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Abstract

Background: The emergence of next-generation RNA sequencing (RNA-Seq) provides tremendous opportunities
for researchers to analyze alternative splicing on a genome-wide scale. However, accurate detection of intron
retention (IR) events from RNA-Seq data has remained an unresolved challenge in next-generation sequencing
(NGS) studies.

Results: We propose two new methods: IRcall and IRclassifier to detect IR events from RNA-Seq data. Our methods
combine together gene expression information, read coverage within an intron, and read counts (within introns,
within flanking exons, supporting splice junctions, and overlapping with 5’ splice site/ 3’ splice site), employing
ranking strategy and classifiers to detect IR events. We applied our approaches to one published RNA-Seq data on
contrasting skip mutant and wild-type in Arabidopsis thaliana. Compared with three state-of-the-art methods, IRcall
and IRclassifier could effectively filter out false positives, and predict more accurate IR events.

Availability: The data and codes of IRcall and IRclassifier are available at http://mlg.hit.edu.cn/ybai/IR/
IRcallAndIRclass.html

Background
Alternative splicing of precursor messenger RNA (pre-
mRNA) produces different mRNA isoforms from a single
genic locus during gene expression, resulting in functional
complexity and diversity of proteins for higher eukaryotic
organisms [1-3]. Alternative splicing has four main pat-
terns that include cassette exon skipping (ES), alternative
5’ and 3’ splice site (ASS), mutually exclusive exon splicing
(MXE) and intron retention (IR) [4]. Among those four
alternative splicing patterns, genome-wide intron retention
(IR) detection is a popular research topic in biology.
Traditional methods which analyze microarray data,

have provided a rich source of information for IR event
detection [5]. However, the hybridization-based technol-
ogy employed by microarray is largely restricted to existing

genome sequence knowledge, with a limited range of
quantification [6]. With the development of next-genera-
tion sequencing technology, RNA-Seq, which extends
the analysis of previous unidentified genes and splicing
variants, is rapidly outperforming microarrays for genome-
wide studies [6,7]. With various statistical and computa-
tional strategies, many recent studies have analyzed
RNA-Seq data for IR event detection, including Expres-
sionPlot [8], MATS [9], Wang’s Framework [10], IRFinder
[11] and etc. ExpressionPlot [8] cuts off low-density
introns and adopts Fisher’s exact test or Chi-squared test
to quantify IR events, using only read counts (within
introns/ flanking exons). Another framework MATS [9]
calculates the Bayesian posterior probabilities of IR to
assess their difference between treatment and control con-
ditions, using only read counts (supporting splice junc-
tions/ within introns). Besides, an analysis pipeline based
on de novo mapping using BLAT [12] is introduced by
[10], which detects the complete retention of an intron in
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a transcript. However, BLAT employs some low quality
reads for read alignment, which would bring in noises
[13]. Recently, IRFinder [11] uses read counts within
introns to estimate the difference of read coverage
between treatment and control conditions by adopting
Audic and Claverie Test [14]. However, as for read cover-
age calculation, besides uniquely mapped reads, IRFinder
employs the reads mapped to multiple positions in the
genome, which would bring in noises.
Existing methods for IR event detection usually omit

some significant features (i.e. gene expression informa-
tion). They depend on only read counts (within an
intron, within flanking exons, and supporting splice junc-
tion) to estimate IR events between treatment and con-
trol conditions [8-11]. They omit the gene expression
information and read coverage within an intron or use
some un-uniquely mapped reads and low quality reads,
which would involve false positive data, reducing predic-
tion precision. As illustrated in Figure 1, there exist three
common false positive cases: (1) More reads are overlap-
ping with 5’ or 3’ splice site, but less reads are locating
within an intron; (2) Many reads are clustering within a
specific intronic inside region; (3) The gene expression
between treatment and control conditions is different,
where the read counts (within introns, within flanking
exons, supporting splice junctions) should have been

similar if there is no difference on gene expression. As
for these three false positive cases, MATS and Expres-
sionPlot falsely predict case (1) and (2) respectively, as
they do not consider read distribution and coverage
within introns; while IRFinder falsely predicts case (3) as
it does not consider gene expression difference. There-
fore, we are motivated to take in more features to design
more precise prediction methods for IR event detection.
In this paper, we propose two efficient and effective

methods: Intron Retention call (IRcall) and Intron
Retention classifier (IRclassifer) for of IR event detection
from RNA-Seq data. Compared with existing IR event
detection methods, IRcall and IRclassifier have four
major contributions:
First, besides traditional features for IR event detec-

tion, IRcall and IRclassifier employ new features, includ-
ing read counts overlapping with 5’ splice site/ 3’ splice
site, and gene expression between treatment and control
conditions, which help to filter out false positives caused
by different gene expression; Second, IRcall employs
ranking strategy, with a new formula to calculate IR
scores, which avoids bias and declines false positives;
Third, IRclassifier employs machine learning techniques,
based on J48 Decision Tree and Random Forests, for IR
event detection. IRclassifier selects training examples by
incorporating the predictions from three state-of-the-art

