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Abstract

Clustering is one of main methods to identify functional modules from protein-protein interaction (PPI) data.
Nevertheless traditional clustering methods may not be effective for clustering PPI data. In this paper, we proposed
a novel method for clustering PPI data by combining firefly algorithm (FA) and synchronization-based hierarchical
clustering (SHC) algorithm. Firstly, the PPI data are preprocessed via spectral clustering (SC) which transforms the
high-dimensional similarity matrix into a low dimension matrix. Then the SHC algorithm is used to perform
clustering. In SHC algorithm, hierarchical clustering is achieved by enlarging the neighborhood radius of
synchronized objects continuously, while the hierarchical search is very difficult to find the optimal neighborhood
radius of synchronization and the efficiency is not high. So we adopt the firefly algorithm to determine the optimal
threshold of the neighborhood radius of synchronization automatically. The proposed algorithm is tested on the
MIPS PPI dataset. The results show that our proposed algorithm is better than the traditional algorithms in
precision, recall and f-measure value.

Introduction
Protein-protein interaction(PPI) data [1] have been very
important sources in the researches of life science, which
can explore biological functions so as to deeply under-
stand the essence of life activities and mechanism of dis-
eases. Clustering analysis of PPI data is an effective way to
predict the function modules and protein complex and,
study mechanisms, diagnosis and treatment of diseases.
PPI data are often represented as PPI network. Tradi-

tional clustering methods do not perform well for PPI data
due to the properties of their represented networks such
as small world and scale free characters [1,2]. Many new
algorithms were proposed for clustering PPI networks
[3,4]. In 2002 years, Girvan and Newman[5] proposed a
clustering algorithm based on hierarchical divisions, which
deletes the edge with the biggest betweenness [6,7] con-
stantly to separate modules. The Newman fast algorithm
[8] is a kind of clustering algorithm based on hierarchy
condensations, in which the algorithm continually merges

two modules that have the highest similarity. Restricted
Neighborhood Search Clustering (RNSC) algorithm [9] is
another kind of clustering algorithm based on graph parti-
tioning, which starts with a random partition of a network
and iteratively moves the nodes on the border of a cluster
into the adjacent cluster to search for a better clustering
result with the minimum cost. Clique Percolation Method
(CPM) was put forward by Palla [10], in which the k-
cliques was identified by using clique percolation firstly,
and then the adjacent k-cliques were combined to get the
functional modules. Bader et al. proposed molecular com-
plex detection (MCODE) [11], in which every node was
weighted by the node’s local neighbor density firstly, then
the nodes with high weights were picked as the seed nodes
of initial clusters and further these clusters were augmen-
ted to form the preliminary clusters. Markov clustering
(MCL) [12] is a graph clustering based on flow simulation,
which has been applied to detect functional modules
through simulating random walks within a graph. Spectral
clustering-based (SC) method [13] converts the problem
to a quadratic optimization with constraints by utilizing
the methodology of matrix analysis, which is generally
applied to the fields of image segmentation and complex
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network clustering. Some methods advise that we should
consider the gene expression data and detect protein com-
plexes basing on uncertain graph model [14,15],There are
many new algorithms also, such as Ovrlp, PE-WCC,
UVCluster, AP, GFA, ADMSC, SCI-BN, CORE, FAG-EC,
HC-PIN, IPCA, CP-DR, LF-PIN, ABC algorithm [16-29]
and so on.
Synchronization is a natural phenomenon ranging from

