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Abstract

Background: Reed canary grass (Phalaris arundinacea) is an economically important forage and bioenergy grass of
the temperate regions of the world. Despite its economic importance, it is lacking in public genomic data. We
explore comparative exomics of the grass cultivars in the context of response to salt exposure. The limited data set
poses challenges to the computational pipeline.

Methods: As a prerequisite for the comparative study, we generate the Phalaris reference transcriptome sequence,
one of the first steps in addressing the issue of paucity of processed genomic data in this species. In addition, the
differential expression (DE) and active-but-stable genes for salt stress conditions were analyzed by a novel method
that was experimentally verified on human RNA-seq data. For the comparative exomics, we focus on the DE and
stable genic regions, with respect to salt stress, of the genome.

Results and conclusions: In our comparative study, we find that phylogeny of the DE and stable genic regions of
the Phalaris cultivars are distinct. At the same time we find the phylogeny of the entire expressed reference
transcriptome matches the phylogeny of only the stable genes. Thus the behavior of the different cultivars is
distinguished by the salt stress response. This is also reflected in the genomic distinctions in the DE genic regions.
These observations have important implications in the choice of cultivars, and their breeding, for bio-energy fuels.
Further, we identified genes that are representative of DE under salt stress and could provide vital clues in our
understanding of the stress handling mechanisms in general.

Background
Reed canary grass (Phalaris arundinacea) is an economic-
ally important forage and bioenergy grass of the temperate
regions of the world. Its ability to grow on poor soils also
makes it an excellent crop for phytoremediation (mitigat-
ing effects of pollution using plants). As a future bioenergy
crop, it is targeted for growing on marginal or degraded
lands to avoid direct competition with food production.
Enhanced resilience against abiotic stresses inherent in
such environments would greatly increase the crop’s
range. Soil salinity is a major factor limiting fertility, either

from occasional flooding by sea water, or in more arid
areas from irrigation. Analysis of transcriptional changes
during exposure to salt stress facilitates identifying key ele-
ments of the plant’s response pathways and choosing
favorable genotypes, leading towards breeding more resili-
ent crops.
Despite its economic importance, Phalaris is lacking, to

date, a reference genome or even any publicly available
genomic data. We undertake the task of a comparative
exomic study of different cultivars of Phalaris in the con-
text of their response to varying degrees of salt stress. Dur-
ing increasing salt stress, the cultivars were categorized as
largely unaffected or severely damaged, depending on
their appearance. Two unaffected (positive salt response)
and two damaged (negative salt response) cultivars were
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chosen for RNA sequencing (before and during salt stress).
Here there is a requirement to compare meaningfully
apples with oranges, as opposed to the rather straightfor-
ward apples to apples paradigm due to juxtaposition of
different cultivars under differing conditions. Then the
computational method has the burden of having both
uncompromised performance as well as resilience to
imperfect and incomplete data, i.e., compensate for scant
data due to both absence of reference genomes and
absence of multitude of replicates in data. Hence the
choice of a non-parametric method to detect differentially
expressed (DE) transcripts. At the core of such methods is
the use of mapping functions: we identify the essential
characteristics of such functions and present RoDEO,
which uses one such mapping and not only detects DE
but also stable genes. Finally, the algorithm is vetted by
experimental verification of the results. The non-para-
metric framework helps in adapting the method across
platforms and across species, without any need for
re-calibration.

Results and discussion
RoDEO evaluation on real human data
While simulation studies are usually effective and serve
a useful purpose in evaluating the efficacy of algorithms,
we found that in the context of DE detection, the RNA-
seq simulators themselves are compelled to use some
parametric model for transcript abundances. Also, on
most public DE data sets, the gold standard is usually
the result of some computational method. To the best
of our knowledge, there is no public dataset for stable
genes. To avoid any bias we used real human data,
where the DE genes were experimentally validated by
qRT-PCR. These RNA samples are well characterized
and have been used in several benchmarking studies
and DE method comparisons [1-3]. We evaluated the
performance of RoDEO against parametric DE detectors
that assume a negative binomial count distribution
model (baySeq, edgeR, sSeq) and demonstrate that it
outperforms the others on several scenarios (details in
the Methods section). Moreover, RoDEO’s parameter-
free framework is very suitable for the diverse and chal-
lenging data sets of Phalaris.

