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Abstract

database itself, stratified by Mendelian disorder.

Background: Mendelian disorders are mostly caused by single mutations in the DNA sequence of a gene, leading
to a phenotype with pathologic consequences. Whole Exome Sequencing of patients can be a cost-effective
alternative to standard genetic screenings to find causative mutations of genetic diseases, especially when the
number of cases is limited. Analyzing exome sequencing data requires specific expertise, high computational
resources and a reference variant database to identify pathogenic variants.

Results: We developed a database of variations collected from patients with Mendelian disorders, which is
automatically populated thanks to an associated exome-sequencing pipeline. The pipeline is able to automatically
identify, annotate and store insertions, deletions and mutations in the database. The resource is freely available
online http://exome.tigem.it. The exome sequencing pipeline automates the analysis workflow (quality control and
read trimming, mapping on reference genome, post-alignment processing, variation calling and annotation) using
state-of-the-art software tools. The exome-sequencing pipeline has been designed to run on a computing cluster
in order to analyse several samples simultaneously. The detected variants are annotated by the pipeline not only
with the standard variant annotations (e.g. allele frequency in the general population, the predicted effect on gene
product activity, etc) but, more importantly, with allele frequencies across samples progressively collected in the

Conclusions: We aim at providing a resource for the genetic disease community to automatically analyse whole
exome-sequencing samples with a standard and uniform analysis pipeline, thus collecting variant allele frequencies
by disorder. This resource may become a valuable tool to help dissecting the genotype underlying the disease
phenotype through an improved selection of putative patient-specific causative or phenotype-associated variations.

Background

Mendelian disorders are inherited diseases caused by
inborn defects in the DNA sequence of one or few genes.
Most inherited genetic disorders are rare, although if
taken collectively, they are estimated to affect ~4% of
newborns. There are ~7000 disease phenotypes described
in the Online Mendelian Inheritance in Man (OMIM)
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Database [1] but the cause of about half of the described
diseases is still unknown [2]. Whole Exome Sequencing
(WES) of patients allows to find causative mutations of
genetic diseases thanks to High-Throughput Sequencing
(HTS) technologies [3]. WES is an effective alternative to
standard genetic screenings to find causative mutations
of genetic diseases when only few patients are available,
as it is often the case for Mendelian disorders [4]. When
compared to Whole Genome Sequencing (WGS), WES is
still to be preferred because the targeted region com-
prises only 1-2% of the genome sequence and thus much
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less reads are required to get the sequencing depth neces-
sary to reliably identify mutations. Furthermore, the
potentially damaging effect of a coding-region mutation
on the gene product activity can be predicted with good
accuracy [5-10], but this is much more difficult in the
case of a non-coding region mutation [11,12].

WES has been successfully used to find candidate cau-
sative mutations with as low as one affected individual
[13-18]. One limitation of WES is that the percentage of
samples where a candidate causative mutation is not
found is still high [19]. This may happen when the causa-
tive mutation lies outside the targeted region or in a posi-
tion difficult to sequence, or may be due to incomplete
penetrance and the presence of modifier genes [20,21].
Another factor affecting the outcome of the analysis is
the bioinformatic analysis pipeline [22] and its stringency
level, since no standard operating procedure is currently
available. This means that in order to compare results of
different WES samples, it is important to use a uniform
analysis pipeline and a common reference databases to
prioritise the detected variants.

Indeed, despite the ever decreasing cost of sequencing
experiments, the bioinformatic analysis of WES data
requires high computational resources, trained experts
and a reference variant database to select and prioritise
the best candidate pathogenic variants.

Our aim was to build a community-based resource
providing a disease-oriented allele variant frequency
repository for Mendelian disorders populated by means
of an automatic exome-sequencing analysis pipeline.
The expansion and usefulness of this resource will be
driven by user-submitted WES samples collected from
Mendelian disorder patients.