the metabolism in the cell to social behavior in groups of
individuals regulating a large variety of complex pro-
cesses. The sync [30] algorithm inherited from synchro-
nization, which is a novel approach to cluster objects
inspired by the powerful concept of synchronization. The
basic idea is to regard each object as a phase oscillator
and simulate their interaction behaviors over time. The
similar phase oscillators synchronize together and form
distinct clusters naturally along with time increasing.
Without depending on any distribution assumptions, the
sync algorithm can detect clusters of arbitrary number,
shape and size. In addition, because the outliers do not
synchronize with cluster objects, the concept of synchro-
nization allows handling the natural outliers. However,
the running time of the algorithm is too long to process
the large-scale data. The running time of the algorithm
consists of two parts primarily: the dynamic interaction
time of synchronizing objects and the process of deter-
mining the optimal synchronous neighborhood radius.
For reducing the dynamic interaction time of synchroni-
zation of data, the concept of ε-neighborhood closures
was proposed in the synchronization-based hierarchical
clustering (SHC) [31,32] algorithm, the objects in a
neighborhood closures will reach synchronization com-
pletely and eventually form a cluster. So it can detect
clusters by putting the objects in the same neighborhood
closures to a cluster even if the objects do not synchro-
nize completely. However, the SHC algorithm determines
the optimal value of synchronous neighborhood radius by
means of hierarchical search that the sync algorithm
does. The hierarchical search for the optimal value of
synchronous neighborhood radius not only has low effi-
ciency but also has other two shortcomings. The hier-
archical search is very difficult to find the optimal value
of synchronous neighborhood radius, and the hierarchi-
cal incremental Δε needs to be adjusted according to the
different object distributions.
Swarm intelligence optimization algorithm is a kind of

bionic algorithms developed in recent years, which is
characterized by simply handling, collateral implementa-
tion and strong robustness. The searching process for
the optimal value of swarm intelligence optimization
does not require the solution set differentiable or even
continuous. So the swarm intelligence optimization
algorithm is applied extensively to pattern recognition,

automatic control, robot path planning and other fields.
The firefly algorithm (FA) [33-35] is an intelligent opti-
mization algorithm developed by simulating the glowing
characteristics of fireflies based on group searching. The
bionic principle of the FA algorithm is looking for part-
ners in the searching area according to the glowing
characteristics of fireflies, and then moving towards the
brighter firefly. Regarding points in the solution set as
fireflies, the searching process in solution space is
viewed as attraction and movements of fireflies. After
many times of movements, all individuals will be gath-
ered in the position with the highest brightness of fire-
flies, so as to achieve optimization. The process of
optimization of the firefly intelligent algorithm is simple
and efficient, and therefore is widely applied to func-
tional optimization and combinatorial optimization.
Combining the advantages of the SHC algorithm and

the optimization ability of the FA algorithm noted
above, it is naturally to adopt the FA to improve the
SHC algorithm. Using the FA algorithm to find the opti-
mal value of synchronous neighborhood radius will be
more efficient and accurate than the basic hierarchical
search do. In addition it is applicable to arbitrary data
distribution.
The paper is organized as follows: in Section “Materials

and method”, basic concepts and principles are intro-
duced firstly; secondly the proposed model of clustering
is discussed, and then the flow chart is listed, along with
the time complexity analysis of the algorithm. Perfor-
mance and evaluation of the proposed algorithm is
shown by comparing with SC and SHC in Section
“Results and Discussions”. The last Section concludes
this research.

Materials and method
The SHC algorithm
The phenomenon of synchronization often appears in
physics, it can be expressed as follows. Two or more
dynamic systems both have their own evolution and
mutual coupling. This effect can be either one-way or
two-way streets. When meets certain conditions, the
output of these systems will eventually converge and
completely be equal under the influence of coupling,
this process is called synchronization. The Kuramotom
model [36,37] is applied widely as the simple model of
synchronization behavior, the generalized definition of
Kuramotom model is shown as follows:
Definition 1 (Generalize Kuramoto model): The Kura-

moto model consists of a population of N coupled phase
oscillators θi(t) whose dynamics are governed by:

θi = ωi +
N∑
j=1

Kij sin(θj − θi) (1)
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where ωi is its natural frequencies and is distributed
with a given probability density g(ω).
Each oscillator tries to run independently at its own

frequency, while the coupling tends to synchronize it to
all the others.
The sync algorithm is a novel approach for clustering

inspired by the powerful concept of synchronization. It
regards each data object as a phase oscillator, and each
dimension coordinates corresponding to a phase value of
the oscillator. Each object couples with data objects in its
ε-neighborhood, where ε is the neighborhood radius. In
the effect of synchronization coupling, the object’s coordi-
nates are transformed constantly, and objects with the
same coordinates will be classified eventually to the same
cluster, namely synchronization completion. Let x ∈ Rd

represents an object in the dataset X and xi be the i-th
dimension of the object x. The transformation formula of
coordinate of x shows as follows.