Phalaris reference transcriptome construction
Total RNA was extracted from Phalaris arundinacea cv
Venture from five different tissues: leaf and stem of
mature (40d) plants under drought stress, stem of mature
plant under waterlogging stress, shoot and roots of young
(9d old) plants. The samples were pooled, converted into
a normalized sequencing library, and sequenced on the
Roche 454 FLX platform. In total 494, 477 reads with
mean length 389bp were assembled into 18, 682 tran-
scripts with the GS De Novo Assembler software from

Roche (which has been designed for the analysis of 454
read data), using the default parameters for cDNA analy-
sis and the adapter-trimmed raw data as input. The
sequence data are available at the Sequence Read Archive
at NCBI, accession number SRP045256.
All assembled transcriptome contigs were searched

against the non-redundant (nr) database at the National
Center for Biotechnology Information (NCBI) using
BLAST [4]. Gene Ontology annotations for cellular com-
ponent, biological and molecular processes were predicted
for the nr derived BLAST hits using Blast2GO [5]. In addi-
tion, InterPro [6] scans were performed to predict protein
domain structure of the assembled contigs and Kyoto
Encyclopedia of Genes and Genomes (KEGG) [7] pathway
assignments were estimated based on enzyme commission
(EC) numbers. The distribution of top BLAST hits among
annotated plant species are shown in Figure 1. The largest
number of sequences match purple false brome (Brachy-
podium distachyon). The species list reflects the known
phylogenetic affiliations of Phalaris, thus further validating
its evolutionary relation to these species. Note that large-
scale genomic or transcriptomic datasets have not been
previously published on Phalaris.

Salt stress experiment
Seeds of three Phalaris arundinacea and one Phalaris
aquatica genotypes were obtained from Lantmännen
lantbruk (former Svalöf Weibull seed). SWN RF 9901 is
a Norwegian accession from the Nordic Seed bank
(NGB7147), SW RF 5008 is a SW breeding line contain-
ing European and North American material. Palaton is a
OECD listed cultivar in Estonia, Finland, and United
States. CPI 19315 is a Moroccan accession of P. aqua-
tica, a species closely related to P. arundinacea [8]. Two
cultivars (CPI 19315, SWN RF 9901) exhibit a negative
response to stress, while the other two (Palaton 2, SW
RF 5008) tolerate salt stress having a positive response.
Figure 2 illustrates some of their phenotypes during salt
stress. CPI and Palaton data were collected 55 days after
starting the salt treatment, thus called early stress, while
SWN and SW data were collected after 100 days salt
stress, called late stress. At sampling time the plants’
response to salt of was termed either positive, if the
plants looked largely unaffected, or negative, if the
plants were severely damaged.
RNA-seq libraries during salt stress and control libraries

before salt stress were constructed using the Illumina Tru-
Seq protocol and chemistry (version 2). Libraries were
sequenced on Illumina HiSeq2000. The sequence data are
available at the Sequence Read Archive at NCBI, accession
number SRP045256. The reads were mapped with bwa [9]
to the reference transcriptome. In each experiment, 44 -
62 million reads mapped to the reference, with fewer than
10% transcripts having no reads mapping to them.
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Figure 1 Top Blast2Go hits’ species distribution. Hits shown for 18, 682 Phalaris transcripts. The most matches are to Brachypodium
distachyon, followed by other related annotated plant species.

Figure 2 Images of reed canary grass cultivars. Cultivars show positive (+) or negative (-) response after 95 days of salt stress. Palaton 2 (+)
and CPI 19315 (-) are included in this study. Each label represents five blocks vertically up from the label.
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See Additional File 1 for more details on the salt stress
experiment and RNA sequencing.

Differential expression
We applied our differential expression method RoDEO
on the Phalaris salt stress read counts per transcript,
with parameters P = 15, I = 100 iterations, R equaling the
number of mapped reads per experiment, and DE thresh-
old dist(·, ·) = 1.0 and mode distance ≥ 5 (see Methods
for details). Stable transcripts were identified by pairwise
comparison of the re-sampled iterations, and taking the
intersection of the stable sets from all the iterations (see
Additional file 1 for details and results).
The general differential expression landscape for each

cultivar is shown in Figure 3. Thousands of genes have
the maximum norm distance 1.0 between their character
functions in the control and stress sample, and those
transcripts are further ranked by their mode distance to
refine the DE candidates set to the most interesting
transcripts, i.e., those with mode distance ≥ 5.
We call robust positive up-regulated transcripts those