Implementation

Website

The website is implemented in PHP. After user registra-
tion, a new analysis can be started through the Create
New submission page (Figure 1). The user has to pro-
vide the presumptive (or known) Mendelian disorder
associated to the sample, the mode of inheritance and
the platform used for exome target enrichment. The dis-
ease has to be chosen using a fixed vocabulary imple-
menting the MEDIC hierarchical disease ontology [23]
including all child terms to MeSH ID D009358:
“Congenital, Hereditary, and Neonatal Dis-
eases and Abnormalities”. The disease list can be
searched by directly typing the specific OMIM ID [1] or
a keyword and the auto-completion function will auto-
matically retreive all the available matching terms. The
user should choose the definition that best describes the
patient phenotype. The disease association can be later
edited, for example when an initially presumptive diag-
nosis is then confirmed following the WES analysis. In
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such cases, the user will initially choose a less specific
disease definition, using the controlled vocabulary, and
can then change it to a more specific one after receiving
the analysis results. Ideally, the user should confirm the
diagnosis only after having validated the mutations
found. The user can submit multiple samples at once, if
the samples correspond to related individuals. Each
sample has to be uploaded as a pair of sequence files in
FastQ format [24]. The user can follow the analysis pro-
gression online and retrieve the results upon analysis
completion (Figure 1).

Pipeline Implementation

The analysis pipeline is fully automated and it has a
modular structure, as detailed below and in Additional
file 1. Each module performs its task using custom
scripts and state-of-the-art tools (Additional file 2). The
pipeline was designed to run on a high-performance
computing cluster using the Torque resource manager,
but can easily be ported to any other job manager. The
exome.tigem.it website uses a cluster with 8 computing
nodes equipped with dual Xeon E5-2670 for a total
amount of 128 computing cores and 376GB of RAM.
Read quality assessment and trimming module

Read sequences are submitted by the user in FastQ for-
mat [24] and are initially assessed for the general quality
using FastQC [25]. Reads are then trimmed to remove
the Illumina adapter sequence and low quality ends
(with quality score threshold of 20) using Trim Galore
[26] and cutadapt [27]; a FastQC report is generated
also on the trimmed sequences.

Alignment on reference, post-alignment processing and
summary statistics Modules

Paired sequencing reads are aligned to the reference gen-
ome (UCSC, hgl9 build) [28] using BWA [29]. Post-
alignment process, including SAM conversion, sorting
and duplicate removal are performed using Picard [30]
and SAMtools [31]. The Genome Analysis Toolkit
(GATK) [32] is then used to prepare the raw alignment
for the variation calling with local realignment around
small insertions-deletions (INDELs) and Base Quality
Score Recalibration. This module is followed by a small
module computing the read summary, target enrichment
and target coverage statistics with SAMtools and BED-
Tools [33].

SNVs and INDELs calling and annotation Module

The identification of Single Nucleotide Variants (SNVs)
and INDELs are separately performed using GATK Uni-
fiedGenotyper, followed by Variant Quality Score Recali-
bration [34] when applicable. The SNV and INDEL calls
are then merged and annotated using ANNOVAR [35] to
add the following information: the position in genes and
amino acid change relative to the RefSeq gene model
[36], presence in dbSNP [37], OMIM [1], frequency in
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Figure 1 Website interface.Screenshots of the relevant sections of the web interface and outline of the user experience. The analysis is
submitted through the Create New section, where the user submit the required analysis details. The user can choose to submit a single sample
or multiple samples of related individuals and an auto-completion feature helps the user in assigning the correct disease id to the analysis. The
user can follow the progress of the analysis in the Analysis section where he will also find a link to the Results page after the analysis is

NHLBI Exome Variant Server [38] and 1000 Genomes
Project stratified by population [39], prediction of the
potential damaging effect on protein activity with differ-
ent algorithms [5-10] and evolutionary conservation
scores [40,41]. The annotated results are then imported
into the variation database.