xi (t + 1) = xi (t) +
1∣∣Nε(x(t))

∣∣
∑

y∈Nε(x(t))
sin(yi (t) − xi (t))(2)

where ε-neighborhood is defined in Definition 2
below.
Definition 2 (ε-neighborhood): The ε-neighborhood

radius of an object is a collection of data with distances
to the object less than ε:

Nε (x) =
{
y ∈ X|dist (x, y) ≤ ε

}
(3)

where dist(x,y) is the metric function of distance and the
Euclidean distance is often used. If the object y ∈ Nε(x), y
is called the ε-neighborhood of x, denoted by x ®ε y. The
relationship of ε-neighborhood between objects is symme-
trical, namely if x ®ε y then y ®ε x.
For reducing the dynamic interaction time of synchroni-

zation of data in the sync algorithm, the concept of neigh-
borhood closures is proposed in SHC algorithm. Objects
in a ε-neighborhood closure will reach synchronization
complete eventually. So it can detect the clusters even if
the objects have not yet reached the same coordinates by
classifying data in the same neighborhood closures to the
same cluster, which reduces the dynamic interaction time
of data.
Definition 3 (ε-neighborhood closures): Suppose objects

set X’ ⊆ X, in the dynamic process of synchronous cluster-
ing, if ∀x, y ∈ X’ satisfies x ®ε y, and if ∀x ∈ X, x ®ε z,
then z ∈ X’, X’ is called an ε-neighborhood closure, that is,
for any object x ∈ X’, Nε(x) = X’ is established.
a1, a2, a3, a4 form a ε-neighborhood closure in the Figure 1,

and will reach complete synchronization eventually.
The optimal value of synchronous neighborhood

radius needs to be determined in both the sync algo-
rithm and the SHC algorithm. The SHC algorithm
determines synchronous neighborhood radius by means

of the hierarchical search that the sync algorithm does.
The process of hierarchical search for the optimization
of the neighborhood radius shows as follows. Starting in
a small neighborhood radius value ε, then adding an
increment (marked as Δε) to ε at a time (ε = ε + Δε)
until the neighborhood radius is large enough to contain
all objects. Clustering in each neighborhood radius of ε,
and it is considered to be optimal when the ε gets the
best result of clustering.

The FA
The FA is a random optimization algorithm constructed
by simulating the group behavior of the fireflies. There
are two important elements in the FA, the light intensity
and the attractiveness. The former reflects the advan-
tages and disadvantages of locations of fireflies and the
latter determines the movement distances of fireflies
attracted. The optimization process of the algorithm is
implemented through updating the light intensity and
the attractiveness constantly. The mathematical mechan-
ism of the FA is described as follows.
The relative value of the light intensity of fireflies is

expressed as:

I = I0 × e−γ rij (4)

where I0 is the initial light intensity (r = 0) related to
the objective function value, the higher the value of
objective function is, the stronger the initial light inten-
sity I0 will be. g is the light absorption coefficient set to
reflect the features that the light intensity decreases gra-
dually along with the increase of the distance and the
absorption of the medium. It can be set to a constant.
rij is the space distance between firefly i and firefly j.
The attractiveness of firefly is expressed as:

β = β0 × e−γ r2ij (5)

where b0 is the maximum of attractiveness. g and rij
are the same as above.

Figure 1 ε-neighborhood closures.
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If firefly i moves to firefly j, the updating of location of
firefly i is expressed as:

xi (t + 1) = xi (t) + β × (
xj (t) − xi (t)

)
+ α × (

rand − 1/2
)
(6)

where xi(t), xj(t) are the space coordinates of firefly i
and firefly j at the time t, a is step-size in [0, 1], rand is a
random factor that follows uniform distribution in [0, 1].
Fireflies are distributed to the solution space randomly

first of all. Each firefly has its own light intensity accord-
ing to its location, the light intensity is calculated accord-
ing to Eq. (4). The firefly with low light intensity is
attracted by and moving to the firefly with higher light
intensity. The movement distance depends on the attrac-
tiveness between them calculated by Eq. (5). The location
updating of the fireflies is cumulated based on Eq. (6).
There is a disturbing term in the process of updating the
location, which enlarges the search area and avoids the
algorithm to fall into the local optimum too early. Finally
all fireflies will gather in the location of the maximum
light intensity.