that are up-regulated in both positive response cultivars
(similarly for down-regulation, and for negative
response). These transcripts are more likely to be truly
differentially expressed, since they are found DE in both
cultivars having the same stress response. Figure 4
shows the overview of the number of transcripts that
are up- or down-regulated in each cultivar.
We find 8 robust down-regulated and 19 robust

up-regulated transcripts in negative response cultivars. In
positive response cultivars, 2 out of 9 robust up-regulated
transcripts are shared with the negative response. In addi-
tion, there are 2 down-regulated transcripts for positive
response. Thus we have in total 10 down-regulated and 26
up-regulated response-specific robust DE transcripts.
Annotations for these transcripts are included in
Additional file 2.

The annotations for these robust response-specific DE
transcripts show several proteins up-regulated under posi-
tive response which are widely associated with plant stress
proteins, such as sulphur-rich thionin like protein, thiol
protease, polyamine oxidase, universal stress protein a like
protein, and maize proteinase inhibitor. Interestingly, these
proteins do not show up in the plants with negative stress
response, indicating that absence of these proteins could
be correlated with a poor response to stress. Instead,
enzymes from various catabolic processes are up-regulated
which are not specifically active in stress response, such as
amino acid or carbohydrate metabolism.
In addition, we find robust DE transcripts for early

and late stress response. There are 4 and 36 down-regu-
lated transcripts in early and late stress, respectively.
Out of 29 for early and 23 for late up-regulated tran-
scripts, 2 are shared between early and late. Thus we
have in total 40 down-regulated and 50 up-regulated
time-specific robust DE transcripts. Annotations for
these transcripts are included in Additional file 2.
The functional distinction between early and late DE

up-regulation is less clear than between positive and
negative response. In both early and late categories sev-
eral proteins associated with abiotic stress response
appear, such as cbl-interacting protein kinase 1-like pro-
tein, metallothionein-like protein type 2, delta-1-pyrro-
line-5-carboxylate synthase-like (early up-regulated), and
e.g. cysteine proteinase inhibitor, sulphur-rich thionin like
protein, thiol protease (late up-regulated). There is little
overlap between the two categories, indicating that the
plant response changes between early and late (and more
severe) phase of salt stress. The late phase of salt stress
reveals proteins that are more similar to the DE proteins
detected in the positive response plants that were better
able to cope with salt stress.
Two transcripts are up-regulated in all cultivars’ stress

vs. control samples. One of them has a close match (89%

Figure 3 RoDEO transcripts’ differences between stress and control. Results shown for the salt stress experiments (using max. norm
distance). Right: For those about 5, 000 transcripts per cultivar with max. norm distance 1.0, the mode distance distribution is shown. Threshold
≥ 5 is used to identify the most differentially expressed transcripts. Here each color corresponds to the comparison between one cultivar’s stress
and control samples.
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similarity) to Cytochrome P450 71C4 protein in barley
(the other has a weaker match to a hypothetical Aegi-
lopsis tauschii grass protein). Some other members of
the Cytochrome P450 gene family have previously been
studied w.r.t. salt stress in Arabidopsis [10].

Cultivar comparative exomics
We performed a global comparative exomics analysis of
the Phalaris cultivars based on the variations observed in
the RNA-seq reads in the stress experiment. Additionally,
we looked for SNP variations across cultivars in the candi-
date transcripts from the DE analysis. Possibly due to the
lack of a reference genome, including non-coding regions
and promoters, and because we are limited by the
sequenced mRNA information, we did not observe any
DE loci where both cultivars with positive response would
have allele differences from both cultivars with negative
response. Globally, we identified a handful of transcripts
with such loci, but they did not exhibit differential
expression.
We computed pairwise distances between the cultivars,

based on 200k loci where at least one cultivar’s RNA-seq
reads differed from the reference transcriptome, and there
were at least 100 reads covering the SNP. The dendograms
of the pairwise distances (based on Hamming distances
of the alleles per loci, and average linkage) are shown in
Figure 5. The phylogenetic trees from using all transcripts,
DE transcripts, or stable transcripts tell a similar story.
Identifying Phalaris stable genes is discussed in Additional
file 1. CPI (P. aquatica), originating from a distant geogra-
phical location, is also genetically the most distant from
the three North European P. arundinacea genotypes. The
tree constructed from the DE transcripts differs slightly

from the other trees, differentiating Palaton from SWN
and SW. It is encouraging that these inferences can be
made based on only a partial reference transcriptome and
RNA-seq reads from the cultivars.

Methods
High-throughput RNA-sequencing technologies have
taken over the field of gene expression level estimation,
previously dominated by microarray technologies. Some
of the favorable characteristics of using high-throughput
RNA-seq data is that there is no limit on the number of
genes surveyed nor do the genes have to be pre-selected.
Thus these technologies provide a wider dynamic range
and also enable the possibility to discovering new
sequence variants and transcripts. Since mRNA sequen-
cing technology is not particularly target specific, up to
tens of thousands of genes are “active” at different levels.
While this is a fertile ground for functional discoveries,
possibly of multiple pathways simultaneously, it is chal-
lenged by the onerous task of teasing apart thousands of
genes based on their activity (expression) levels across
assays. This requires the intervention of reliable compu-
tational techniques to make accurate and meaningful
inferences from the massive data generated by the
experiments. Also, the data is discrete i.e., in terms of
read counts or number of read fragments rather than an
intensity measurement in a continuous domain. As in
all the other computational methods, the following
assumptions are made:

1 Most of the genes are stable.
2 The DE genes are globally unbiased, i.e., some are
over-expressed while some are under-expressed.

Figure 4 RoDEO DE transcripts in the salt stress experiments. Results shown for positive/negative stress response (top), and early/late stress
(bottom). The robust transcripts are the intersections of DE transcripts per cultivar. There are two overlaps between the robust up-regulated
transcripts in positive/negative and early/late stress responses. Each color represents a cultivar with the number of DE transcripts up or down in
that cultivar’s stress sample compared to its control sample. The numbers represent the transcripts in each set (intersection included).
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Let xg be the observed abundance of gene g. This is the
number of tags (reads) that map to gene g in the experi-
ment. The length of the gene is absorbed in this value. Let
µg be the true abundance. Mk is the library size and Sk
represents the total RNA output of a sample. Sk is usually
not available but relative RNA production fold change of
two samples Sk/Sk′ may be [11].

The mathematical framework
Overview. The primary objective is to compare the
expression level of genes in high-throughput sequencing
(HTS) data between a pair of biological samples. Due to
the un-targeted nature of HTS, it is only natural to
assume that the observed expression values of the genes
are not independent. Second, the technologies produce
data in terms of integer read counts. This is in contrast
to earlier technologies which produced real-valued inten-
sity measures. Also the total number of genes being
simultaneously assayed earlier were determined by the
technology while in the sequencing approaches, these
read counts are a result of the application of mapping
software pipeline, at whose core reside some sophisti-
cated (parametric) string matching algorithms. Such a
setting of read count computation is not naturally condu-
cive to normalization processes. Hence the read count of
a gene g is simply divided by the total number of reads
(in millions) in the assay and by the length of the gene g
(in kilobases) to yield a quantity called the RPKM value
of g. Instead of directly working with the expression
value of g, we define a character function φg for each
gene g. The two most desirable properties of this function
are (1) φg depend on the expression values of all the other
genes in the assay and (2) φg are scale invariant. We also
define another family of distributions, built on these
functions (called ψ), to study the overall behavior of the
changes captured by the two transcriptomes.

Notation
Let G = {g1, g2, ..., gL} be a set of L genes. Then let an
L-tuple of random variables

T = (Xg1 ,Xg2 , . . . ,XgL) = (Xg)g∈G (1)

represent a biological sample with L genes G. Xg is a
random variable representing the observed expression or
abundance of gene g. In this model-less framework, we
make no assumptions about the distribution of each of
the components Xg. Next, consider the L-tuple of random
variables

�(T ) = (φg1(T ),φg2(T ), . . . ,φgL(T )) = (φg(T ))g∈G, (2)

whose components, φg, termed character functions,
are defined below. In particular, these functions are
scale invariant.
Definition 1 (character functions)
For a fixed P > 1, we call a surjective map

φ = (φg)g∈G : RG
≥0 → {1, 2, . . . ,P}, (3)

a character function if there exists a (δp)1≤p≤P ∈ R
P
≥0,

satisfying the following conditions:

1 if φg(t) = φg′(t) = pthen |tg − tg′ | ≤ δp, and
2 if φg(t) < φg′(t), then tg < tg′ ,

for all g, g′ ∈ G, and (tg)g∈G ∈ R
G
≥0.

Notice that such a character function satisfies the fol-
lowing additional properties.

1 φg is scale-invariant: φg(ct) = φg(t) for all c > 0 and
t ∈ R

G
≥0.

This follows from the first condition of the definition
of φg.
2 For all triplets, g, g′, g″, if tg <tg ′ <tg″ with
φg(t) = φg′′(t) then φg(t) = φg′(t) = φg′′(t).
This property follows from the second condition of the
definition. In fact this property leads to the algorithms
for actually computing the scale-invariant maps.

For two samples a and b defined on the same gene set
G, let a pair of L-tuples of random variables, T a and T b,

Figure 5 Phylogenetic trees for the Phalaris cultivars. The trees are calculated from pairwise distances between cultivars. The trees are built
on Hamming distances between the SNPs in Left: DE transcripts, Middle: All transcripts, Right: Stable transcripts.
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represent the two samples. Let the corresponding scale-
invariant character maps be �(T a) = �a and �(T b) = �b.
Recall from Eqn (3) that the image of φ is {1, 2, .., p, .., P}.
Next, consider the P-tuple of random variables

�(�b|�a) = (ψ1(�b|�a),ψ2(�b|�a), . . . ,ψp(�b|�a), . . . ,ψP(�b|�a)), (4)

whose components ψp(�b|�a), termed dispersion func-
tions, are defined below.
Definition 2 (dispersion function)
For samples a and b (with possibly a = b), ψp(�b|�a)

is defined by the following distribution:

Pr(ψp(�b|�a) = q) = Pr
(

V
g∈G

(
(φa

g (T a) = p)�(φb
g (T b) = q)

))
, (5)

where q ∈ {1, 2, .., P}.
Informally speaking, �p(�b|�a) is the dispersion of

image p in sample b with respect to that of a. Also,
�p(�a|�a) specifies the variance of image p in sample a.
Based on Eqn (5), for each p, probability measures of over-
expression (O) and under-expression (U) are defined as
follows:

Op(�b|�a) = Pr(ψp(�b|�a) ≥ p + 1),

Up(�b|�a) = Pr(ψp(�b|�a) ≤ p − 1),

Along similar lines, the dispersion within a, for each p, is

Õp(�a) = Pr(ψp(�a|�a) ≥ p + 1), (6)

Ũp(�a) = Pr(ψp(�a|�a) ≤ p − 1), (7)

Thus a natural measure of neutrality, for each p, is

Ñp(�a) = 1 − (Õp(�a) + Ũp(�a)). (8)

This intrinsic measure can be used to evaluate the accu-
racy of the estimation of distributions of random variable
�a, based on single or multiple replicates. In practice, we
have used Ñp(�a) to evaluate the character functions φ

(and thus estimate parameter P as well).

Estimating distributions of random variables �(T ) and
ψ(�)
Critical to the computations of � and ψ functions, is the
estimation of the distribution of the random variables Xg

of Eqn (1). Our model is influenced by the observation
that the total number of genes (L) in the RNA-Seq
experiment is based on the biological sample and not the
technology and that this also renders the observed abun-
dances of each gene to be not quite independent of each
other. This is reflected in the details of the computations
discussed here.
Let c = (cg1 , cg2 , . . . , cgL) be the observed abundances in

the experiment. Without loss of generality, let cg be the

number of reads (read-counts) of gene g, and Σg∈Gcg = M.
To estimate the distribution we use a Bernoulli process
with parameters cg/M, for g ∈ G, and M. This is a natural
extension of the method for the single replicate. Let
(c1g )g∈G, (c

2
g )g∈G, . . . , (c

K
g )g∈G be the observed abundances

in the K experiments under identical conditions. As
before, let ckg be the number of reads (read-counts) of gene

g in the kth replicate, for 1 ≤ k ≤ K. Let Mk =
∑

g c
k
g. We

use K Bernoulli processes each with parameters ckg/M
k, for

g ∈ G, and Mk, as in the single replicate case. Let

cg =
∑K

k=1
ckg and let M =

∑
g cg. We estimate the prob-

ability, pg, of gene g to be cg/M.
Thus, modeling the experiment, with K ≥ 1 replicates,

as a Bernoulli process, T = (Xg)g∈G of Eqn (1) follows a
multinomial distribution with parameters M and (pg)g∈G.
A closed form of the distribution of φg or ψg is not
straightforward to estimate and moreover, the argument
to φg is an L-tuple t ∈ R

G
≥0. Hence we simulate the Ber-

noulli process in our implementation. Then based on
Defn (1), for a fixed P, φg is evaluated for each g using
the L-tuple, ti, of trial i. Similarly, based on Defn (2), ψp

is evaluated for each p using the L-tuples of the two
experiments. The details are discussed below.

Simulating the character functions φg

Simulating the Bernoulli process for one experiment
with n genes is described below, for some number of
iterations I (e.g., I = 103), and some number of reads R
(e.g., R = 106), using a fixed P (e.g., P = 20). Consider
iteration i:

1 Repeat for each read r ∈ R: Assign the read to
gene g ∈ G with probability pg = log cg/

∑n
i=1 log ci.

2 Order genes according to decreasing assigned read
count. Assign φi

g = 1 for genes g with no reads.
3 Apply linear (regression) segmentation with P − 1
segments to the cumulative sum of the ordered read
counts; assign φi

g = P for genes g in the first segment,
P − 1 for the second segment, and so forth. Least-
squares linear segmentation can be performed in
time O(n2P), see [12]. In practice when n is large
one may want to subsample the genes, e.g., only use
every 10th gene for the segmentation.

The values φi
g are stored in each iteration i and

together make up the distribution φg. The values of the
dispersion function ψp are computed from φg. In prac-
tice, to compute Pr(ψp(�b|�a) = q), one counts the
number of pairs of iterations (i, i′) ∈ (1...I, 1...I) where
φ
ai
g = p and φ

bi′
g = q, where φ

ai
g denotes the bin of gene g

in iteration i in dataset a. The probability Pr is the
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frequency of pairs (φai
g = p,φbi′

g = q) among all the pairs

(φai
g = p,φbi′

g = p′)|p′ ∈ 1 . . . P.
An example We compute the different distributions

for a dataset with 10,000 genes and their (observed)
abundances c. Figure 6 (a) shows φg for all the genes g
(as defined in Eqn 3) and Figure 6 (b) shows the
ψp(�b|�a) and ψp(�a|�b), for each p (according to Eqn
5), while (c) summarizes the Ψ distributions as Õp(�),
Ũp(�), and Ñp(�) (according to Eqns 6-8).

Comparison across a pair T a and T b

Instead of directly studying T a and T b, we observe
instead the behavior of the scale-invariant maps �(T a)
and �(T b). We also distinguish two classes of genes: one
whose members are differentially expressed (DE) the
others whose members are stable across the two samples
a and b with sufficient confidence (based on a threshold
on some measure). The definition of stable genes in this
context, and detecting them via the combinatorial pro-
blem of longest increasing subsequence is discussed in
Additional file 1. Unfortunately, these two which appear

complementary in their characteristics do not exactly
partition the genes G into two because of the need to
meet the confidence thresholds.

Differentially expressed (DE) genes
Character functions φg(T a) and φg(T b) are used to esti-
mate the DE genes. We define a real-valued distance,
dis(·, ·) ≥ 0, between the two functions as discussed
below. For some fixed δ > 0, if dis(φg(T a), φg(T b)) > δ,
then g is estimated to be differentially expressed. It is
important to note that the mathematical framework dis-
cussed here is agnostic to the underlying models in the
diverse read count simulators prevalent in literature.
To define the amount of differential expression

between datasets a and b, we rank each gene according
to the differences in their distributions φg(T a) and
φg(T b). The ranking process is described below.
The estimated character functions are essentially his-

tograms on P ordered bins x = 1, ... , P, denoted
φg(T , x). We adopt maximum norm as the DE mea-
surement between treatments, denoting the largest

Figure 6 Illustration of the RoDEO distributions. (a) φg for each gene g for 10,000 genes. (b) Distributions �p(�b|�a) (left), and
�p(�a|�b) for each p (Eqn 5). (c) Intrinsic measures of dispersion within dataset a, for each p (Eqns 6-8).
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difference between the cumulative distributions for
gene g in experiments a, b:

dis(φg(T a),φg(T b)) = max
x

∣∣C(φg(T a), x) − C(φg(T b), x)
∣∣ , (9)

where C denotes the cumulative distribution,

C(φg(T a), x) =
∑x

i=1
φg(T a, i). This is the test statistic

in the Kolmogorov-Smirnov test. However, the character
functions are discrete, so the K-S test is not applicable.