Variation database and report generation module

The variation database is implemented in PostgreSQL
and its structure with the main tables and relationships is
shown in Additional file 3. A variations table contains an
entry for each variation progressively collected in the
database, each uniquely identified by genomic coordi-
nates, reference and alternative alleles. Separate tables
collect the statistics of the analysis calls, the annotation,
the analysis and samples details. Finally, the diseases
table contains the MEDIC hierarchical disease terms
[23]. Once all the detected variants have been imported,
the report generation module creates a report including
all the variations found in the samples accompanied by
the available annotations. Importantly, this module also
dynamically computes allele frequencies stratified by dis-
ease groups, using the hierarchical disease ontology. In
this way, even if no or few samples are available in the
database for a specific Mendelian disorder, a sufficient
number of samples can be reached by grouping samples
at the higher levels of the disease ontology. The variation
reports of all the archived analysis are periodically
refreshed to update allele frequencies on the analyses gra-
dually added to the database.

Results and discussion

We developed a variation database for Mendelian disor-
ders and associated WES analysis pipeline, in order anno-
tate and store insertions, deletions and single nucleotide
variants found in targeted resequencing projects, with a
focus on patients affected by Mendelian disorders. The
pipeline automates the analysis workflow using state-of-
the-art tools, starting with raw sequences and providing
the final list of annotated variants found in the sample.
The pipeline allows for the simultaneous analysis of mul-
tiple samples of related individuals. This option is recom-
mended when analysing members of the same family,
who are expected to share the same causative mutation.
In this case, the variant calling algorithm uses a multi-
sample model that takes into account the global allele
count in calling the individual genotypes, which can
highly improve sensitivity [34]. It is also possible to ana-
lyse unaffected members of the family indicating them as
controls. In this case the variants called in the unaffected
members can be directly used to filter out all shared
mutations that are not relevant in causing the proband
phenotype.

This resource is complementary to free and commer-
cial databases of known mutations associated to specific
diseases or phenotype, such as the HGMD [42] or the
ClinVar [43] databases or locus specific databases
(LSDBs) [44], since it focuses on patients affected by
Mendelian disorder. It is also different from the other
large scale databases providing population frequencies
because the collected samples are not phenotypically



Mutarelli et al. BMC Genomics 2014, 15(Suppl 3):S5
http://www.biomedcentral.com/1471-2164/15/53/S5

normal. Moreover, the associated WES analysis pipelines
here presented has to be considered only as an accompa-
nying tool to uniformly populate the database and cannot
be considered a general purpose exome analysis pipeline,
such as those recently presented in the literature [45-47].

The aim of this resource is to provide a standardised
analysis of WES samples by providing state-ofthe-art
pipeline and a standardised output of the variant calls
and annotations, including the relative allele frequency
in the anonymised samples already analysed in the data-
base, stratified by disease.

Uniformity of the calling quality is ensured by analysing
all samples with the same pipeline. The analysis was
implemented to have a low stringency for the initial var-
iant calling, in order to minimise the false negatives, but it
relies heavily on intersection filters for controls and gen-
eral population frequency to rule out non-causative
mutations.

Submission of whole exome sequencing samples

Whole exome sequencing samples are submitted
through a webpage http://exome.tigem.it shown in
Figure 1. The user has to provide the required informa-
tion about the analysis and the samples to be analysed
and upload the sequences (in FastQ [24] format). Sam-
ples are required to be annotated with OMIM ID or, if
a clear diagnosis is not available, with a MeSH term
[48]. The analysis pipeline uses this annotation to group
samples by disease and to calculate allele frequencies
within disease groups (see Implementation). The analy-
sis can be run on multiple samples provided they are
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from the same family and associated to the same disease
(or associated controls, e.g. unaffected relatives). The
user can check the analysis progress through the Analy-
sis section where all the submitted analyses are archived.
In the same section the Results page becomes available
after the analysis was successfully completed. The
Results page includes the files produces at several steps:
the quality reports, the processed alignment in BAM
format [31], reads and target coverage statics, the com-
plete call results in vcf format [49] and the annotated
table of variants (Figure 2). The user will find on the
website notification of every annotation database
updated or a major analysis pipeline improvement and
can choose to download updated results. Importantly,
the sequence data (i.e. FastQ and BAM files) will never
be made public, and on request these files will be
deleted from the servers (as specified in the online User
agreement). In this case, however, the user will not be
able to get updated results.

