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Abstract

Background: Because prokaryotic genomes experience a rapid flux of genes, selection may act at a higher level
than an individual genome. We explore a quantitative model of the distributed genome whereby groups of
genomes evolve by acquiring genes from a fixed reservoir which we denote as supergenome. Previous attempts
to understand the nature of the supergenome treated genomes as random, independent collections of genes and
assumed that the supergenome consists of a small number of homogeneous sub-reservoirs. Here we explore the
consequences of relaxing both assumptions.

Results: We surveyed several methods for estimating the size and composition of the supergenome. The methods
assumed that genomes were either random, independent samples of the supergenome or that they evolved from a
common ancestor along a known tree via stochastic sampling from the reservoir. The reservoir was assumed to be
either a collection of homogeneous sub-reservoirs or alternatively composed of genes with Gamma distributed gain
probabilities. Empirical gene frequencies were used to either compute the likelihood of the data directly or first to
reconstruct the history of gene gains and then compute the likelihood of the reconstructed numbers of gains.

Conclusions: Supergenome size estimates using the empirical gene frequencies directly are not robust with
respect to the choice of the model. By contrast, using the gene frequencies and the phylogenetic tree to
reconstruct multiple gene gains produces reliable estimates of the supergenome size and indicates that a
homogeneous supergenome is more consistent with the data than a supergenome with Gamma distributed gain
probabilities.

Background
The advances of comparative genomics have made it clear
that gene exchange is the primary mode of evolution in
prokaryotes [1-5]. The intensity of this exchange is such
that several distinct gene families are lost and gained on
average in a time it takes for a single amino acid substitu-
tion to be fixed in a conserved gene [6]. Because new
genes predominantly originate by horizontal gene transfer
(HGT) [7-9], it seems plausible that the unit of evolution
in prokaryotes is not the genome but the supergenome,
i.e. the collection of all genes available for HGT [10]. The
rationale behind this way of thinking is that a novel gene

discovered in one population can be acquired by another
population. Although many distinct new genes arrive reg-
ularly, which of these genes are fixed varies greatly
between populations [11,12]. Therefore, given a group of
closely related prokaryotes, it is useful to know the size
and composition of the pool of genes that can, in princi-
ple, be adopted by the organisms in the group. We denote
this gene pool supergenome to differentiate it from the
more common term pan-genome which we reserve for
denoting the set of distinct genes empirically shown to be
present in the chosen group. Note that the supergenome
has been alternatively denoted as supragenome in [13].
In the years since the importance of HGT and distribu-

ted genomes in prokaryotes has been recognized, there has
been considerable interest in estimating the supergenome
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size for diverse prokaryotes. The supergenome of a micro-
bial species group cannot be characterized directly and can
be estimated only from the analysis of samples of the rele-
vant genomes using an explicit model of genome evolution.
Such estimates have pointed to vast supergenomes for
most prokaryotes because for the majority of prokaryotes,
sequencing and analysis of new isolates did not show any
signs of saturation of new gene discovery, suggestive of
“open” supergenomes. However, for several bacterial spe-
cies, new genomes add few new genes, indicating that
these organisms have relatively small supergenomes
[2,14,15]. Snipen and coworkers applied a binomial mix-
ture approach to approximate the gene frequency distribu-
tion in an analyzed set of genomes and used it to estimate
the supergenome size for a variety of bacteria [16,17].
Unlike the earlier attempts, this approach yielded closed,
relatively small supergenomes that were only several fold
larger than a typical genome in the group. Recently, the
Infinitely Many Genes model of microbial genome evolu-
tion by gene replacement has been developed, under which
the replacing genes are drawn from a formally infinite
reservoir [18,19]. Estimates under this model have also
suggested a closed supergenome for the cyanobacterium
Prochlorococcus. However, the estimated supergenome was
much larger than that predicted by the binomial mixture
method. Given the discrepancies between the superge-
nomes estimated with different approaches, the validity of
the underlying models of genome evolution and character-
istic supergenome size for different prokarytoes remain
open questions. This uncertainty motivated us to perform
a systematic study of the supergenomes using a broad vari-
ety of approaches.
Here we describe and compare several methods for

inferring the supergenome size and composition. We
apply these methods to the task of estimating superge-
nome sizes of several groups of bacteria and discuss the
robustness and accuracy of the results.
We find that supergenome size estimates based directly

on the empirical gene frequencies are unreliable because
they depend critically on the choice of the distribution of
the gene gain probabilities in the supergenome. However,
when the gene frequencies were used together with a phy-
logenetic tree to reconstruct the history of gene gain
events, the numbers of multiple (repeated) gains could be
used to obtain reliable estimates of the supergenome size.
We further find that the homogeneous supergenome fits
the reconstructed gains better than a supergenome in
which gain probabilities are Gamma distributed.

