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Abstract

Background: Peptide sequence assignment is the central task in protein identification with MS/MS-based
strategies. Although a number of post-database search algorithms for filtering target peptide spectrum matches
(PSMs) have been developed, the discrepancy among the output PSMs is usually significant, remaining a few
disputable PSMs. Current studies show that a number of target PSMs which are close to decoy PSMs can hardly be
separated from those decoys by only using the discrimination function.

Results: In this paper, we assign each target PSM a weight showing its possibility of being correct. We employ a
SVM-based learning model to search the optimal weight for each target PSM and develop a new score system,
CRanker, to rank all target PSMs. Due to the large PSM datasets generated in routine database searches, we use
the Cholesky factorization technique for storing a kernel matrix to reduce the memory requirement.

Conclusions: Compared with PeptideProphet and Percolator, CRanker has identified more PSMs under similar false
discover rates over different datasets. CRanker has shown consistent performance on different test sets, validated
the reasonability the proposed model.

Background
As the protein plays central roles in the interaction pro-
cesses, identification and quantification of proteins in a
variety of samples becomes a fundamental task in pro-
teomics [1]. In the commonly used protein identification
process, mass spectrometry (MS)-based strategies
coupled with sequence database searching routinely gen-
erate a large number of peptide spectrum matches
(PSMs), however, only a fraction of PSMs with high
confidence scores are selected as true PSMs by using
statistical and machine learning algorithms [2].
For peptide identification, a number of commercial

and non-commercial database search tools [3-6] have
been developed to rank the PSMs based on scoring
functions and report top-scored ones as target PSMs. In
the early stage, empirical filters [7,8] were described to

validate the target PSMs, in which all above the defined
thresholds are accepted as correct and those below the
thresholds are assumed to be incorrect. However, the
criteria for empirical filters may not be easily defined as
scoring metrics used in database search tools, the quality
of the mass spectrometry data, and the type of mass
spectrometer used in the LC/MS/MS experiments vary.
Recently, machine learning approaches were intro-

duced for improving the accuracy of discrimination
between correct and incorrect PSMs based on PSM data
models. A widely used algorithm, PeptideProphet [9],
employs an unsupervised learning approach to identify
correct and incorrect PSMs. In PeptideProphet, poster-
ior probabilities of the PSMs are computed by using the
expectation maximization (EM) method based on the
assumption that these PSM data are drawn from a mix-
ture distribution of correct and incorrect PSMs. Semi-
supervised learning approaches exploit decoy data and
use them as references for better estimation of discrimi-
nant scores. In [10], the PeptideProphet algorithm was
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extended to incorporate decoy PSMs into a mixture
probabilistic model at the estimation step of the EM with
a semi-supervised learning framework. The restrictive
parametric assumptions were removed by using the vari-
able component mixture model and the semi-parametric
mixture model. Percolator [11] is another advanced post-
database searching method based on semi-supervised
learning. The goal of Percolator is to increase the number
of correct PSMs reported under the minimal FDR or
q-value. Starting with a small set of trusted correct PSMs
and a set of incorrect PSMs from searching a decoy data-
base, Percolator iteratively adjusts the learning model to fit
the dataset by ranking high-confidence PSMs higher than
decoy peptide matches. The peptide identification can also
be solved by a supervised learning approach which first
trains a classifier with labels of PSMs already known and
then uses the classifier to assign labels to those unknown
PSMs [12]. In [13], a fully supervised SVM method is pro-
posed to improve the performance of Percolator. Different
with other supervised learning methods using decoy data-
bases, De-Noise [14] labels all target PSMs as “correct”,
but those low-scoring ones are treated as noises. The per-
formance of a post-database search algorithm is usually
evaluated by computing FDRs based on searching a target-
decoy protein database [15-19].
De-Noise has shown its efficiency on eliminating

incorrect target PSMs or noisy PSMs based on weights
of the protease attributes. However, parameter selection
is a big challenge in De-Noise. Based on the fuzzy SVM
learning model, FC-Ranker [20] needs much fewer para-
meters and less input from the user than De-Noise
does. FC-Ranker incorporates sample clustering proce-
dure into the SVM classifier to estimate confidence on
good target PSMs. Different with the traditional SVM
model, in which the weight of training error is equally
contributed by each data sample, FC-Ranker uses a
fuzzy classification model to estimate the possibility of
each target PSM being correct. The final score of each
sample is determined by the combination of the value of
discriminant function and fuzzy silhouette index. How-
ever, FC-Ranker does not provide an efficient method
for calculating the weight of each PSM.
Similar to [20], we cast peptide identification as a bin-

ary classification problem in which “good” PSMs are
labeled as “+1” and “bad” PSMs are labeled as “-1”.
In this paper, to overcome the weight problem of
FC-Ranker, we deal with the weight of training error as
a variable, and employ the primal SVM technique [21]
to re-formulate the classification problem as the CRan-
ker classification model. In order to handle large PSM
datasets, we use the Cholesky factorization technique to
improve memory utilization in model training. A new
scoring policy is proposed to rank all PSMs, and users
can select those top-scored PSMs according to FDRs.

The CRanker method has been validated on a number
of PSM datasets generated from the SEQUEST database
search tool. Compared with benchmark post-database
search algorithms PeptideProphet and Percolator, CRan-
ker has identified more “good” PSMs at the same false
discovery rates (FDRs).

Methods
Peptide identification and classification problem
In sequence database searching, a large number of PSMs are
routinely generated, however, only a fraction of them are
correct. The task of peptide identification is to choose those
correct ones from database search outputs. We formulate it
as a binary classification problem, in which “good” PSMs are
assigned to class “correct” or “+1” and “bad” PSMs to class
“incorrect” or “-1”. Different with typical classification pro-
blems, the target PSMs are not trustworthy, i.e., ‘+1’ labels
(corresponding to target PSMs) are not reliable. To over-
come this problem, FC-Ranker introduces weight θi ∈ [0,1]
to indicate the reliability of i-th PSM, where 1 represents the
highest confidence level and 0 the lowest confidence level. In
fact, the learning model should rely more on reliable PSMs
than untrustworthy ones.
Formally, the classification problem for peptide iden-

tification is described as follows. Given a set of

l PSMs, denoted by � =
{
xi, yi

}l
i=1 ⊆ Rq × {−1, 1} (Let

� =
{
xi, yi

}l
i=1 ⊆ Rq × {−1, 1} be a set of l PSMs), where

xi ∈ Rq represents its i-th PSM record with q attri-
butes, and yi = 1 or −1 is the corresponding label indi-
cating a target or decoy PSM. Let

�+ = {j|yj = 1},�− = {j|yj = −1}.
SVM-based classifiers have shown its advantages in

peptide identification [14,20]. A typical SVM finds a dis-
criminant function Ψ by solving

min�

∑l

i=1
θiLoss(�(xi), yi) + c1||�|| (1)

where c1 > 0 is a constant, Loss(Ψ(xi), yi) is the loss
function of (xi, yi), and ||Ψ|| is the norm of Ψ for regular-
ization. In FC-Ranker, θi, i = 1, . . . , l are treated as para-
meters and it is a challenge to determine their values.
In [20], Problem (1) is solved by the linear program-

ming SVM model as follows

min
a,b,ξ ,r

−r + c
∑

i∈� θiξi

s.t. yi
(∑l

j=1 αjyjk
(
xj, xi

)
+ b

)
≥ r − ξi, i ∈ �,

r ≥ 0,
−1 ≤ αi ≤ 1, ξi ≥ 0, i ∈ �,

(2)

where a ∈ Rl, b ∈ R1, ξ = [ξ1, . . . , ξl] ∈ Rl, and r ∈
R1. Note that in this model, θi is a parameter, and it is
not trivial to choose a good one.
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CRanker method
CRanker classification model
In this section, we cope with weight θi as a variable and re-
formulate Problem (1) as CRanker classification model. A
new score scheme is developed for identifying correct
PSMs based on CRanker solution. Note that all ‘−1’ labels
(decoy PSMs) are reliable, and hence, θi = 1, i ∈ Ω−.

Moreover, we consider constraint
∑

i∈n+
θi ≥ θ̄, where

θ̄ > 0 is a constant, to identify as many good PSMs as pos-
sible. Hence, we solve the following optimization problem:

min�,θ
∑l

i=1 θiLoss
(
� (xi) , yi

)
+ c1 ‖�‖

s.t. θi = 1, i ∈ �−,
0 ≤ θ1 ≤ 1, i ∈ �+,∑

i∈�+
θi ≥ θ ,

where c1 > 0 is a constant.

Technically, we move
∑
i∈�+

θi ≥ θ̄ to the objective func-

tion, and reformulate model (3) as

min�,θ
∑l

i=1 θiLoss
(
� (xi) , yi

)
+ c1 ‖�‖ − c2

∑l
i=1 θi

s.t. θi = 1, i ∈ �−,
0 ≤ θi ≤ 1, i ∈ �+,

where c2 > 0 is a constant.
By using the primal SVM technique [21], we formulate

the CRanker classification model as

minβ,θ βTKβ + c1
∑l

i=1 θi ·
{
max

(
0, 1 − yiKT

i β
)}p − c2

∑l
i=1 θi

s.t. θi = 1, i ∈ �−
0 ≤ θi ≤ 1, i ∈ �+.

(5)

where K = (Kij)li,j=1,Kij = k(xi, xj), k(·, ·) is a given kernel,
Ki denotes the i-th column of K. The solution of model (5)

defines a discriminant function �(x) =
l∑

i=1

βik(xi, x)
Choose parameters c1 and c2
Parameters c1 and c2 play a critical role in determining
the value of discrimination function Ψ(xi). We aim at
Ψ(xi) ≥ 0 if xi is a correct target PSM and Ψ(xi) < 0
otherwise. Notice that yi ≥ 0 for target PSMs, and
yi < 0 for decoys. We have yiΨ(xi) ≥ 0 for both correct
target PSMs and decoys. Particularly, for xi with weight
θi, it contributes degree of confidence −c2θi to
the value of the objective function in problem (5).
Meanwhile, xi generates an empirical loss c1θihi

where ηi = Loss
(
yi,� (xi)

)
= max

{
0, 1 − yiK

T
i β

}p
, p ≥ 1.

In order to guarantee that the objective function of
problem (5) decreases a certain amount, we enforce
the loss θi(c1hi − c2) ≤ 0, which holds if and only if

0 ≤ ηi ≤ c2
c1
. It implies

yi� (xi) = yiK
T
i β ≥ 1 −

(
c2
c1

)1/p

.

Hence, if parameters c1 and c2 satisfy

c2
c1

≤ 1,

we have 1 −
(
c2
c1

)1/p

≥ 0, and then yiΨ(xi) ≥ 0.

Moreover, if we choose parameters c1 and c2 such that
c2
c1

> 1, then there exists a degeneration risk that b = 0

and θi = 1 for all i ∈ Ω+ (i.e., all target PSMs are identi-
fied as correct), in which case we have objective func-
tion value l(c1 − c2) < 0.
Therefore, we always select parameters c2 ≤ c1 in

CRanker.
Cholesky factorization for large datasets
For large PSM datasets, the kernel matrix K ∈ Rl×l is
usually not sparse, and thus, it is a big challenge to load
whole K in memory once. Usually, the number of sam-
ple features is much less than the number of samples,
and kernel function k provides a convenient and cheap
transformation. We aim to design a low-rank approxi-
mation of large kernel matrix K by Cholesky factoriza-
tion, and request pairwise similarities between PSMs
sequentially. Specifically,

K ≈ LLT (6)

where L ∈ Rl,r , Li,j = 0 if i <j, L1,1 ≥ L2,2 ≥ . . . ≥ Lr,r
are the square roots of the first largest r eigenvalues of
K. The details can be referred to [22].
Calculate the scores of PSMs
Based on CRanker discriminant function Ψ(·), we assign
PSM (xi , yi) a score

score (i) =
2
π
arctan (� (xi)) . (7)

A large score value indicates the PSM is more likely to
be correct. The PSMs are ordered according to their
scores, and a certain number of PSMs are output to
satisfy a pre-selected FDR.

Results and discussion
We evaluated the performance of CRanker by compar-
ing it with PeptideProphet and Percolator based on
PSMs generated from the SEQUEST search engine. The
CRanker algorithm was implemented with Matlab ver-
sion R2010b running on a PC with Intel Core i5-2400
CPU 3.10 GHz × 4 and 8 Gb RAM.

Experimental setup
Shotgun proteomics using multidimensional liquid chro-
matography coupled with tandem mass spectrometry
were performed on all biological samples, including uni-
versal proteomics standard set (UPS1), the S. cerevisiae
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Gcn4 affinity-purified complex (Yeast), S. cerevisiae
transcription complexes using the Tal08 minichromo-
some (Tal08) and Human Peripheral Blood Mononuc-
lear Cells (PBMC). The RAW files generated from the
different LC/MS/MS experiments were converted to
mzXML format with the program ReadW. The MS/MS
spectra were extracted from the mzXML file using the
program MzXML2Search and all data was processed
using the SEQUEST software. For PeptideProphet, we
used the Trans Proteomic Pipeline V.4.0.2 (TPP), and
the search outputs were converted to pep.XML format
files using the TPP suite. For Percolator, we converted
the SEQUEST outputs to a merged file in SQT format
[23]. The UPS1 dataset, developed by Sigma-Aldrich
company, contains 48 purified human proteins digested
with trypsin. The SEQUEST search results include
17,335 PSMs, among which 8974 PSMs match target
peptides and 8361 PSMs match decoy peptides. The
Yeast dataset contains 6652 proteins and SEQUEST
outputs 14,892 PSMs, among which 6703 PSMs match
target peptides and 8189 PSMs match decoy peptides.
For Tal08 complexes, the tryptic peptides were analyzed
on an LTQ-Orbitrap XL (ThermoFisher) mass spectro-
meter using monoiosotopic precursor selection (MiPS).
It contains 69560 PSMs, among which 42222 PSMs
match target peptides and 27338 PSMs match decoy pep-
tides. PBMCs were analyzed with both LTQ-Orbitrap XL
and LTQ-Orbitrap Velos. A 6-step MuDPIT experiments
was performed on a LTQ-Orbitrap XL using either MiPS
(orbit-mips) or MiPS-off (orbit-nomips). The orbit-mips
dataset contains 103679 PSMs, including 68334 targets
and 35345 decoys, and the orbit-nomips dataset contains
117751 PSMs, including 76395 targets and 41356 decoys.
For the LTQ-Orbitrap Velos experiments, 11-Step MuD-
PIT experiments were performed similar to Orbitrap XL
experiments with either MiPS (velos-mips) or MiPS-off
(velos-nomips). The velos-mips dataset contains 301879
PSMs, including 208765 targets and 93114 decoys, and
the velos-nomips dataset contains 447350 PSMs, includ-
ing 307549 targets and 139801 decoys. Samples are
digested with trysin. There are three types of tryptic

peptides: full-digested, half-digested and none-digested.
The detailed PSMs are summarized in Table 1.
Each dataset was divided into a training set and a test

set according to 50/50 ratio. For large-sized datasets,
such as Tal08 and PBMCs, we randomly select 20,000
samples from the training set for model training. This
procedure was repeated n times, and let Ψi(x), i = 1, . . . ,
n be the discriminant function for the i-th time.
Then, discriminant function

�(x) =
1
n

n∑
i=1

�i(x)

was employed in all experiments. We set as n = 6 in
this paper. The PSM is represented by a vector of nine
attributes: xcorr, deltacn, sprank, ions, hit mass, enzN,
enzC, numProt, deltacnR. The first five attributes inherit
from SEQUEST and the last four attributes are defined as

• enzN: A boolean variable indicating whether the
peptide is preceded by a tryptic site;
• enzC: A boolean variable indicating whether the
peptide has a tryptic C-terminus;
• numProt: The number that the corresponding pro-
tein matches other PSMs;
• deltacnR: deltacn/xcorr.