Figure 1 False positive IR events (Short black bars stand for reads with numbers indicating read counts). (a) More reads are overlapping
with 5’ or 3’ splice site, but less reads are locating within an intron; (b) Many reads are clustering within a specific intronic inside region; (c) The
gene expression between treatment and control conditions is different.
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approaches, and constructs 17 features between treat-
ment and control conditions to represent introns in
higher-dimensional spaces; Last but not least, experi-
menting the published RNA-Seq data of skip mutant
and wild-type in Arabidopsis thaliana [10], IRcall and
IRclassifier could identify both known and novel IR
events, with high prediction precisions. Moreover,
IRclassifier based on J48 Decision Tree and Random
Forests could predict IR events with a precision of
98.5% and 99.0%, respectively.

Methods
To overcome limitations of existing approaches, our idea
is to utilize more features, employing ranking strategy
and machine learning methods for IR event detection.

Input data
The inputs of IRcall and IRclassifier include the alignment
results of RNA-Seq data and the reference annotation.
The raw RNA-Seq reads between treatment and control
conditions are aligned to the reference genome sequences
by TopHat2 [15], and the resulting alignments are stored
and sorted in BAM files, defined by [16]. The reference
annotation provides the locations of introns, exons and
genes. As for the raw RNA-Seq read alignment, the para-
meters of TopHat2 are set as follows: min − anchor −
length = 4, min − intron − length = 40, max − intron −
length = 2000, min − segment − intron = 40, max − seg-
ment − intron = 2000, min − coverage − intron = 40, and
max − coverage − intron = 2000.

Extract features
In each sample of RNA-seq data, we extract 7 features
(Figure 2(a)), including read counts within an intron
(Nintron), read counts within flanking exons (Nexon), read
counts supporting splice junctions (Njunc), read counts
overlapping with 5’ splice site (N5ss), read counts over-
lapping with 3’ splice site (N3ss), read coverage within an
intron (Ncoverage) and gene expression information
(Nexpression).
For Nintron, Nexon, Njunc, N5ss and N3ss, we count the

original reads within an intron, within flanking exons,
supporting splice junctions, overlapping with 5’ splice
site and 3’ splice site, respectively. As for Ncoverage, we
calculate the percentage of covered positions (with one
read at least) within an intron. In addition, we employ
Cuffdiff [17] to calculate gene expression RPKM values
(RPKM: Reads per kilo base per million), denoted by
Nexpression.
As shown in Figure 2(b), we will get 7 features TNintron

,
TNJunc , TNJunc , TN5ss , TN3ss , TNcoverage and TNexpression for treat-

ment condition, and 7 features CNintron , CNexon , CNJunc ,

CN3ss , CN3ss , CNcoverage and CNexpression for control condition.

Those 14 features form the feature space of an intron
for IR event detection.

IRcall
The framework of IRcall is illustrated in Figure 3(a): the
input data (bam files, and the reference annotation) are
firstly analyzed to extract 14 features, representing each
intron between treatment and control conditions; then low
quality introns are removed according to the criteria in
Table 1; after that, the IR score for each intron is calculated
according to the features; finally, the introns are ranked by
IR scores in descending order, with top-n% introns
returned as IR events. Note that n% is the user-specified
threshold; and an intron is retained for further process if it
satisfies all criteria in Table 1. The criteria come from
some domain knowledge and experiments [8,11].
We propose a novel IR score formula to reflect the IR

changes between treatment and control conditions, on
three aspects: (a) ratio of read counts within an intron
to flanking exons (NDIE); (b) ratio of read counts within
an intron to read counts supporting splice junctions
(NDIJ); (c) read coverage within an intron (NDIC). The
IR score takes the weighted average of the three aspects,
formulated as:

IRScore = ω1 ∗ NDIE + ω2 ∗ NDIJ + ω3 ∗ NDIC

(ω1 + ω2 + ω3 = 1)
(1)