Methods
The supergenome is defined only in the context of evo-
lution. Therefore the estimates of supergenome size
must involve an explicit or implicit model of the

evolution of gene content. Because only the extant gen-
omes are available, all methods must address the pro-
blem of ancestral reconstruction. The methods that
assume that genomes are random, independent collec-
tions of genes drawn from a supergenome (i.e. methods
A, B, C and E below) imply that gene content evolution
is so fast that every pair of genomes in the group has
diverged as far as possible from each other in terms of
their gene content, i.e. has reached the steady state of
the stochastic process of gene acquisition.
For each method, the starting point is the assignment

of homology relations among the genes of the chosen
group of genomes. We omit the details of this process
here [20] and only indicate that genes are clustered into
families using the BLAST search hits with scores and
random expectation values above an appropriate thresh-
old of significance [21]. The outcome of this homology
identification procedure is a list of families and an
assignment of each gene to a unique family. Genomes
can contain multiple representatives of a family
(paralogs).

A: Pan-genome growth curve
Given G genomes, method A, computes the pan-gen-
omes, i.e. the number of distinct genes found in a group
of genomes, for of all groups of size g ≤ G and plots the
average pan-genome size P(g) among these groups as a
function of g. This so called pan-genome growth curve or
its derivative, i.e. the average number of new genes dis-
covered when (g + 1)st genome is added to a group of g
genomes, is then fit by either an exponential [22] or a
power law function [14]. Conclusions about the size of
the supergenome are made depending on the existence
of the asymptote or the value of the exponent of the
power law. The power law (but not the exponential)
functional form of the pan-genome growth curve has a
theoretical basis. When words are drawn at random from
a vocabulary in which word frequencies are power law
distributed (Mandelbrot), the number of distinct words
discovered after K samples grows initially as a power law
and asymptotes to the vocabulary size when K is suffi-
ciently large [23]. However, when applied, the results of
the power law fits are frequently outside of the validity
range of the Mandelbrot/Heaps construction [14]. When
the extracted exponent is indeed within the range of
validity of Heaps law, the supergenome size can be esti-
mated by examining the deviation from the power law.
To our knowledge, analysis of this deviation so far has
not been reported. It is likely that the sets of genomes
analyzed with this technique have not been large enough
to exhibit a reliably detectable deviation from the power
law growth of the pan-genome. We therefore did not
pursue the application of this method in this work.
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B: Binomial mixtures
The binomial mixtures method (B) also assumes that
genomes are random, independent collections of genes
drawn from a heterogeneous supergenome which con-
sists of several distinct categories. Each category is char-
acterized by a detection probability (probability that
genes from this category are present in a genome) and
admixture fraction which is the portion of the genome
allocated to this category [13,16,17,24]. The detection
probabilities and the admixture fractions are estimated
with a maximum likelihood method. The empirical data
used for the ML estimates are the numbers gg of families
found in exactly g out of G genomes for each 1 ≤ g ≤ G.
One of the categories is considered indispensable, i.e. it
has a unit detection probability. If there are k categories,
the model has 2k − 2 adjustable parameters [16]
The final ingredient in this approach is the selection

of the optimal number of categories to minimize the
Bayesian Information Criterion (BIC) in order to avoid
over-fitting.

C: Capture-recapture
The task of estimating the number of genes that have
not yet been observed after a certain number of samples
(genomes) are taken is akin to the population size esti-
mate problem in experimental ecology [25]. If all genes
are equally likely to be “captured,” the classic capture-
recapture formula gives the most likely number of genes
not yet captured as γ 2

1 /γ2 where gg is defined in the pre-
vious subsection [26]. The capture-recapture method is
a version of the binomial mixture method with a homo-
geneous reservoir. Because only a small fraction of
empirical information about gene frequencies is utilized
in the estimate, the capture-recapture method is used
here only as a reference.