Automated analysis workflow

As detailed in the Implementation section, the pipeline
workflow follows a state-of-the-art implementation of
the exome sequencing analysis [50] (Additional file 1).
The analysis is initialized by a master script that config-
ures and submits the modules performing the actual
analysis steps on the computing cluster. The modules
are configured with pre-defined sets of parameters to
ensure uniformity of sensitivity across analyses. The
user can only choose the number of samples to analyze,
either as a single case or as a group analysis by selecting
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Figure 2 Sample analysis report. The analysis report produced by the analysis pipeline includes these fields for each variant called. In addition
to the standard predictions of the variant on protein function, the report includes variant frequencies across patients grouped by disease
according to the MEDIC hierarchical disease ontology. For a description of each field please refer to the Additional file 4.
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the Family option. In this latter case, also control sam-
ples are allowed, but these are analyzed separately.

The first module in the pipeline performs a quality
assessment of reads and trimming of read ends to remove
the adapter sequence or trailing low quality bases. Then
reads are aligned to the reference genome (UCSC hgl9
[28]) and the alignment is prepared for variation calling
trough a series of steps: format conversion, sorting, local
realignment around INDELs and Base Quality Score
Recalibration. The local realignment around INDELs is
an important step. It finds a consensus alignment among
all the reads spanning a deletion or an insertion to both
improve INDEL detection sensitivity and accuracy and to
reduce SNV false calls due to misalignment of the flank-
ing bases. The Base Quality Score Recalibration is a pro-
cedure through which the raw quality scores provided by
the instrument are recalibrated according an empirical
error model derived by the sequences [34]. The SNV and
INDEL variant calling are then performed and the calls
are merged and annotated with information collected
from several sources (Figure 2). The pipeline is designed
to run on a cluster and can submit jobs in parallel to ana-
lyse several samples simultaneously. The annotated var-
iant calls are then imported into the variant database.

Variant annotation and reporting

The variation database is used to store the annotated
exonic/splicing variants and to calculate allele frequen-
cies stratified by groups of patients presenting the same,
or similar, disease or phenotype according to the OMIM
identifiers and MeSH terms, implementing the MEDIC
hierarchical disease ontology [23]. Importantly, the
internal allele frequency among samples progressively
collected in the database itself, stratified by Mendelian
disorder, is estimated, thus leading to a better selection
of putative disease-specific causative variations.

The database includes also annotations of variants
from external sources (e.g. dbSNP, 1000genomes,
Exome Variant Server and prediction algorithms), which
are stored in a separate table and are periodically
updated upon release of a new version of one or more
external source database.

The final report of the analysis, which will be available to
the user, is a Microsoft Excel file including a table with all
the relevant information useful to filter the selected var-
iants and to prioritise them in order to choose the best
possible candidates for subsequent validation (Figure 2).
Specifically, in order to help the user in the filtering pro-
cess, the table classifies variants in five classes, as shown in
Table 1, on the basis of three factors: frequency in the gen-
eral population, in unrelated diseases, and in the same or
related disease(s), quality of the call and predicted impact
on the gene product activity.
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Table 1 Variation Classification
Variation Class
Class Frequency Quality Impact
| + + +
Il + + -
Il + - +
I\ + - -
\% - +/- +/-