In our experiments, we set equal weights to NDIE,

NDIJ and NDIC, thus ω1 = ω2 = ω3 =
1
3
. The NDIE,

NDIJ and NDIC are calculated as follows:
First, in all treatment and control samples, IE, IJ , and

IC of each intron are calculated to reflect the ratio of
read counts within an intron to flanking exons, the ratio
of read counts within an intron to read counts support-
ing splice junctions, and read coverage within an intron,
by formula (2) (3) (4):

IE =
(
Nintron

Nexon

)
(2)

IJ =
(
Nintron

Njunc

)
(3)

IC = eNcoverage (4)

Second, DIE, DIJ and DIC are calculated to reflect the
changes in IE, IJ , and IC between treatment and control
conditions (logarithm is taken to handle zero values in
denominators), by formula (5) (6) (7). Note that DIE,
DIJ and DIC should be larger than zero; otherwise, the
intron instance is filtered out as noise.
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DIE = log2

(
IEtreatment

IEcontrol

)
(5)

DIJ = log2

(
IJtreatment

IJcontrol

)
(6)

DIC = log2

(
ICtreatment

ICcontrol

)
(7)

Finally, as the value scales of DIE, DIJ and DIC are
different, we normalized them to the same scale of 0 to
1, by dividing their corresponding maximum value
MAXDIE, MAXDIJ and MAXDIC, resulting in NDIE,
NDIJ and NDIC, as shown in formula (8) (9) (10):

NDIE =
DIE

MAXDIE
(8)

NDIJ =
DIJ

MAXDIJ
(9)

NDIC =
DIC

MAXDIC
(10)

As IRcall defines proper intron removal criteria (in
Table 1) and IR score formula, it well considers read
counts (within introns, within flanking exons, supporting
splice junctions, and overlapping with 5’ splice site/ 3’
splice site), read coverage within an intron, and gene
expression information, between treatment and control
conditions. Hence, IRcall could effectively filter out false
positives and improve prediction precision.

IRclassifier
IRclassifier is a framework drawing on machine learning
ideas to facilitate better identification of IR events from

Figure 2 Features and their illustration. (a) 7 Features. Red(Dark red/ Purple) short bars stand for the unique mapped reads within the intron
(within flanking exons, overlapping with 5’/ 3’ splice site); while black short bars connected by blue dash lines stand for the splitted reads
supporting splice junctions. (b) An intron with its features between treatment and control conditions.
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RNA-Seq data, which contains three main steps (Figure
3(b)): first, the training set is constructed by incorporat-
ing the predictions of ExpressionPlot [8], MATS [9] and
IRFinder [11], with 17 significant features to interpret
each instance. The instances are saved in feature matrix
X , labeled with “yes” and “no”, indicating positive and
negative ones, respectively; second, the J48 Decision
Tree (J48) classifier and Random Forests (RF) classifier
are trained respectively, with 10-fold cross-validation to
avoid over-fitting; finally, new RNA-Seq data are sent to
the two classifiers respectively for IR event prediction.
Our training data set are constructed based on the

results of IR event identification, by MATS, Expression-
Plot and IRFinder. The instances hit by at least two of

the three predicting algorithms are taken as “positive”
ones, labeled by “yes”, while those hit by none of the
algorithms are taken as “negative” ones, labeled by “no”.
Thus, 741 positive instances and 3525 random negative
instances are selected as the training set. The instance is
interpreted by 17 features: 14 features from treatment
and control samples (Figure 2) and 3 features DIE, DIJ ,
and DIC (defined in section Methods).
As for classifiers, we employ J48 Decision Tree and

Random Forests algorithms from Weka [18] to conduct
two independent predictions. J48 classifier forms rules
from pruned partial decision trees built by C4.5 heuris-
tics [19], which minimizes the number of tree levels and
tree nodes to maximize data generalization. During tree
building, information gain is adopted for feature selec-
tion, such that feature of largest information gain is cho-
sen for the next splitting. RF classifier [20] constructs
independent decision tree classifiers by bagging and ran-
dom feature selection, and aggregates the outputs of
each decision tree in RF to produce one final prediction
by a majority vote of the trees. Here, the RF classifier is
constructed with 10 decision trees, each selecting 5 ran-
dom features. To avoid overfitting, both J48 classifier
and RF classifier employ 10-fold cross-validation.