D: Gamma distributed gain probabilities
The binomial mixtures model (B) assumes that genes
arrive from a small number of homogeneous reservoirs,
i.e. within each reservoir genes have the same probabil-
ity of being transferred into the genome. The empirical
data seem to indicate that the distribution of gain prob-
abilities is broad as reflected in the moderate optimal
number of reservoir types k which minimizes the BIC. It
is of interest therefore to ascertain the effect of a model
in which gain probabilities are derived from a parame-
trized distribution on supergenome estimates. We aim
to determine whether the gene frequencies themselves
contain enough information about the supergenome so
that estimates of its size are robust with respect to
model selection.
Consider a supergenome of size S in which every gene

i has a distinct gain probability pi. Assemble G genomes
of size M by making random independent samples from

the supergenome. The probability Qi that gene i is pre-
sent in a single genome is

Qi = 1 − (1 − pi)M, (1)

and therefore the probability Rg
i that gene i is present

in exactly g out of G genomes is

Rg
i =

(
G
g

)
Qg

i (1 − Qi)G−g. (2)

To compute the likelihood of a set of empirically
observed gg’s given the model, we need to compute the
probability θg that a randomly chosen family from the
supergenome is found in g genomes

θg =
1
S

S∑
i=1

Rg
i (3)

Further progress is made by assuming that the gain
probabilities pi are derived from a gain rate probability
distribution P(r) whereby S rates ri are drawn from the
P(r) and the gain probabilities are constructed via a nor-
malization pi = ri/

∑
j rj. The probability distribution P(r)

is parametrized and the optimal parameters are obtained
via the maximization of the zero-truncated log-likeli-
hood introduced by Snipen et al [16]

l =
G∑
g=1

γg log
θg

1 − θ0
. (4)

The likelihood expression above is approximate
because it assumes that the empirically observed gene
counts gg are independent of each other. Because com-
puting the likelihood directly is computationally infeasi-
ble, an ad-hoc approximate expression must be used.
Although the full exploration of the properties of the
likelihood expression proposed by Snipen et al [16] is
beyond the scope of this manuscript, we performed a
limited test of the goodness of the approximation under
the conditions which allow the direct computation of
the likelihood.
When the number of genomes G, the genome size M

and the reservoir size S are small, the likelihood can be
computed directly by repeatedly constructing the gen-
omes, computing gg, and keeping track of the number of
occurrences of each distinct set of gg’s. If, at the same
time, the probabilities θg are computed, the Snipen like-
lihood can be evaluated for each set of gg’s. Figure 1
confirms that the Snipen log likelihood positively corre-
lates with the directly computed log likelihood when the
reservoir size S is fixed although the scatter is large.
Because we ultimately seek to estimate the reservoir size
S by maximizing likelihood, it is more relevant whether
the ad-hoc likelihood tracks the directly computed likeli-
hood for a fixed set of gg’s. To address this question, we
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fixed G = 5 and M = 10 and computed the direct and
ad-hoc likelihoods, for all possible sets of gg’s with reser-
voir sizes S = 10, 15, 20, 25, 30, 40, 45, and 50. Then for
each set of gg’s that occurred for at least 4 different
values of S, we computed the linear correlation coeffi-
cient between the directly computed and the ad-hoc
likelihoods. Among over 25,000 distinct sets of gg’s the
average Pearson correlation coefficient was 0.6 with a
standard deviation of 0.5. Therefore, at least on average,
minimizing the ad-hoc likelihood would yield a similar
value of S. It is plausible that the degree of interdepen-
dence between the gene counts gg is reduced when the
genome size and the reservoir size are large, further nar-
rowing the difference between the directly computed
and the approximate likelihoods. We therefore proceed
with exploring the consequences of maximizing the Sni-
pen zero-truncated likelihood in the remainder of this
work.
Computation of θg’s is substantially simplified by tak-

ing S and M to infinity simultaneously while keeping
their ratio S/M = s constant. We obtain

θg =
(
G
g

)∫ ∞

0
dr P(r)(1 − e−r/s〈r〉)

g
e−(G−g)r/s〈r〉, (5)

where 〈r〉 = ∫ ∞
0 rP(r) dr is the mean gain rate which

can be eliminated from Eq. (5) by a change of variables

because the probabilities sum to unity
∑

i pi = 1. Thus,
we need only consider distributions P(r) with unit mean
because relative gain probabilities are independent of 〈r〉.