Variants are automatically classified by the pipeline to help the user in
detecting causative mutations (also refer to Additional file 4). A “+" sign
means that the criterion indicated in the column is satisfied. Frequency
criterion: the frequency in 1000 Genomes Project, Exome Variant Server and
the TIGEM Variant database (in unrelated disease groups) must be < 1%;
Quality criterion: the GATK variant calling tool must assign a “PASS” value to
the “filter” field and score > 50 to the Genotype Quality field. Moreover, if the
variant is homozygous, the percentage of reads supporting the call must be >
80%. If the variant is heterozygous, the percentage of reads supporting the
call must be > 30% and < 80%); Impact criterion: the mutation causes a gain
or loss of a stop codon, a gain or loss of a splicing signal, or a frame-shift in
the Open Reading Frame. Alternatively, the phylogenetic conservation must
be significant (i.e. the fields LJB PhyloP Pred="C" AND LJB Gerp++>2 AND
Conserved>170) and 4 out of 5 prediction algorithms indicate a damaging
effect (i.e. Avsift, LJB SIFT, LB PolyPhen2, LJB LRT, LJB Mutation Taster).

We give priority to the frequency criterion since when
dealing with rare Mendelian disorders it is unlikely that
the causative mutation may be common in the general
population. These categories should be regarded as guides
in prioritising the variant called in the analysis and can
help in quickly highlighting the best candidate(s).

Conclusion

We developed a resource for the analysis of WES sam-
ples for researchers studying Mendelian disorders. We
believe this resource will be useful not only for those
who do not have the hardware resources or the neces-
sary expertise to run the analysis, but, more importantly,
as a common reference for the community to collect
and compare variants across patients with the same, or
similar, disease.

Each researcher by submitting data to the resource will
enrich the database and thus leverage the frequency of the
variations potentially associated to the Mendelian diseases.
For this reason, we require all samples to be annotated
with the OMIM/MeSH corresponding to the patient phe-
notype in order to update the corresponding group allele
frequencies with the new samples variant calls.

The analysis report classifies variation by classes to
help the user in prioritising candidate mutants. These
classes should be regarded as prioritising guides and not
as hard filters because it is possible that low-quality calls
(e.g. due to low coverage or other technical problems in
the regions) are true mutations that can be validated
and could be lost in a highly stringent analysis.

The resource provides variant frequencies according
to disease groups, thus helping in detecting modifier or
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secondary mutations which tend to be more represented
in the patients affected by the same phenotype. The esti-
mation of statistically significant associations will
improve with the number of patients with homogeneous
phenotype collected in the resource.

The TIGEM Exome Mendelian Disorder Pipeline is a
new community-based resource available to the Mende-
lian diseases research community, built with the aim of
help in dissecting the genotype underlying the disease phe-
notype in patients affected by rare diseases.

Availability and requirements
« Project name: TIGEM Exome Mendelian Disorder
Pipeline
« Project home page: http://exome.tigem.it
« Operating system(s): Platform independent
o Programming language: bash, perl, R, SQL, PHP
o License: Terms of use are on the website

Additional material

Additional file 1: Additional Figure 1. Pipeline workflow scheme. The
Analysis Master represents the main wrapper script that reads input
parameter and creates a new sample analysis in the Configuration DB.
The parameters stored in the Configuration DB are then passed to the
individual modules, represented in blue, here grouped according to
different phases of analysis representing the main steps. The results are
imported into the TIGEM Variant DB, which stores all variant and
annotation information. The TIGEM Variant DB is then queried to
generate the final report. The files delivered to the end user are marked
with a red colored asterisk.

Additional file 2: Additional Table 1. Analysis tools implemented in the
pipeline. List and current version of the analysis tools used in the
pipeline.

Additional file 3: Additional Figure 2. Variation Database structure.
Scheme of the main tables and relationships in the Variation Database.

Additional file 4: Additional Table 2. Analysis report column legend.
Legend of the representative fields in the analysis report.
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BAM: Binary Alignment Map; GATK: Genome Analysis Toolkit; HTS: High-
Throughput Sequencing; INDEL: small insertion or deletion; NGS: Next
Generation Sequencing; SNP: Single Nucleotide Polymorphism; SNV: Single
Nucleotide Variation; WES: Whole Exome Sequencing; WGS: Whole Genome
Sequencing; VCF: Variant Call Format.
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