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Abstract

Background: Methylated RNA Immunoprecipatation combined with RNA sequencing (MeRIP-seq) is revolutionizing
the de novo study of RNA epigenomics at a higher resolution. However, this new technology poses unique
bioinformatics problems that call for novel and sophisticated statistical computational solutions, aiming at
identifying and characterizing transcriptome-wide methyltranscriptome.

Results: We developed HEP, a Hidden Markov Model (HMM)-based Exome Peak-finding algorithm for predicting
transcriptome methylation sites using MeRIP-seq data. In contrast to exomePeak, our previously developed
MeRIP-seq peak calling algorithm, HEPeak models the correlation between continuous bins in an m6A peak region
and it is a model-based approach, which admits rigorous statistical inference. HEPeak was evaluated on a simulated
MeRIP-seq dataset and achieved higher sensitivity and specificity than exomePeak. HEPeak was also applied to real
MeRIP-seq datasets from human HEK293T cell line and mouse midbrain cells and was shown to be able to
recapitulate known m6A distribution in transcripts and identify novel m6A sites in long non-coding RNAs.

Conclusions: In this paper, a novel HMM-based peak calling algorithm, HEPeak, was developed for peak calling for
MeRIP-seq data. HEPeak is written in R and is publicly available.

Background
RNA methylation is an emerging area that studies che-
mical modifications in the nucleotides of RNAs [1-4].
Such modification in especially coding mRNAs or tran-
scripts has been shown [5,6] or speculated to play a cri-
tical role in regulating cellular functions [7-9]. However,
the overall mechanism by which mRNA is methylated
and the related functions in different contexts including
various diseases are still elusive. Deciphering their func-
tions and regulations under various contexts represents
a grand challenge facing the biology community.
The state-of-the-art high throughput technology that

enables the detection of RNA methylation in transcrip-
tome is an affinity-based shotgun sequencing approach
known as Methylated RNA immunoprecipitation (IP)
sequencing (MeRIP-Seq) [2]. MeRIP-Seq was first intro-
duced in recent studies [1,2,10,11] on transcriptome-wide

mRNA m6A methylation and is a high throughput
sequencing assay that is designed for transcriptome-
wide survey of RNA epigenetics [6]. As shown in Figure 1,
in MeRIP-seq, mRNA is first fragmented before immuno-
precipitation with anti-m6A antibody, and then the immu-
noprecipitated and control mRNA fragments are subject
to sequencing. The output includes an IP and a control
sample, which measure the immunoprecipitated
m6A-methylated mRNA reads and the mRNA expression
(or RNA-seq measurement), respectively. These paired
samples are used to reconstruct the transcriptome-wide
m6A methylome. While MeRIP-seq has demonstrated
high accuracy in identifying the cell-specific transcriptome
methylation patterns, as a nascent assay, MeRIP-Seq poses
unique bioinformatics challenges that call for novel and
sophisticated statistical computational algorithms.
From a biological perspective, MeRIP-Seq can be

thought as a combination of two well-studied methods:
ChIP-Seq [12-14] and RNA-Seq [15,16]. Like ChIP-seq,
reads accumulate around the methylation sites to form
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peaks. Unlike ChIP-seq based measurements for DNA
methylation, MeRIP-seq measures mRNA methylation
and hence produces read peaks around the methylation
sites that span two or more exons. In addition, the control
sample of MeRIP-seq measures mRNA expression, which,
compared to those in ChIP-Seq, can vary much more
drastically in different cells or tissues. Due to these unique
features, ExomePeak [17] was developed specifically for
peak calling, or methylation site prediction, in MeRIP-seq.
Although ExomePeak can perform fairly robust exome-
based peak calling, it ignored the dependency of reads,
and therefore could either miss true peaks with low inten-
sity or erroneously predict narrow, noisy outliers as true
peaks. In this paper, we introduce HEPeak, a novel Hidden
Markov model (HMM) for exome-based peak calling algo-
rithm. The test results showed that HEPeak improved
both prediction sensitivity and specificity over ExomePeak.

Methods
HEPeak pipeline
To address the aforementioned MeRIP-seq issues, HEPeak
includes several high-throughput sequencing tools in its
pipeline. First, HEPeak utilizes TopHat [18] to align frag-
mented mRNA reads to the reference transcriptome,
allowing short reads to span exon-exon junctions. Next,
SAM-tools [19] is applied to exclude the multi-mapping
reads and index alignment results. After these pre-proces-
sing steps, HEPeak performs HMM-based peak calling on
the exons of each gene, where the introns are excluded, to
identify the genomic locus of methylation sites. The output

result of HEPeak is in BED format, which can be visualized
together with input alignments in IGV2.1 [20].