Due to the finite numbers of iterations when estimating
the distributions, two genes often have the same maxi-
mum norm distance. Then we further compare the
genes by the distance between their modes in

φg(T a), φg(T b). In the case of K replicates, φg,i(T a, x),
is calculated for the ith replicate, and we perform DE
analysis on the average character functions, φg(T , x):

φg(T a, x) =

∑K
i=1 φg,i(T a, x)

K
. (10)

Figure 7 MAQC PRO results on three replicates. The four panels show (i) false discoveries in the top DE genes, (ii) false positive vs. true
positive rate and area under the curve (AUC) measurement, (iii) number of true DE genes with ranks 1...x within top x genes by the method,
and (iv) AUC when varying the threshold for calling DE genes from the qRT PCR results (threshold 1.5 is used in panels i-iii).
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The genes are ordered by decreasing maximum norm,
then by decreasing mode distance, and the genes at the
top of the list are the most likely DE candidates.

Comparison with existing methods
We compare RoDEO against existing methods baySeq [13],
edgeR [14], and sSeq [15] for identifying differentially
expressed genes. In an effort to avoid biases often asso-
ciated with generating simulated data using the exact
distribution assumed by the methods (negative binomial in
this case), we only used real data. Specifically, we used read

counts and quantitative expression data from the MAQC
human tissue samples, for which DE genes have been
experimentally validated by qRT-PCR [1,2]. The aim here
is to detect differentially expressed genes between human
reference RNA and brain RNA samples.
The methods were run on all 33k genes for which there

were reads sequenced with Ion Torrent Proton technology
(MAQC PRO dataset), while the DE results were evaluated
only on those 17k genes with available qRT-PCR quantifi-
cation. We used log-fold change cutoff > 1.5 to define DE
genes and < 1.0 to define non-DE genes (other genes

Figure 8 MAQC PRO results on one replicate. The four panels show (i) false discoveries in the top DE genes, (ii) false positive vs. true positive
rate and area under the curve (AUC) measurement, (iii) number of true DE genes with ranks 1...x within top x genes by the method, and (iv)
AUC when varying the threshold for calling DE genes from the qRT PCR results (threshold 1.5 is used in panels i-iii).
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remained unassigned). Each method was run with default
parameters (if any), RoDEO was run with P = 20 bins, I =
100 iterations, and R = 107 reads. Each compared method
provides a list of genes ordered by extent of their DE, and
this list is used in the evaluation.
Figure 7 shows the DE methods’ performance on the

this MAQC PRO data consisting of two treatments,
each with three replicates. Results on a single-replicate
case using the first replicate only are shown in Figure 8.
The four panels illustrate (i) For the number of top DE
candidates on the x-axis, how many are false positives,
(ii) False positive rate vs. true positive rate, including
AUC (Area Under the Curve) measurement, (iii) For the
top up to x = 500 true DE genes, how many are
included in the method’s DE list of size x (ideally x = y),
(iv) AUC when varying the threshold for calling DE
genes from the qRT-PCR results (threshold 1.5 is used
in panels i-iii).
RoDEO outperforms all the other DE methods on this

dataset, based on the AUC measurement at varying
levels of the PCR DE threshold (panel iv), both on the
multiple replicate and single replicate cases.

Conclusion
We present RoDEO, a novel method for detecting differ-
entially expressed and stable genes. RoDEO is vetted by
experimental verification on human reference data, where
it outperforms existing methods on several scenarios. The
non-parametric framework helps in adapting the method
across platforms and across species, without any need for
re-calibration.
RoDEO is applied to analyze RNA-seq data from reed

canary grass salt stress experiments. In the process, the
first reference transcriptome is constructed for Phalaris
arundinacea, an economically important forage and
bioenergy grass. Despite the lack of a complete reference
genome, including non-coding regions and promoters,
and being limited to the sequenced mRNA information,
we observe differential expression in four cultivars with
distinct genotypes. Furthermore, we study the phylogeny
of the DE and stable genic regions, and find the beha-
vior of the different cultivars distinguished by the salt
stress response.
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