Here we let P(r) be a Gamma distribution of shape
parameter a and scale parameter 1/a. When a is large,
the distribution is peaked and most families are almost
equally likely to be gained. When a is small, gain prob-
abilities are broadly distributed. Note that the shape
parameter a and relative supergenome size s = S/M are
the only parameters in this model.

E: Stochastic genome evolution on a tree
The supergenome estimation methods A, B, C and D
discussed above assume that genomes are random and
independent samples from a structured pool. In reality
genomes evolve from a common ancestor and therefore
can be substantially different from being random and
independent. If the random, independent assumption is
to be relaxed, quantitative information about the degree
of divergence for every pair of genomes must be uti-
lized. This information is contained in the phylogenetic
tree. We base our calculations on the tree from the
Microbes Online resource which is constructed using
the concatenated sequences of multiple conserved genes
[27]. Because this tree reflects evolution of nucleotide
sequences rather than evolution of gene content, it adds
information that is not taken into account in approaches
A, B, C and D.
We sought to extend model D to include explicit gen-

ome evolution on the known phylogenetic tree. To this
end, we assume that genes are lost with a certain rate R
per unit time measured in nucleotide substitutions per
site. When a gene is lost, its replacement is drawn from
the supergenome according to probabilities pi. The
simulation of this process is explicit: S numbers are
drawn from P(r) and normalized to obtained the set of
gain probabilities. The root node’s genome of size M is
drawn from the supergenome according to the gain
probabilities. Genomes are evolved along the tree via
the stochastic simulation of the gene replacement and
the gene frequencies of the leaf nodes are computed.
The estimates of the model θg’s are obtained by aver-
aging the simulated gene frequencies over 104 instances
of the simulation.
The three parameters a, S/M and R are obtained by

maximizing the likelihood in Eq. (4) for a fixed M =
500. Model E reduces to model D in the limit of infinite
loss rate R.

F: Maximum likelihood reconstruction of multiple gains
Instead of simulating losses and gains to estimate gene
frequencies, one can alternatively estimate the numbers
of gains and losses by reconstructing the gene content of
ancestors from the gene content of the extant genomes.
To this end, we use the Count method [28] which
assumes that the copy number of each family behaves
according to a birth-death model which includes gains,

Figure 1 The approximate log likelihood introduced by Snipen
et al for every possible set of gene counts ggvs. the directly
computed log likelihood for G = 5 and M = 10. The solid lines are
linear fits to the S = 20 (red) and S = 40 (green) clouds.
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losses and duplications. Count uses maximum likelihood
to optimize the parameters of the model given the topol-
ogy of the phylogenetic tree and the gene content of the
leaf nodes of the tree. Another important consideration
is the number of categories of the Gamma distributed
parameters of the underlying birth-death model. As
explained below, we used 4 categories for loss, transfer
and duplication rates giving 64 total categories for gene
families.
Once the parameters of the birth-death model are

estimated, Count computes a posteriori probabilities of
gains, losses, expansion, and contraction for every family
on every branch of the tree. Our goal is to identify all
gene acquisitions and use the their number to estimate
the size of the pool from which genes originate. An
acquisition can result in a gain of a gene family or
expansion of a pre-existing family. Existing families can
expand by duplications as well as by acquisitions
although it is unfeasible to quantitatively disentangle
duplications from acquisitions [28]. We therefore use
only gains (acquisitions of absent families) as the lower
bound on the number of gene acquisitions. The upper
bound on the number of acquisitions can be obtained
by assuming that the duplications can be neglected and
all gains and expansions are due to acquisitions. The
lower bound on the number acquisitions translates into
an upper bound for the supergenome size estimate and
vice versa.
For each family, we compute the Count-estimated

number of acquisitions (either only gains or gains plus
expansions) over the entire tree. Let P be the number of
families acquired at least once and K be the total num-
ber of acquisitions which can be broken down further
into the numbers nk of families acquired k times so that∑K

k=1 nk = K.
To estimate the supergenome size S, we use two alter-

native models of the reservoir from which the genes are
acquired. Model F1 assumes that all families have an
equal chance of being drawn from the reservoir. The
likelihood of drawing P distinct families in K ≥ P
attempts is