The proposed clustering algorithm
The sync algorithm clusters objects based on the princi-
ple of dynamic synchronization, which has many advan-
tages in that it reflects the intrinsic structure of the
dataset. For example, it can detect clusters of arbitrary
number, shape and size and not depend on any assump-
tion of distribution. In addition, it can handle outliers
since the noise will not synchronize to cluster objects.
However, the running time of the algorithm consists of
two parts primarily: The dynamic interaction time of syn-
chronization of data and the process of determining the
optimal value of synchronous neighborhood radius,
which is too long to process large-scale data.
Aiming to reduce the dynamic interaction time of the

sync algorithm, the concept of ε-neighborhood closures is
proposed in the SHC algorithm. It classifies objects in the
same neighborhood closures to a cluster even if objects
have not yet reached the same coordinate, which enhances
the efficiency of the algorithm by reducing the time of
dynamic interaction of data. However, the SHC algorithm
determines synchronous neighborhood radius by means of
hierarchical search that the sync algorithm does. The hier-
archical search for synchronous neighborhood radius not
only has low efficiency but also has two shortcomings.
Firstly, the hierarchical search is very difficult to find the
optimal value of synchronous neighborhood radius in a
fixed increment. Secondly, the increment Δε needs to be
adjusted according to different data distributions. For
example, in the SHC algorithm, the initial value of ε is set
to the average distance of all objects of its three nearest
neighbors. The increment Δε is the different value of the
average distance of all objects to its four nearest neighbors

minus the average distance of all objects to its three near-
est neighbors. So the running time of the SHC algorithm
is very huge when the dataset is uniform and dispersive. In
addition, we must set Δε small when the data distribution
is approximate, otherwise it is hard to find the optimal
value of synchronous neighborhood radius.
The FA is a swarm intelligent optimization algorithm

developed by simulating the glowing characteristics of fire-
flies, which is speedy and precise in the optimization pro-
cess. Using the firefly algorithm to search for the optimal
neighborhood radius of synchronous can overcome the
drawbacks of the hierarchical search. It adopts fewer
searching steps for the optimal value of synchronous
neighborhood radius and gets more accurate results than
the hierarchical search due to its intelligent searching stra-
tegies. So it saves time on determining the optimal value
of synchronous neighborhood radius. In addition, it is
applicable to any data distributions. So we improve the
SHC algorithm by means of the FA and apply the pro-
posed algorithm to clustering PPI data.
Preprocessing of PPI data
The PPI data is expressed as a graph, called PPI network,
in which each node represents a protein and the edge
between two nodes represent the interaction between pro-
teins. In that way, we get an n*n adjacency matrix of
nodes. However, the dimension of the adjacency matrix is
too big to deal with. Inspired by the spectral clustering, we
use the following way to reduce the dimension of the adja-
cency matrix of PPI.
First, a similarity matrix A of nodes is constructed as

follow.

Aij =

⎧⎪⎨
⎪⎩

η
|Ni ∩ Nj| + 1

min(Ni,Nj)
+ (1 − η)

∑
k∈Iij w(i, k) · ∑k∈Iij w(j, k)∑
s∈Ni

w(i, s) · ∑t∈Ij w(j, t)
i �= j

0, i = j
(7)

where Ni, Nj are neighbor nodes of nodes u and v
respectively. Iij is the common neighbors of i and j, w(i,j)
is the weight between i and j to measure the interaction
strength, and h is constant between 0 and 1.
Eq. (7) considers two aspects of the aggregation coeffi-

cient of edges and the weighted aggregation coefficient of
edges [38-40]. The first half of Eq. (7) is the aggregation
coefficient of edges based on degree, which is portrayed by
means of the ratio between adding 1 to the number of
common neighbors of two protein nodes and minimal
value of the number of neighbors of two nodes. The sec-
ond half of Eq. (7) is the weighted aggregation coefficient
of edges, which is illustrated by the ratio between the pro-
duct of summation of weight values of edges respectively
connecting these two nodes (i, j) with their common
neighbors (k) and the product of summation of weight
values of edges linking these two nodes (i, j) with their
corresponding neighbors (s, t). In addition, we use h to
balance the weight of the two parts.
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Then constructing Laplacian matrix L of matrix A, the
D is the diagonal matrix in which (i, i)-element is the
sum of A’s i-th row.

Lij =

⎧⎨
⎩

0 Dii = 0|Djj = 0
Aij√
DiiDjj

else (8)

Matrix X consists of eigenvectors of matrix L’s corre-
sponding to the first three eigenvalues and X is normal-
ized. X is an n*3 matrix, in which lines represent the
protein objects (corresponding to the protein nodes in PPI
network) and columns are the three-dimensional space
coordinates of the protein objects. Our proposed cluster-
ing algorithm is calculated based on X.
Design of solution space
The solution space of the position of the firefly corre-
sponds to the neighborhood radius of synchronization.
The initial light intensity I0 of one firefly is assigned by
the calculation result of objective function, see Eq.(9),
which is expressed as the evaluation of clustering results
based on the neighborhood radius of the firefly. Moving
to the firefly with higher light intensity is regarded as to
search for the optimal value of synchronous neighbor-
hood radius. The position of the firefly with the highest
light intensity means the optimal value of synchronous
neighborhood radius.
Definition of objective function
We choose the following object function to evaluate the
clustering results. Clusters with higher value of the
objective function mean the stronger modularity of clus-
ters, namely, a better clustering result.

fval =
∑x

i=1

⎧⎨
⎩

(
2 · mHi/

(
nHi +mHi

))ρ ·
⎛
⎝ ∑

u,v∈Hi,w(u,v)∈W
w(u, v)/

∑
u,v∈Hi,w(v,k)∈W

w (v, k)

⎞
⎠

1−ρ⎫⎬
⎭ (9)

Where mH is the number of edges that connect points
in the cluster Hi , nH is the number of edges that connect
points in the cluster Hi with points out of the cluster Hi,
w(u,v) is the weight between point u and point v, x is the
number of clusters, W is the set of connections.
The first half of the Eq. (9) is the summation of the ratio

of its in-degree to the sum of its in-degree and its out-
degree, the second part is the summation of the ratio of its
weighted in-degree to the sum of its weighted in-degree
and its weighted out-degree. The two parts calculate mod-
ularity respectively. We can change the proportion of two
parts by adjusting the parameter r.
Flow chart of the algorithm
Figure 2 is the flow chart of the improved synchroniza-
tion-based hierarchical clustering algorithm.
The detailed procedures of the improved SHC algo-

rithm are as follows.
Step 1 Construct a similarity matrix A of protein

objects, and then get Laplacian matrix L of the matrix A.

Matrix X consist of the matrix L’s eigenvector that the
top three eigenvalues corresponded. X is an n*3 matrix,
in which the rows represent protein objects and the col-
umns are the three-dimensional space coordinates of
protein objects.

Step 2 The setting of parameters: the number of
firefly N, the maximum of attractiveness b0, the light
absorption coefficient g, step-size a, Maximum itera-
tions maxiter, iter = 0.
Step 3 Initialize the location of firefly in the solution
space of the neighborhood radius ε of synchronization.
Step 4 Do clustering respectively based on the syn-
chronous in ε that each firefly corresponding.

Step 4.1 Find ε-neighborhood closures of protein
objects of matrix X. Objects that belong to the
same closures are divided into a cluster, and then
mark those objects.
Step 4.2 If all points are marked, return to the
result of clustering, otherwise the unmarked
objects couple with the objects in its ε-neighbor-
hood according to the formula (2), and then go
to step 4.1.

Step 5 The light intensity of fireflies are assigned by
the calculation result of the objective function (9)
according to the clustering result. Compare the
brightness of fireflies, if Ii >Ii, calculate the attrac-
tiveness according formula (5), and then update the
location of firefly i according to the formula (6).
Step 6 iter = iter+1;
Step 7 If iter <= maxiter, go to Step 4, otherwise
output the clustering result that the firefly with the
highest light intensity.

The time complexity of algorithm
The time complexity of the SHC algorithm is O(T·n^2) in a
certain neighborhood radius, where n is the number of
nodes, T is the number of synchronization to form ε-neigh-
borhood closures. Assuming that the number of dynamic
interaction of synchronization of data to form ε-neighbor-
hood closures will not change in different neighborhood
radiuses, the time complexity of the SHC algorithm is O
(k·T·n^2), k is the number of iterations of searching for the
optimal ε-neighborhood radius based on the hierarchical
search. Replacing the hierarchical search with FA results in
the decrease of k, it enhances the efficiency of the algorithm.

Results and discussions
Analysis of experiment parameters
We set the weigh h = 0.5 to balance the aggregation coef-
ficient of the edge and the weighted aggregation coeffi-
cient of the edge in Eq. (8) in the preprocessing. The
setting of parameters of the FA: the maximum of attrac-
tiveness b0 = 1, the light absorption coefficient g = 1, the
step-size a = 0.9, we set r = 0.8 in the objective function.
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The value of r in the objective function of the FA is
important to evaluate the result of clustering. Aiming at
reflecting the correlation between fval and f-measure in
different r, we calculate the Pearson correlation coeffi-
cient of fval and f-measure in 20 values that distribute
evenly in the region of 1 to 6 of the neighborhood
radiuses. The result is shown in Table 1 the fval and f-
measure correlation is extremely linear when r = 0.8.
Thus we set r = 0.8.
The Pearson correlation coefficient is shown as:

r =
1

n − 1

n∑
i=1

(
Xi − X̄
SX

) (
Yi − Ȳ
SY

)
(10)

Where X̄ , Ȳ and SX, SY represent the mean value and
the variance of X and Y, respectively.

With practical consideration, we set the searching
number for the optimal threshold of the neighborhood
radius of synchronization small values. As the value of
step-size a in FA is important to the result, we calculate
20 times to get the average value of the maximum
objective function in different a, which is shown in
Table 2. Tests are carried on n = 6, maxiter = 30 cases.
The average of the maximum objective function value is
optimal when a = 0.9. Thus we set step-size a = 0.9.

The performance comparison on different optimization
algorithms
In the experiments, the dataset of PPI networks was
downloaded from MIPS database [40], which consists of
two sets of data: one is the experimental data which
contains 1376 protein nodes and the 6880 interactive

Figure 2 Flow chart of the improved SHC algorithm.

Table 1 Comparisons of the Pearson correlation coefficient between fval and f-measure in different r
r 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r 50.9059 51.9654 52.0163 52.0588 52.0933 52.1201 52.1396 52.1521 52.1580 52.1574 52.1508
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protein-pairs, which is considered the training dataset;
the other describes the result that the proteins belong to
identical functional module, which is regarded as the
standard dataset [41], containing 89 clusters.
Inspired by the swarm optimization algorithms [42-45],

we use them to search for the optimal threshold of the
neighborhood radius of synchronization. The experimental
parameters of PSO, GA and FA algorithms are shown in
Table 3. The parameters of PSO and GA are set empiri-
cally based on the references [46,47]. We also calculate the
maximum objective function values for 10 times and the
average of the maximum objective function value over 20
times of the FA, the PSO, and the GA, which is shown in
Table 4 and Table 5. The plots of the optimal objective
function value with the number of iterations are depicted
in Figure 3. The FA algorithm always converges to the
optimal value fast. However, the PSO algorithm falls into a
low value sometimes, the GA algorithm gets a higher
value always. The FA performs best when considering
convergence speed and global optimization ability
comprehensive.
Precision, recall, and f-measure are employed as the

metric for clustering in this study. Precision [48] is the
ratio of the number of maximum matching nodes in train-
ing with standard database to the number of training
nodes. Recall [48] is the ratio of the largest number of
nodes in training matched the standard database to the
number of nodes in the standard database. Precision and
recall are defined as Eqs. (11)- (12), respectively while