Weight 1.0 was assigned for xcorr and deltacn, and 0.5
for all others. In CRanker learning model, we set para-
meter c1 and c2 as 1.0, p as 2 and choose the Gaussian
kernel with kernel argument s = 1.0.

Results
Table 2 shows that the total numbers of PSMs identified
by CRanker , Peptide- Prophet, and Percolator over all
datasets (training and test) at F DR ≈ 0.05. As we can
see, CRanker can identify more PSMs the other two
algorithms.
Table 3 shows the performance of CRanker on test

dataset. The last column of Table 3 indicates the ratios
of PSMs identified on test set and whole dataset. As the

Table 1. Statistics of datasets

Target Decoy

Total Total Full Half None Total Full Half None

UPS1 17335 8974 645 2013 6316 8361 236 2588 5537

Yeast 14892 6703 1453 1210 4040 8189 106 1465 6618

Tal08 69560 42222 14893 6809 20520 27338 419 5877 21042

orbit-mips 103679 68334 26760 15647 25927 35345 737 8583 26025

orbit-nomips 117751 76395 28561 17490 30344 41356 948 10333 30075

velos-mips 301879 208765 110404 35915 62446 93114 2520 24682 65912

velos-nomips 447350 307549 134117 77052 96380 139801 3414 34985 101402

Full, Half, None: number of PSMs with full-digested peptides, half-digested PSMs and none-digested PSMs, resp.
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training data is randomly chosen, 50% ratio is an ideal sce-
nario. On four PBMC datasets, the ratios are very close to
50%, indicating that CRanker classifier learned from train-
ing data works for the whole dataset. CRanker has shown
very close learning performance on all datasets except
UPS1. CRanker slightly overfitted on the test dataset of
UPS1 (43.26%) as the training dataset is relatively small.
We have also looked at overlapping PSMs among Pep-

tideProphet, Percolator and CRanker. Figure 1 shows
the overlap of the identified target PSMs by the three
methods on ups1, yeast, tal08 and 4 PBMC datasets. On
all the datasets, the target PSMs output by CRanker

have large overlap with PeptideProphet and Percolator.
The details are list in Table 4. On ups1, PeptideProphet
has 497 (87.8%) target PSMs shared by CRanker; Perco-
lator has 390 (89.0%) target PSMs shared by CRanker.
On all the other 6 datasets, these percentages exceed
90%. The results indicate that the majority of PSMs vali-
dated by PeptideProphet and Percolator were also vali-
dated by CRanker.
We finally compared the performance of CRanker,

PeptideProphet, and Percolator by receiver operating
characteristic (ROC). Due to the space limit, we
included only ROCs on orbit-nomips (Figure 2) and
velos-nomips (Figure 3) datasets. As we can see, CRan-
ker reaches highest true positive rates (TPRs) through-
out all false positive rates (FPRs) levels among the three
algorithms in both figures.

Stability of CRanker
As training data points are randomly chosen from train-
ing datasets, the performance of CRanker classifier may
vary slightly. We counted the outputs of CRanker in 20
runs on orbit-mips and velos-mips datasets.
Let Pi and #Pi be the set of PSMs and the number of

PSMs identified by CRanker at i-th run, i = 1, . . . , m. We
compared the similarity of Pi and Pj , i ≠ j, i, j = 1, . . . , m
by

sij =
1
2

(
#
(
Pi ∩ Pj

)
#Pi

+
#
(
Pi ∩ Pj

)
#Pj

)
. (8)

Then the stability of CRanker on a dataset is defined
as the mean of all pairwise similarities over m runs:

S =
1
m

m∑
i,j=1,i	=j

si,j

Table 5 and Table 6 show the numbers of PSMs iden-
tified by CRanker in 20 runs on orbit-mips and velos-
mips, respectively. The stability of CRanker is S =
99.17% on orbit-mips and S = 99.53% on velos-mips.