Exome-based peak calling
The goal of peak calling in MeRIP-seq is to detect
regions in transcripts where the read counts in the IP
sample is more “enriched” than those in the control
sample. Just as with ExomePeak, our previously devel-
oped peak calling algorithm for MeRIP-seq, HEPeak
performs the peak calling on connected exons of a spe-
cific gene, a clear contrast to genome-based ChIP-seq
peak calling methods, such as MACS [21]. This projec-
tion of genome onto transcriptome effectively circum-
vents the difficulty due to the ambiguity of isoforms’
assignment but it still preserves the convenience of
gene-based annotation, making biological interpretation
of the prediction straightforward.

The definition of HMM for MeRIP-seq data
Given a particular mRNA (RefSeq gene), its concatenated
exons are first divided into N mutually connected bins,
whose size is selected as the read length L. With respect
to the nth bin, the unknown hidden methylation status is
denoted as zn ∈ {1, 2} where 1 represents unmethylation
and 2 otherwise. Since a peak likely spans multiple bins,
we assume that the methylation status zn follows a first
order Markov chain, whose transition matrix A contains
entries defined as

Ajk = P(zn = k|zn−1 = j), j, k ∈ {1, 2} (1)

Figure 1 Illustration of MeRIP-seq. Total RNAs are collected from cells and fragmented into ~100 nt long. A part of fragmented RNAs is taken
as the control sample, which is submitted for sequencing. The remaining part is subject to immunoprecipitation by antibody to isolate the
methylated sequences, which are then submitted for sequencing.
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where Ajk denotes the probability for the latent variable
switching from the status j at the (n - 1)th bin to the status
k at the nth bin. Here j, k is the indicator of the hidden
state. Additionally, we assume that the initial probability
P(zl = 1) = π and P(zl = 2) = 1 - π.
Next, let xn denote the read counts in the IP sample

and yn the counts in the control sample, both for bin n.
We assume that, given the methylation status zn, these
read counts follow the Poisson distribution defined as

P(xn|tn) = Pois(MIPλIP,zn) (2)

P(yn|tn) = Pois(Mctrlλctrl) (3)

where MIP and Mctrl are the total reads (sequencing
depth) in the IP and the control samples, respectively
and λIP,zn for zn = 1, or 2 and lctrl are the normalized
Poisson rates, respectively. It is worthwhile pointing out
that λIP,zn switches according to the status of zn; on the
contrary, lctrl stays the same.
It would be intuitive next to define the relationship

between the Poisson rates for the methylated and
unmethylated in the IP and the control sample, respec-
tively. However, unlike in ChIP-seq, where this relationship
is mostly defined only for the IP sample, defining the rela-
tionship for both the IP and the control is non-trivial and
model complexity also needs to be assessed to avoid poten-
tial difficulties in subsequent inference. To this end, we
transform the formulation by observing that, given (2) and
(3), the conditional probability of observing xn in the IP
given the total reads in the control as tn = xn + yn follows
the binomial distribution

P(xn|zn, tn) = Bino(tn, pzn) (4)

where

pzn =
MIPλIP,zn

Mctrlλctrl +MIPλIP,zn
. (5)

Note that pzn for zn = 1 (or 2) can be considered as the
percentage of the mean IP read counts in the combined
read counts of the IP and control samples for a bin, when
it is unmethylated (or methylated). The distribution (4)
effectively combines the reads in the IP and control sam-
ples under one model. As such, instead of using (2) and
(3), we define (4) as the emission probability of the pro-
posed HMM and work with pzn directly. Doing so avoids
modelling and inferring the potentially complex relation-
ships between the rates. Given X = {x1, x2, x3,..., xN}, a set
of reads for N bins and Z = {z1, z2, z3,..., zN}, the sequence
of methylation, we use g(zn,k) to denote the marginal pos-
terior distribution of a latent variable zn at state k, and
ε(zn-1, zn) to denote the joint posterior distribution of two
successive latent variables, so that

γ (zn,k) = p(zn = k|X, θ) (6)

ε(zn−1,j, zn,k) = p(zn−1 = j, zn = k|X, θ). (7)

Here, the parameter is defined as
θ = {Ak,j∀k∀j;π ; pk∀k}. Then, the log likelihood for the
proposed HMM chain can be expressed as

Q = Ez
[
lnP(X,Z|θ)] = 2∑

k=1

γ (z1,k) lnπk

+
N∑
n=1

2∑
j=1

γ (zn,k) lnP(xn|zn,k) +
N∑
n=2

2∑
j=1

2∑
k=1

ε(zn−1,jzn,k) lnAjk

(8)

We call this new formulation HEPeak or Hidden Mar-
kov Model (HMM)-based Exome Peak finding. The gra-
phical model of HEPeak formulation is shown in Figure
2A. Compared with ExomePeak, HEPeak considers the
correlation of the reads between adjacent bins and more
accurately models the behaviour of methylated reads in
MeRIP-Seq (Figure 2B).

The EM solution
Given HEPeak, the goal is to call peaks, i.e., predict
zn∀n, and at the same time estimate the model para-
meters: θ. To this end, we developed an Expected-Maxi-
mization (EM) solution, which performs peak calling
and parameter estimation in an iterative fashion. We
provide the steps of the EM algorithm in the following.
The detailed derivation is included in appendix.
At the mth iteration, proceed as follows.
E step: Given parameter θ(m-1), estimated at the m-1

step, calculate the posterior distribution of the latent
variable P(Z|X, θ(m-1)).

γ (zn,k) = p(zn = k|X, θ (m−1)) (9)

M step: Compute and update π(m), Ajk
(m) and pk

(m) for
all j, k as

π =
γ (z11)
1∑
j=0

γ (z1j)
(10)

Ajk =

N∑
n=2

ε(zn−1,j, zn,k)

1∑
l=0

N∑
n=2

ε(zn−1,j, zn,l)

(11)

pk =

N∑
n=1

γ (zn,k)Xn

N∑
n=1

γ (znk)(Xn + Yn)

(12)
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After the EM iteration converges, the model para-
meter θ can be obtained. Given the estimated θ, the
Viterbi algorithm is applied to maximize the joint likeli-
hood in (8) to obtain the maximum a posteriori (MAP)
estimate of the methylation status zn.

Peak region detection
In order to evaluate the statistical significance of the
putative peak regions predicted by the Viterbi algorithm,
the log odds ratio of the posterior for the peak state (zn
= 2) over the posterior for the background state (zn = 1)
can be computed as follows

PeakScore(zn) = log
p(zn = 2|X)
p(zn = 1|X) (13)

Briefly, this log-transformed scoring method [22-24]
tries to utilize the posterior probability of each bin to
assess the confidence of the potential peak region. The
potential peak region is defined as consecutive bins
predicted by the Viterbi and its PeakScore is calculated
as the averaged PeakScores for all the combined bins.
Next, PeakScore is assumed to follow a Gaussian distri-
bution with mean (mean(PeakScore)) and standard
deviation(std(PeakScore)) [24], estimated from all the
bins. Then, after performing the z transform of Peak-
Scores, a one-sided test for significance of the potential
peak region can be conducted and p-value can calcu-
lated. Then, the Benjamini-Hochberg method [25] is
utilized to correct the multiple testing and compute
the False Discovery Rate (FDR).

Results
Simulation test
Because we do not have the ground truth for the methyla-
tion status in real data, the performance of HEPeak was
first validated using a simulated data, where read counts
for the IP and the control samples were simulated accord-
ing to the proposed HEPeak model.
Specifically, a total of 5000 genes, whose lengths were

randomly selected from 500 nt to 3k nt, were generated.
Reads of each gene in both IP and the control samples
were allowed to vary according to the Poisson distribu-
tion, where we chose l ∈ (5 ~ 20) and assumed it con-
stant for both methylated and unmethylated bins.
Additionally, we set lIP ∈ (lctrl, 100) when methylated
and lIP = (0, lctrl), when unmethylated, resulting in
14200 peaks generated. The transition matrix A was

defined as A =
[
0.7 0.3
0.1 0.9

]
and the initial probability π = 0.2 Note that A and π

were based on the estimates obtained by HEPeak when
applied to the real m6A data discussed in the next sec-
tion. Figure 3 showed an illustration of the simulated
data. In general, when a bin is methylated, there were
more reads in IP than in control; otherwise, there were
more reads in control.
The receiver operating characteristics (ROC) curve of

the peak calling results is shown in Figure 4A and we can
see that the ROC curve of HEPeak wraps around that of
ExomePeak, which indicates that HEPeak achieves a
higher detection sensitivity and specificity. The area

Figure 2 Illustration of the proposed Hidden Markov model. A. The graphical model of the proposed hidden Markov model. B. An
illustration of the advantage of the proposed HMM. The region marked by a black bracket would be missed by a non-HMM based algorithm
such as exomePeak because the reads do not show enrichment in IP. However, this region is likely part of the peak because it is located in the
middle of consecutively enriched regions.
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under the curve (AUC) for HEPeak is 0.979, which is lar-
ger than that of ExomePeak (0.955). As shown in Figure
4B, the read distributions of a simulated gene with 10
bins marked as methylated peaks and 90 bins as
unmethylated, the corresponding detection results show
that HEPeak can correctly detect 8 out of 10 true peaks,

with 1 false positive, while ExomePeak results in 7 false
positives to get the same sensitivity.

Evaluation of HEPeak on real m6A MeRIP-seq data
To further validate the accuracy of HEPeak, we applied
HEPeak to two m6A MeRIP-seq datasets including one

Figure 3 Scatterplot of simulated MeRIP-seq reads in IP and control samples. In unmethylated regions, reads were more enriched in the
control, while in methylated regions, they were made more enriched in the IP.

Figure 4 Simulation results illustrate HEPeak performs better than ExomePeak. A. The ROC curve of HEPeak and exomePeak. B. An
example of a simulated gene loci, where there are 10 positive and 90 negative peaks. The top panel depicts the simulated read counts and the
bottom panel shows the predicted results of HEPeak and exomePeak. exomePeak detects 8 of 10 true positives, with false positive rate 7.78%;
while HEPEAK achieved the same sensitivity but made much fewer false positives at about 1.11%.
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from human HEK293T cell line [1] and the other from
the mouse midbrain cells [8]. The raw fastq datasets
were obtained from Gene Expression Omnibus (GEO
accession: GSE29714 and GSE47217). The datasets were
preprocessed according to the HEPeak pipeline, where
the raw data was first aligned to the reference hg19 and
mm10 assembly by TopHat, and then peak calling was
performed to predict the transcriptome-wide m6A
methylation for each dataset. As a comparison, Exome-
Peak was also applied to these datasets.
A large number of genes were predicted to have m6A

methylation sites in both human and mouse datasets. For
HEK293T dataset, HEPeak identified 24281 peaks on
10715 genes at a FDR < 0.025, whereas ExomePeak (at the
default setting) reported 15164 peaks on 7344 genes. Out
of all the genes, 7340 genes were predicted to be methy-
lated by both HEPeak and ExomePeak, whereas 3375
genes were predicted only by HEPeak, as opposed to 44
genes uniquely reported by ExomePeak (Figure 5A). For
mouse midbrain cells, HEPeak discovered 25138 peaks on
11336 genes (FDR < 0.025); in contrast, ExomePeak
detected 19324 peaks on 9421 genes. Among them, 9201
genes were shared by the two algorithms, while HEPeak
identified 1915 more genes than ExomePeak (Figure 5B).
The above results demonstrate that more potential methy-
lated genes ignored by ExomePeak, can be discovered by
HEPeak, which makes use of dependency of consecutive
bins and greatly boosts the detection sensitivity. The
advantage of HEPeak becomes even clearer if we carefully
examined the results in IGV for the two datasets
(Figure 6A and Figure 6B). Take HEK293T dataset for
example. For gene SEC24A, visual inspection should con-
firm methylation where read counts in the IP sample show

slight enrichment to that in control sample. HEPeak
demonstrate a higher sensitivity by utilizing the whole
consecutive bins to determine the peak region where reads
are greatly enriched compared to other region. For gene
MRPL45, both methods found m6A methylation sites.
However, due to HMM, HEPeak correctly merged the two
peaks into one peak.

HEPeak recapitulates previous reported m6A patterns
On average, HEPeak predicted 2.27 and 2.22 sites per gene
in human and mouse, respectively. Next, we examined the
pattern of m6A sites by mapping all the peaks to the tran-
scriptome and tallying the distribution of m6A sites in
genes. For mRNA residing peaks, about 45% of the peaks
located in the 3’UTRs, about 35% in the CDS, and only
less than 20% from the 5’UTR (Figure 7). As shown in
Figure 8, m6A methylation sites were significantly enriched
near the stop codon and overly present in the 3’UTR for
both human and mouse, indicating that m6A may be
involved in transcriptional regulation, consistent with the
reported results in previous studies [1,2]. To gain addi-
tional insights into prediction, DREME [26] was per-
formed on the called peak sequences to predict the motif
of the m6A methylation site. As shown in Figure 9, the
most enriched motifs for the HEK293T cells and mouse
midbrain cells are GGACH [10,11], which were identified
bound by methytransferase METTL3 and METTL14 [27].