Results and discussion
We use real RNA-seq data http://www.ncbi.nlm.nih.gov/
sra?term=SRP008262 to detect IR events, which are
comprise of skip mutant and wild-type in Arabidopsis

Figure 3 Frameworks of IRcall and IRclassifier.

Table 1 Intron Removal Criteria

TN5ss > 3

TN3ss > 3

TNcoverage > 0:9

TNexon > 1

TNexpression > 10

TNintron
> 1

CNexpression
> 10

CNJunc > 1

CNexon
> 1

TNexpression

CNexpression

< log2

(
3
2

)
or

TNexpression

CNexpression

> log2

(
2
3

)
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thaliana [10], including two replicated skip mutant sam-
ples (skip1 and skip2) and two replicated wild-type sam-
ples (wt1 and wt2). As for the reference, we take
Arabidopsis thaliana TAIR9 genome, with sequences
and annotations ftp://ftp.arabidopsis.org/home/tair/
Genes/TAIR9_genome release/. The performance of
IRcall and IRclassifier are studied against state-of-the-art
IR prediction methods ExpressionPlot [8], MATS [9]
and IRFinder [11].

Data normalization and experimental setup
As the numbers of mapped reads in the two skip mutant
samples (skip1 and skip2) and two wild-type samples
(wt1 and wt2) are different (28465249 reads in skip1,
20849546 reads in skip2, 44865242 reads in wt1, and
18343654 reads in wt2), we take the minimum read
number 18343654 as the standard normalization scale
(SNS). Then all read counts that construct features are
divided by its sample’s overall read number and multi-
plied by SNS for normalization. The sum of normalized
read counts in skip1 and skip2 (wt1 and wt2) is taken as
the read count for treatment (control) sample. Then all
relevant features and scores are calculated according to
the algorithms in Section Methods.
As for evaluation reference, we get all positive IR

event predictions (see Figure 4(a)) of ExpressionPlot [8],
MATS [9], and IRFinder [11], with higher statistical sig-
nificance (P -value <0.05). In total, there are 10202

positive IR event predictions, with 29 from MATS, 8986
from ExpressionPlot, and 1928 from IRFinder.

IRcall performance
In the first group of experiments, IRcall is taken to
detect differential IR events from RNA-Seq data on skip
mutant and wild-type. For all of the 158580 introns in
Arabidopsis thaliana TAIR9 reference annotation, we
firstly filtered out the introns not satisfying the intron
removal criteria of IRcall (see Table 1), resulting in 928
IR event candidates. Then the IR scores of those 928 IR
event candidates are calculated, according to which the
candidates are sorted in descending order.
To evaluate the performance of IRcall, we compared

the 928 IR event candidates of IRcall with the positive
predictions of MATS, ExpressionPlot and IRFinder. As
illustrated in Figure 4(b), the 928 IR event candidates of
IRcall have 199 new predictions, and 5, 624, 383 over-
laps with MATS, ExpressionPlot, and IRFinder, respec-
tively. From the new predictions and each overlap, we
randomly picked one case to display by IGV software
[21] and [22], to study whether the introns are retained.
As shown in Figure 6, our new prediction intron 1 of
AT4G26080.1 (d) is retained between treatment and
control conditions, in the similar way as those in over-
laps with MATS (a), ExpressionPlot (b) and IRFinder
(c). That is, our IRcall could predict known and novel
IR event candidates.

Figure 4 IR Event Predictions. (a) Predictions of MATS, ExpressionPlot and IRFinder; (b) Predictions of IRcall, MATS, ExpressionPlot and IRFinder;
(c) Predictions of IRclassifier (J48 Decision Tree), MATS, ExpressionPlot and IRFinder; (d) Predictions of IRclassifier (RF), MATS, ExpressionPlot and
IRFinder.
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However, those overlaps in Figure 4(b) only demon-
strate the worst case of IRcall, as the IR score and rank-
ing strategy have not been applied. To verify that the
top-ranked IR event candidates tend to be true IR
events, we studies the accuracy of IRcall top-n%

predictions with the evaluation reference, that is, the
10202 positive predictions of MATS, ExpressionPlot and
IRFinder. As shown in Figure 5, with the increase of
returned IR events number (from top-10% to top-100%),
the prediction accuracy decreases. That is to say, the

Figure 6 Pre-mRNAs with predicted IR events (red arrows indicating retained introns).
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top-ranked IRcall predictions tend to have higher accuracy
(i.e. 98.91% for top-10% predictions), thus the IR score
and ranking strategy proposed by IRcall are effective for IR
event detection. Therefore, biologists are suggested taking
top-ranked IR events for wet-lab verification.

IRclassifier performance
As for IRclassifier, the instances hit by at least two of the
three algorithms MATS, ExpressionPlot and IRFinder are
taken as our positive training instances, labeled by “yes”.
As shown in Figure 4(a), the positive predictions of
IRFinder and MATS have 10 overlaps, IRFinder and
ExpressionPlot have 731 overlaps, while MATS and
ExpressionPlot have none overlap. Thus, we get 741
instances for our positive training set. As for the negative
training set, we randomly take 3525 introns hit by none
of the above three algorithms, labeled by “no”. 10-fold
cross-validation is employed to avoid over-fitting and
evaluate prediction accuracy for both J48 and RF classi-
fiers. As shown in Table 2, the J48 classifier is of 99.1%
true negative rate (specificity), 96.0% true positive rate
(sensitivity) and 98.5% accuracy; while the RF classifier is
of 99.7% true negative rate, 96.3% true positive rate and
99.0% accuracy.
In addition, the predictions of IRclassifier are evaluated

with the reference predictions of MATS, ExpressionPlot
and IRFinder. As shown in Figure 4(C) and 4(D), the J48
classifier predicts 1086 new IR events, and 22 MATS,
1898 ExpressionPlot, 1226 IRFinder overlaps; while the
RF classifier predicted 850 new IR events, and 18 MATS,

1751 ExpressionPlot, 1407 IRFinder overlaps. Among the
new IRclassifier predictions, we randomly choose two
cases displayed by IGV software in Figure 6: (e) intron 7
of AT5G61500.1 (predicted by J48 classifier) in skip
mutant was retained compared with wild-type; and (f)
AT3G45050 (predicted by J48 and RF classifiers) was dif-
ferent spliced between treatment and control conditions,
where transcript 1 of AT3G45050 (AT3G45050.1) was
expressed under treatment condition, but transcript 2, 3,
and 4 of AT3G45050 (AT3G45050.2, AT3G45050.3 and
AT3G45050.4) are expressed under control condition.

Feature ranking
To examine how each individual feature affects IR event
prediction, we adopt the information gain for feature
ranking. As each feature comes from both treatment
and control samples, we take the value of treatment/
control for information gain calculation in that IR events
usually exist where the difference between treatment
and control samples is significant. As shown in Table 3,
features with higher information gains are relatively
more relevant to IR event detection. The results show
that the read counts within an intron, read counts over-
lapping with 5’ and 3’ splicing site are the most influen-
tial features for IR event detection.

Conclusions
In this paper, we overcome the limitations of traditional
statistical and computational methods for IR event iden-
tification from RNA-Seq data, by proposing two novel
algorithms, IRcall and IRclassifier, to detect the IR
events between treatment and control conditions. In our
methods, new features are employed to filter out false
positives effectively. IRcall takes 14 features and defines
a novel formula IRscore for candidate IR event ranking.
From experiments, 98.91% of IRcall’s top-10% high
ranked IR event candidates have been verified by other
methods. As a machine learning method for IR event
detection, IRclassifier employs 17 features, and gets
98.5% and 99.0% recognition precisions, with J48 Deci-
sion Tree classifier and Random Forests classifier,
respectively. Therefore, we believe that our IRcall and
IRclassifier are effective to detect IR events between

Figure 5 Accuracy of the top-n% IRcall predictions.

Table 2 IRclassifier Performance

Classifier Acc Sp Sn AUC

J48 98.5% 99.1% 96.0% 97.2%

RF 99.0% 99.7% 96.3% 99.8%

Acc: Accuracy, Sp: Specificity, Sn: Sensitivity, AUC: Area under ROC curve.

Table 3 Feature ranking

Features(treatment/control) Information gain

read counts within an intron 0.4038

read counts overlapping with 3 splicing site 0.3948

read counts overlapping with 5 splicing site 0.3917

read coverage within an intron 0.2496

read counts supporting splice junction 0.2343

read counts within flanking exons 0.0713

gene expression RPKM values 0.0527
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treatment and control conditions from RNA-Seq data,
delivering valuable information and tools for alternative
splicing research.
In future, instead of using TopHat2 for junction align-

ment, we will consider assessing the influence of differ-
ent junction alignment methods on the performance of
IRcall and IRclassifier. Besides, we plan to use IRcall and
IRclassifier to detect IR events from paired-end sequen-
cing data.
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