L =

(
S
P

)
P!PK−P

SK
,

(6)

The likelihood is maximized when

∂ ln L
∂S

≈ ln
S

S − P
− K

S
− P

2S(S − P)
= 0, (7)

where we use the Stirling’s approximation for the fac-
torials log n! ≈ (n+1/2) log n−n. Thus, given the total
number of acquisitions K and the number of families P
acquired at least once, we estimate S by solving Eq. (7).

In addition, assuming that the likelihood function can
be approximated by a Gaussian near its maximum, we
can compute the 95% confidence interval ΔS for the
estimate of S via

�S =
2√

1
S − P

− 1
S
+

K
S2

+
1
2S2

− 1

2(S − P)2
(8)

Model F2 allows the probabilities pi of receiving gene i
from the supergenome to vary. To connect with models
D and E, we assume that the gain probabilities are
derived from a Gamma distribution with the shape para-
meter a. The probability lk that a randomly picked
reservoir gene was sampled k out of K times is

λk =
1
S

S∑
i=1

(
K
k

)
pki (1 − pi)K−k (9)

The model parameters are obtained by maximizing the
zero-truncated log-likelihood of observing the numbers
nk families acquired k times

l =
K∑
k=1

nk log
λk

1 − λ0
. (10)

In this case, the uniform gain probability model, in
which pi = 1/S, is recovered in the a ® ∞ limit. To ascer-
tain whether non-uniformity of the gain probability is
supported by the data, we compare the Bayesian Infor-
mation Criterion BIC = −2l − c log P, where the number
of parameters is c = 1 for the uniform and c = 2 for the
Gamma distributed gain probability models.

Empirical data sets
Estimation of the size and composition of the superge-
nome requires selecting groups of high quality genomes,
establishing homology relationships among their genes
and building a phylogenetic tree reflecting the evolution-
ary distances between the genomes. We selected 9
groups of 10 bacteria genomes from the family Entero-
bacteriacae (see the Additional file 1 for details) using
the Microbes Online resource which provides the tree
as well as the complete genomes. The selected groups
consist of closely related organisms whose genome sizes
differ by at most 5%. The groups share the same com-
mon ancestor. The rationale is to examine the variability
in supergenome estimates for groups of organisms of
roughly the same diversity and having the same ances-
tor. Average genome size, root to tip distance and family
copy numbers are summarized in Table 1.
Homology relationships are established by performing a
BLAST search of all against all proteins in each group
separately and clustering the hits which satisfy appropri-
ate E-value and coverage thresholds using single linkage
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clustering [20]. The result is the gene content matrix in
which rows are the genomes and columns are the clus-
ters and the values are the numbers of cluster members
present in the given genome. The number of columns
that have a non-zero entry in exactly g rows is the set of
empirical data gg used in the supergenome estimates in
models B, C, D, and E.
Model F utilizes the number of gene acquisitions esti-

mated by Count. The input to Count is the phylogenetic
tree topology from the Microbes Online and the gene
content matrix used for computing gg. Because the gene
content matrix is the empirical data set used for all
models, robust supergenome estimates should agree at
least qualitatively.

Results
Estimates using gene frequencies directly
We first present the results of supergenome size esti-
mates using the binomial mixture model (B). The essen-
tial parameter in this model is the number k of distinct
sub-reservoirs. It is instructive to examine the variation
of the BIC and the estimated supergenome size with k.
Figure 2 displays the empirical gene frequencies gg for
group 3 and Figure 3 shows the BIC and supergenome
estimates for this group as a function of the number of
binomial mixture components k. Supergenome estimates
vary by almost an order of magnitude whereas the BIC
curve is roughly flat for k >3. We set k = 3 (i.e. 2k − 2 = 4
adjustable parameters) for the remainder of this analysis
to compare the results to those obtained with the other
models which include 2 or 3 adjustable parameters.
Columns 5 and 6 of Table 1 show the results of the

