POSTER PRESENTATION

Open Access

Crystallography based structure elucidation of the complex of C-terminal fragment of A β polypeptide of Alzheimer's disease with phospholipase A₂

Zeenat Mirza^{1,2*}, Vikram Gopalakrishna Pillai^{2,3}, Sujata Sharma², Punit Kaur², Alagiri Srinivasan², Tej P Singh²

From 2nd International Genomic Medical Conference (IGMC 2013) Jeddah, Kingdom of Saudi Arabia. 24-27 November 2013

Background

Aggregation of A β polypeptide plays an important role in pathogenesis of Alzheimer's disease, the most common form of dementia [1]. Therapies based on rationally designed aggregation inhibitors require knowledge of molecular structure [2]; because of high aggregation tendency of A β , it has not been possible to obtain complete structural information by X-ray crystallography. The hydrophobic C-terminal part of the A β peptide is critical in triggering transformation from α -helical to β -sheet structure. Phospholipases are an important enzyme involved in the inflammatory cascade mechanism having a conserved globular structure with active site, calcium binding loop, and hydrophobic channel. It has been speculated that phospholipase A_2 (PLA₂) inhibits the aggregation of A β peptide by interacting with the peptide and keeping the two peptide chains apart.

Material and methods

PLA₂ was purified to homogeneity from cobra venom. In order to examine the nature of interactions between PLA₂ and A β_{36-42} peptide 1:1 complex of PLA₂ with the C-terminal heptapeptide Val-Gly-Gly-Val-Val-Ile-Ala was prepared and co-crystallized. It is in tetragonal space group P4₁ with unit cell dimensions, a=b=42.6 Å, c=65.8Å. X-ray intensity data were collected to 2.04 Å resolution. Structure has been determined by molecular replacement and refined to the crystallographic R factor of 0.193. Structural co-ordinates were deposited at RCSB's PDB (3GCI).

* Correspondence: zmirza1@kau.edu.sa

¹King Fahd Medical Research Center, P.O.Box 80216, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia

Full list of author information is available at the end of the article

Results

Peptide binds to PLA₂ at the hydrophobic substrate binding site and forms at least eight hydrogen bonds and about a two dozen Van der Waals interactions indicating that the affinity between PLA₂ and the heptapeptide is far greater than the affinity between two A β peptide chains. Therefore, PLA₂ may have a potential role to prevent the aggregation of A β peptides. Calcium has been found in the calcium binding site and has pentagonal bipyramidal geometry. Kinetic studies showed that the peptide VGGVVIA binds to PLA₂ in a competitive manner with a binding constant of 5.2 x 10⁻⁷ M.

Conclusions

This is the first attempt to structurally establish the interaction between A β peptide and PLA₂. Results indicate that the peptide mainly adopts β -sheet secondary structure. Understanding the mechanism and effects of PLA₂ upregulation in AD brain may help in the development of novel strategies to inhibit the inflammatory responses and delay AD progression. Preventing the folding of nascent A β monomer into toxic conformers or oligomers would have therapeutic benefits.

Authors' details

¹King Fahd Medical Research Center, P.O.Box 80216, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia. ²Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India. ³Long Zheng Lab, Division of Pathology, 803I Abramson Research Center, The Children's Hospital of Philadelphia, 34th Street and Civic Center Boulevard, Philadelphia, PA 19104, USA.

Published: 2 April 2014

References

1. Yao F, Zhang R, Tian H, Li X: Studies on the interactions of Copper and Zinc ions with β -Amyloid peptides by a surface plasmon resonance

© 2014 Mirza et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

biosensor. International Journal of Molecular Sciences 2012, 13(9):11832-11843.

 Tjernberg LO, Tjernberg A, Bark N, Shi Y, Ruzsicska BP, Bus Z, Thyberg J, Callaway DJE: Assembling amyloid fibrils from designed structures containing a significant amyloid β-peptide fragment. *Biochem. J* 2002, 366:343-351.

doi:10.1186/1471-2164-15-S2-P10

Cite this article as: Mirza *et al.*: Crystallography based structure elucidation of the complex of C-terminal fragment of A β polypeptide of Alzheimer's disease with phospholipase A₂. *BMC Genomics* 2014 15(Suppl 2):P10.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit