BLCA data for the consistency (7 out of 8 different
datasets). This demonstrates the robustness and consis-
tency of CaMoDi with respect to the random train-test
split of the data. Regarding the average R̄2, we observe
that CaMoDi outperforms CONEXIC in all cases, with
CaMoDi and AMARETTO achieving comparable average

R̄2 values. Specifically, CaMoDi outperforms AMAR-
ETTO in 4 out of the 11 cases, in 4 other datasets it gets
lower average R̄2, and in the remaining 3 datasets the
performance of the two algorithms is comparable. One of
the main strengths of CaMoDi is its low run time. Speci-
fically, we observe that the proposed algorithm runs in
approximately the same time (less than 10 minutes) for
all the individual tumors, achieving an order of magni-
tude improvement (10 times faster against CONEXIC)
over the other two algorithms. We observe that AMAR-
ETTO tends to employ a high number of regulators per
module (more than 9 regulators in 5 out of the 11 indivi-
dual tumors), whereas CONEXIC uses less than 4 regula-
tors per module on average in all the individual tumors.
CaMoDi finds a good balance between these two meth-
ods, with less than 5 regulators on average in 7 out of the
11 datasets, and less than 7 in the remaining ones. This

implies that CaMoDi is able to obtain good performance
with a lower average module complexity, a feature also
demonstrated by CONEXIC. We note that CaMoDi dis-
covers novel modules that are also unique compared to
the other two methods. A statistical comparison of the
Jaccard index between the discovered modules of
CaMoDi and the remaining two algorithms in three data-
sets is presented in the Additional File 1. In short, we
observe that more than 30% of the discovered clusters of
CaMoDi have a maximum Jaccard index of 0.1 with any
cluster of CONEXIC and AMARETTO, i.e., a relative
high percentage of clusters have very few genes in com-
mon with any cluster from the other two methods.
The results for the combined tumor experiments (Fig. 2)

demonstrate that CaMoDi still outperforms CONEXIC
and AMARETTO with respect to the consistency metric
in all the combinations, while achieving a comparable per-
formance with respect to the homogeneity metric (cf.
Additional File 1 ). In terms of average R̄2, we observe
similar results for the three algorithms. Yet, the run time
of CaMoDi averages 15 − 20 minutes, whereas that of
CONEXIC and AMARETTO increases significantly with
respect to the individual tumors. This is especially notice-
able for the case of CONEXIC, where some datasets
needed as long as 6 hours to generate the module network
for one bootstrap. These results reinforce that CaMoDi is
an efficient algorithm which discovers high quality mod-
ules even in tumor combinations, while requiring an order
of magnitude less time to run than CONEXIC and
AMARETTO. Further, even in the case of combinations,
CaMoDi provides modules with significantly lower average
number of regulators than that of AMARETTO (cf. Addi-
tional File 1 ).
We additionally demonstrate the capabilities of

CaMoDi by employing it for the entire Pan-Cancer data-
set. These results appear only in the Additional File 1
where we observe that CaMoDi was able to discover 30
modules that cover 15% of all the genes with an average

R̄2 of 0.7, while keeping an average number of 7 regula-
tors per cluster.
To summarize the numerical findings, we have demon-

strated that CaMoDi is an algorithm that produces mod-
ules of high quality, while requiring significantly less run
time than CONEXIC and AMARETTO. We note that the
choice of using 15% of the genes for the simulations was
restricted by the computational complexity limitations of
CONEXIC, not by CaMoDi. In addition, the performance
of CONEXIC requires the CNV information to acquire
the initial modules, which is not the case for CaMoDi or
AMARETTO. Finally, it should be highlighted that
CaMoDi has six easily interpretable parameters which
affect its performance, the values of which can be opti-
mized using a cross-validation method for each dataset
separately. Due to the large number of parameters and the
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long run time for CONEXIC and AMARETTO, this per-
formance optimization step was not employed in our
experiments. Finally, we remark that a detailed study of
the biological implications of cancer modules discovered
by CaMoDi is an ongoing research endeavor, which we
reserve for future studies.

Conclusions
In this paper we present CaMoDi, a novel method for
Cancer Module Discovery. We demonstrate through
extensive simulations on the TCGA Pan-Cancer dataset
that CaMoDi achieves comparable or better perfor-
mance than that of CONEXIC and AMARETTO on
several performance metrics, while demanding on aver-
age an order of magnitude less computation time. More-
over, CaMoDi is an algorithm that scales very well with
the number of genes and the number of samples, mak-
ing it suitable for module discovery in large datasets.
We demonstrate the performance with respect to several
important metrics, such as R2, adjusted R2, homogeneity
and consistency, and run time. Finally, CaMoDi is an
algorithm with a few intuitive parameters controlling its
performance. This is especially important in the current
era of increasing volumes of datasets on which we need
to perform complicated tasks of biological inference.

Software implementation
CaMoDi is written in Matlab, and it is available at:
http://web.stanford.edu/~amanolak/CaMoDi.html. We
also provide the necessary files and code to perform all
the simulations presented in the paper.

Additional material

Additional File 1: It provides detailed information on the parameter
optimization procedure used to identify the parameter
configuration for CONEXIC, CaMoDi and AMARETTO, and it also
presents additional simulation results, e.g., the CaMoDi performance
on the Pan-Cancer dataset. The format is .PDF, and it is available at BMC
Genomics online.
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