binomial mixture fits with k = 3 components to the
empirical gene frequencies gg, and column 7 shows the
capture/recapture (model C) estimate of the superge-
nome size S. Model D uses essentially the same method
of fitting the empirical gene frequencies as the binomial
mixtures model B but instead of assuming that genes
originate from several distinct homogeneous reservoirs,

the gain probabilities in the reservoir are taken to be
Gamma distributed.
Model D has 2 parameters: the shape parameter a of

the Gamma distribution and the relative supergenome
size s = S/M where M is the genome size. Figure 4
shows that the likelihood is maximized (or, equivalently,
the BIC is minimized) when a tends to 0 whereas s
tends to infinity such that the product as is fixed. Thus,
if gain probabilities are Gamma distributed, empirical
data are consistent with an infinite supergenome.
The minimum BIC of model D, shown in column 8 of

Table 1, is generally greater than that for model B
which indicates that several homogeneous reservoirs

Table 1 Groups used in testing the supergenome size
estimation

Grp. Gen.
size

Br.
len

Cpy
num.

B: S B: BIC C: S D:
BIC

E: BIC

1 4132 0.019 1.53 4,381 15,576 5,348 15,565 15,569

2 4275 0.075 1.58 8,206 21,445 14,347 22,236 22,235

3 4363 0.074 1.57 13,767 24,930 31,086 27,765 26,752

4 4444 0.043 1.56 9,823 25,017 23,448 25,452 25,459

5 4576 0.034 1.56 8,905 24,041 16,746 24,464 24,473

6 4721 0.021 1.56 8,974 22,932 13,918 23,040 23,050

7 4920 0.018 1.54 13,292 26,048 29,819 28,736 28,381

8 5123 0.029 1.66 9,172 26,095 14,703 27,135 27,145

9 5336 0.029 1.63 13,158 26,036 27,974 27,454 26,731

Figure 2 Empirical numbers gg of genes found in exactly g
genomes in group 3. Inset: the phylogenetic tree for group 3.

Figure 3 The result of the binomial mixture model fit to the
gene frequencies in Figure 2 as a function of the number of
components. Left (red) y-axis shows the estimated supergenome
size and the right (blue) axis shows the BIC.
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reflect the supergenome composition better than the
Gamma distributed gain probabilities.
Model E is essentially model D propagated along the

branches of a tree. Therefore, an additional parameter, the
loss rate R, is introduced to reflect the intensity of the
gene flow from the reservoir to the genomes. Genomes
become independent random samples of the reservoir in
the R ® ∞ limit. Given R we simulate the gene flow from
the reservoir to the genomes on the phylogenetic tree, and
compute the expected probabilities θg, the likelihood via
Eq. (4) and the BIC. The BIC is then minimized with
respect to R, S and a.
As shown in Figure 5, the BIC for the model E fit to the

gene frequencies in group 6 is minimized when R tends to
infinity. This result indicates that for the Gamma distribu-
ted gain probabilities, the empirical gene frequencies in
group 6 as well as groups 1, 4, 5 and 8 (data not shown)
are consistent with being random independent samples of
the reservoir. The best fit of the gene frequencies in
groups 2, 3, 7 and 9 occurs at a finite R for which genomes
retain a modest fraction of ancestral genes and hence can-
not be considered independent. In addition, as shown in
Table 1 when likelihood is maximized for a finite loss rate,
model E is an improvement over model D. However, as
shown in Figure 6 the supergenome size S still cannot be
estimated because the BIC seems to be a function of only
sa (where s = S/M is the relative supergenome size).
Therefore, just as in model D, the goodness of fit does not
change when a tends to 0 simultaneously with s tending
to infinity so that the product sa is fixed.

Estimates using reconstructed acquisitions
Models F1 and F2 do not deal with gene frequencies
directly but rather utilize the gene acquisitions

reconstructed from the gene content of the extant gen-
omes and the phylogeny using the ML reconstruction
package Count. Count assumes that the dynamics of
each gene family are described by a birth-death model
with per-family rates of gain, loss and duplication. The
rates are assumed to originate from several Gamma dis-
tributions. The number of categories of Gamma distri-
butions, i.e. the model complexity, is the essential
variable in the ancestral reconstruction process. The

Figure 4 The BIC for the fit of model D to the gene
frequencies of group 3 as a function of s. The product as was
held constant and is shown in the legend.

Figure 5 The BIC for the model E fit to the gene frequencies in
group 6 is minimized in the R ® ∞. The same situation is
observed in groups 1, 4, 5, and 8.

Figure 6 BIC minimized over the loss rate R for group 2 is a
function of only the product of a and s. All other groups exhibit
identical behavior of the BIC minimized over R.
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maximum likelihood scenario of losses and gains
depends on the model complexity as shown in Figure 7.
We selected a high complexity model with 4 Gamma
distributed categories for loss, duplication and transfer
rates yielding a total of 64 combinations. Parameter esti-
mation in higher complexity models tends to be less
reliable and our choice of 4 categories represents a com-
promise between accuracy and precision.
Table 2 summarizes the supergenome size estimates

assuming that the gain probability is uniform (model
F1). Whereas estimates using only gains (acquisitions of
families not present in the genome) vary by two orders
of magnitude, when both gains and expansions are
assumed to be acquisitions, supergenome estimates are
remarkably robust.
To compare models F1 and F2, we compute the BIC

using the likelihood in Eq. (10). When only gains are
counted as acquisitions, the Gamma distributed gain
probability did not result in an improved fit and the
maximum likelihood (minimum BIC) was achieved in
the a ® ∞ limit for all groups (Figure 8). Because the
Gamma distribution becomes sharply peaked, model F2
reduces to the uniform gain probability model F1 in the
a ® ∞ limit. Thus, the homogeneous reservoir hypoth-
esis seems to be more consistent with the pattern of
gene gains inferred by Count when only gains are con-
sidered to be acquisitions from the supergenome.
A different picture emerges when both gains and

expansions are considered to be acquisitions from the
supergenome. As shown in Table 3 the fit of the
Gamma distributed gain probability model F2 to the
inferred gains is an improvement over the uniform gain
probability model F1 for all groups with the exception
of group 7. However, in some cases, the best fit occurs

Figure 7 Estimated number of gene families gained once,
twice and thrice as a function of the Count model complexity
for group 2. The symbols with error bars (right y-axis) are the
corresponding supergenome size estimates using the uniform gain
probability Model F1.

Table 2 Maximum likelihood estimates of the
supergenome size using reconstructed gene gains
(column 5) and gains plus expansions (column 4) using
uniform gain probabilities (model F1)

Group Gains P :K gains+exp P :K gains S gains+exp S

1 1312:1445 1789:2028 7355 ± 1195 7910 ± 939

2 4193:4468 4805:5600 34783 ± 4019 17805 ± 1137

3 6227:5647 6956:8003 64763 ± 7001 27853 ± 1564

4 4577:4777 5346:5923 55434 ± 7618 28387 ± 2205

5 3762:3844 4744:5239 88790 ± 19330 25944 ± 2180

6 3805:3816 4651:5071 660500 ± 397000 28893 ± 2659

7 5551:5947 6462:7351 42643 ± 4091 27885 ± 1713

8 4920:5198 5873:6792 46838 ± 5414 22776 ± 1360

9 4730:5020 5745:6483 41751 ±4711 26266 ±1781

Figure 8 BIC minimized over S as a function of a for the fit of
model F2 to the inferred gene acquisitions discounting
expansions in group 4. The a ® ∞ limit of model F2 is the
uniform gain probability model F1. The minimum BIC for the fits of
model F2 to the acquisitions inferred in the rest of the groups
behaves in a similar fashion.

Table 3 Comparison between supergenome estimates
using uniform gain probabilities (model F1) and Gamma
distributed gain probabilities (model F2)

Group F1: S F1: BIC F2: BIC F2: a F2: S

1 7910 1481 1455 0.00 ∞

2 17805 4637 4590 0.36 59000

3 27853 6336 6191 0.00 ∞

4 28387 3807 3800 0.85 55700

5 25944 3332 3275 0.00 ∞

6 28893 2912 2911 1.42 43900

7 27885 5423 5427 ∞ 28900

8 22776 5453 5393 0.14 140000

9 26266 4618 4611 2.9 31000

Gains and expansions are counted as gene acquisitions.
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in the a ® 0. Consequently, as in models D and E, the
estimated supergenome size diverges.