Table 2. Target PSMs output by PeptideProphet,
Percolator, and CRanker

Data Method Total TP FP

PepProphet 582 566 16

ups1 Percolator 450 438 12

CRanker 601 585 16

PepProphet 1481 1443 38

yeast Percolator 1429 1394 35

CRanker 1491 1455 36

PepProphet 16025 15638 387

tal08 Percolator 14725 14371 354

CRanker 16806 16390 416

PepProphet 34035 33233 802

orbit-mips Percolator 34118 33270 848

CRanker 35003 34123 880

PepProphet 36542 35673 869

orbit-nomips Percolator 36962 36096 866

CRanker 37337 36416 921

PepProphet 123908 120961 2947

velos-mips Percolator 125701 122568 3133

CRanker 125783 122624 3159

PepProphet 180182 175789 4393

velos-nomips Percolator 178082 173719 4363

CRanker 183492 178900 4592

PepProphet: PeptideProphet. TP: number of true positive PSMs. FP: number of
flase positive PSMs.

Table 3. FDR of CRanker on test set

TP(full/half/none) FP(full/half/none) FDR test
total

ups1 253(192/57/4) 7(6/1/0) 5.38% 43.26%

yeast 730(699/30/1) 18(12/6/0) 4.81% 50.17%

tal08 8040(7299/560/181) 200(137/39/24) 4.85% 49.03%

orbit-mips 16940(13298/3370/272) 440(279/121/40) 5.06% 49.65%

orbit-nomips 18037(13918/3764/355) 459(257/144/58) 4.96% 49.63%

velos-mips 61001(54732/6006/252) 1537(1050/406/81) 4.92% 49.72%

velos-nomips 89449(66413/21364/1672) 2297(1250/937/110) 5.01% 50.00%

test
total

: the ratios of PSMs identified on test set and whole dataset. FDR: false discovery rate.
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Conclusion
We have proposed a new scoring system CRanker for
peptide identification, in which the confidence on each
PSM is taken into account in the model training

process. CRanker employs the primal SVM technique
and copes with the weight of each PSM as a variable.
We use the Cholesky factorization technique to
improve memory utilization in model training for large

Figure 1 Overlap of identified target PSMs by PeptideProphet, Percolator and CRanker. PepProphet: PeptideProphet.
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PSM datasets. The performance of CRanker has been
compared with benchmark algorithms PeptideProphet
and Percolator over a variety of PSM datasets. The

experimental studies show CRanker outperforms the
other two by identifying more targets at the same
FDRs.

Table 4. Overlap of identified target PSMs by PeptideProphet, Percolator and CRanker

PSMs shared between
Peptide-Prophet and
CRanker

% Peptide-
Prophet shared
by CRanker

PSMs shared
between Percolator
and CRanker

% Percolator
shared by
CRanker

PSMs shared between
Percolator and Peptide-
Prophet

% Percolator
shared by
Peptide- Prophet

ups1 497 87.8 390 89.0 404 92.2

yeast 1402 97.2 1289 92.5 1272 92.5

tal08 15362 98.2 13521 94.1 13474 93.8

orbit-
mips

32264 97.1 31017 93.2 30704 93.3

orbit-
nomips

34691 97.3 32788 90.8 32777 90.8

velos-
mips

118540 98.0 112456 91.8 111801 91.2

velos-
nomips

171228 97.4 165140 95.0 164470 94.6

Figure 2 ROC curves on orbit-nomips.

Figure 3 ROC curves on velos-nomips.
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