F-measure, the harmonic mean of precision and recall is
defined as Eq. (13).

precison (C—F) =
MMS (C, F)

|C| (11)

recall (C—F) =
MMS (C, F)

|F| (12)

f - measure =
precision · recall
precision + recall

(13)

where C is the set of cluster results of training data-
base, F stands for the set of cluster results of MIPS

Table 2 The average of maximum objective function values of different a for 20 times clustering (value)

a 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

value 94.4592 95.7940 95.4177 95.4546 95.7102 96.1161 95.2840 95.7408 95.7408 96.2709 95.7664

Table 3 The experimental parameters of PSO, GA and FA algorithms

PSO The global acceleration coefficient (c1) = 2 The local acceleration coefficient (c2) = 2

GA The crossover probability (pcro) = 0.8 The mutation probability (pmut) = 0.085

FA The maximum of attractiveness b0 = 1
The step-size a = 0.9

The light absorption coefficient g = 1

Table 4 The maximum objective function value of 10 times (value) of the FA, PSO, and GA algorithms

Algorithm 1 2 3 4 5 6 7 8 9 10

PSO 96.2709 96.2709 91.6680 96.2709 96.2709 91.6680 91.6680 96.2709 96.2709 96.2709

GA 96.2709 95.8277 95.9618 96.1602 96.0500 95.9618 95.9655 96.0500 96.2709 96.2709

FA 96.2709 96.2709 96.2709 96.2709 96.2709 96.2709 96.2709 96.2709 96.2709 96.2709

Table 5 The average of the maximal objective function
value of PSO, GA and FA algorithms on 10 times

Algorithm PSO GA FA

Value 94.8900 96.0790 96.2709

Figure 3 Plots of the optimal objective function value with the
number of iterations of the FA, PSO and GA. (a) Comparison of
precision value (b) Comparison of recall value (c) Comparison of f-
measure value
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database, |C| represents the number of cluster nodes in
training database, |F| represents the number of cluster
nodes in standard database, MMS represents the num-
ber of maximum matching nodes in training database
with standard database.
The running time of SHC algorithm and the proposed

algorithm are proportional to the searching number of
times, when the searching number of times is big, the
algorithms are impractical. So we compare the two algo-
rithms in 20 times searching. The proposed method is
compared with SC algorithm and the SHC algorithm in
terms of precision, recall and f-measure, respectively.
The ISHC algorithm converges to the optimal thresh-

old of the neighborhood radius of synchronization stea-
dily when the searching number is large in Table 4. In

order to obtain a more intuitive and obvious result, we
reduce the searching number in Figure 4. We can see
from the Figure 4 and Table 6 that the performance of
the ISHC algorithm is better than the SC algorithm and
the SHC algorithm in precision, recall and f-measure.
We compare our proposed algorithm with the SHC algo-
rithm in 20 times searching as in Figure 4, the result of
our proposed algorithm is not stable sometimes. We also
compare our proposed algorithm with some classical algo-
rithms shown in Table 6. In these algorithms we listed,
the result of our proposed algorithm performs best.

Conclusion
The sync algorithm is a novel clustering algorithm based
on the model of synchronous dynamics, which can detect

Figure 4 The improved algorithm compared with spectral clustering algorithm and SHC in precision, recall and f-measure.
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clusters with arbitrary shape and size and has the anti-
noise ability. However, the running time of the algorithm
consists of two parts primarily: The dynamic interaction
time of synchronizing data and the process of determin-
ing the optimal synchronous neighborhood radius, which
is too long to process large-scale data. The SHC algo-
rithm proposes the concept of neighborhood closures
reducing dynamic interaction time of the sync algorithm.
In our proposed algorithm, the efficiency and accuracy is
further improved by using the FA to determine the opti-
mal thresholds of neighborhood radius of synchroniza-
tion. The recall, precision and f-measure of our proposed
algorithm are improved compared with SC and SHC
algorithms. In future, we are intending to seek a more
suitable model of synchronous dynamics for PPI data
clustering to improve the effect of the algorithm, also the
time complexity is still need to be decreased.
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