Discussion
Here we assumed that genomes evolve by randomly
acquiring genes from a reservoir we denote superge-
nome. We explored several methods of estimating the
size and composition of this supergenome. The methods
are based on combinations of 2 assumptions: a) gen-
omes are assumed to be random independent samples
from the reservoir or, alternatively, assumed to have
evolved from a common ancestor by a stochastic pro-
cess of gene replacement; and b) the reservoir is
assumed to consist of one or more homogeneous sub-
reservoirs or the gene gain probability is assumed to be
Gamma distributed. The models were fit to two kinds of
empirical data: a) gene frequencies gg defined as the
number of gene families found in g out of G genomes,
and b) the number nk of families that have been
acquired k times as estimated by the ancestral recon-
struction package Count.
The data set used to explore the robustness of superge-

nome estimates consisted of 9 groups of 10 Enterobacter-
iacae with similar genome sizes that shared the same
common ancestor. We found that the supergenome esti-
mates using gene frequencies gg were possible only when
the supergenome was assumed to be composed of k
homogeneous sub-reservoirs and even then the estimate
varied by about an order of magnitude as a function of k.
When the supergenome was assumed to consist of gene
families with Gamma distributed gain probabilities, the
empirical data were consistent with the supergenome of
infinite size. In 5 groups the data were consistent with the
genomes being random independent samples of the super-
genome but the genomes in the remaining 4 groups were
correlated and the best fit of the model with the evolution
on a tree component occurred at a finite evolution rate R.
Even then, a reliable estimate of the supergenome size
could not be obtained because the likelihood of the data
seem to depend only on the product of the Gamma distri-
bution’s shape parameter a and the relative supergenome
size s.
Supergenome estimates based on the Count-estimated

number of gene gains could be computed reliably but
only when the probability of gaining any gene from the
supergenome was the same. The estimates were moder-
ately sensitive to the complexity of the underlying
model used for the reconstruction of the gains. The esti-
mates of the supergenome size obtained using the bino-
mial mixtures model did not correlate with those
obtained using reconstructed multiple gains (Spearman
rank-correlation P-value of 0.46).
To summarize, supergenome size estimates using simple

models of genome evolution and extant gene frequencies

did not appear robust. If the gain probabilities were
assumed to be Gamma distributed, the gene frequencies
seemed to suggest infinite (open) supergenomes. Under
the assumption of several homogeneous subreservoirs,
finite supergenome estimates were obtained but the size of
the estimated supergenomes strongly depended on the
number of reservoirs. In contrast, when the the likelihood
was computed using reconstructed numbers of gains, more
reliable, finite estimates of the supergenome size were
obtained. The lower bound on the supergenome size,
obtained by including both gains of absent families and
expansions of existing families, was found to be substan-
tially less variable than the upper bound obtained by
excluding expansions. For the majority of the analyzed
groups of bacteria, the estimated supergenomes were
roughly an order of magnitude larger than the mean gen-
ome size. When only gains of absent families were con-
sidered to be acquisitions from the supergenome, the
homogeneous finite supergenome model was more consis-
tent with the data than the Gamma distributed gain prob-
ability model. The value of the supergenome size was only
moderately sensitive to the complexity of the birth-death
model used for the ancestral reconstruction. When expan-
sions were considered to be acquisitions, the model with
the Gamma distributed gain probabilities was more consis-
tent with the data. In this case, however, the supergenome
estimates could not be reliably obtained in all groups.
In summary, the models with the Gamma distributed

gain probabilities yielded highly variable and inconsistent
supergenome size estimates, suggesting that this distribu-
tion does not reflect the process of gene acquisition by
prokaryotes. In the same vein, none of the evolutionary
models explored here yielded robust supergenome esti-
mates, suggesting that the complexity of these models is
inadequate to mimic the process of genome evolution. In
contrast, the more empirically-rooted approach that used
reconstructed numbers of gene gains for the superge-
nome estimation yielded more consistent values and
seemed to be converging on about an order of magnitude
difference between the sizes of a supergenome and a typi-
cal genome in the respective group for the majority of
bacteria.
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