HEPeak revealed distribution of m6A in lncRNA
We next examined the m6A sites predicted by HEPeak in
long non-coding RNAs (lncRNAs), i.e., non-coding RNAs
of more than 300 bp in length. m6A sites were found in
lncRNAs in [28,29]. In human HEK293T cells, about

Figure 5 Methylated genes found in mouse midbrain cell by HEPeak and ExomePeak. In human cell, exomePeak uniquely found 44 genes
being methylated, while HEPeak detected 3375. In mouse, exomePeak found 220 genes being methylated, and HEP reported 2135.
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1847 peaks were predicted in lncRNAs, which accounted
for 12.1% of the total predicted peaks (Figure 10). Simi-
larly, in mouse midbrain cells, 2759 peaks (10.9% of the
total peaks) were detected in lncRNAs. We then exam-
ined the distribution of the peaks in lncRNA in human
HEK293T cells and found it is significantly different from
that in mRNAs (Figure 11). Instead of being enriched
near the stop codon in mRNAs, m6A sites in lncRNAs
favour 5’UTR over 3’UTR. A similar pattern was also
observed for mouse midbrain cells. These findings imply

that the regulatory functions in mRNAs may be different
from those in lncRNAs.

Conclusion
In this paper, a novel HMM-based peak calling algo-
rithm, HEPeak, was developed for peak calling for
MeRIP-seq data. By introducing the exome-based anno-
tation, HEPeak circumvents the ambiguity related to iso-
forms. In order to characterize correlation between
continuous bins in an m6A peak region, HEPeak utilized

Figure 6 An example of peak calling results on gene SEC24A and MRPL45. The top four tracks depict the reads density in control and IP
samples respectively. The bottom two tracks show the predicted peaks of HEPeak and exomePeak, where the predicted peak regions are
marked by black bars.

Figure 7 Proportions of m6A occurrence in mRNAs.
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HMM to model the dependency. Additionally, IP reads
and control reads are modelled in one mathematical
model to avoid separate HMM peak-calling procedures
in IP and control as in RIPSeeker [24]. Compared with
ExomePeak, which treated each bin independently,
HEPeak was shown to achieve higher detection specifi-
city and sensitivity in the simulated data. When applying
HEPeak to the collection of two published MeRIP-seq
data from human and mouse, the results revealed that
m6A methylation extensively existed in genes. HEPeak
showed higher sensitivity than ExomePeak and predicted
more novel m6A sites. Particularly, almost all the peaks
detected by ExomePeak can be found by HEPeak. More-
over, with respect to the peak regions, m6A sites called
by HEPeak were biologically more meaningful than

ExomePeak, by connecting separate m6A sites together,
of which gaps were not tested significantly enriched by
ExomePeak due to the limitation of the independence
assumption.
Furthermore, in both human and mouse mRNAs, the

distributions of m6A sites were similar, where more m6A
sites were observed in the 3’UTR as supposed to CDS and
5’UTR, and the sites were significantly enriched near the
stop codon as previously reported. These findings highly
suggest that m6A may play a role in transcriptional regula-
tion. In addition, we examined the sequence motif of the
predicted m6A sites and found that both human and
mouse shared the similar m6A motif -GGACH. This con-
sistency suggests that m6A methylation uses the same
mechanism in different cells and species. Moreover, m6A
sites were also predicted in lncRNAs but bear a different
distribution from that in mRNAs, implying that m6A may
have different roles in regulating mRNAs and lncRNAs.

Appendix
The derivation of the EM solution is detailed in the follow-
ing. Based on the notations defined in the main text, the
total likelihood in the mth step of HEPeak is expressed as
follows

Q(θ (m−1), θ) =
∑
z

p(Z|X, θ (m−1) ∗ ln p(X,Z|θ)

=
∑
z

p(Z|X, θ (m−1) ∗
⎡
⎣∑

K

z1,k ∗ lnπk +
N∑
n=2

2∑
j=1

2∑
k=1

zn−1,jzn,k ∗ lnAj,k

+
N∑
n=1

2∑
k=1

zn,k ∗ ln p(xn|zn,k)
]

(17)

As defined in (7-8),∑
z

p(Z|X, θ) ∗ zn,k = γ (zn,k) = E(zn,k)

∑
z

p(Z|X, θ) ∗ zn−1,jzn,k = ε(zn−1,j, zn,k) = E(zn−1, zn,k)
(18)

Given xn follows a binomial distribution, then

p(xn|zn,k; tn) =
(
tn
xn

)
∗ pkxn(1 − pk)tn−xn

⇔ ln p(xn|zn,k; tn, p) = ln tn! − ln xn! − ln yn!

+xn ∗ ln pk + (tn − xn) ∗ ln(1 − pk)

(19)

Thus, pk can be computed through maximizing the
likelihood function of the total probability, the same as
setting the first derivative equal to zero,

∂Q
∂pk

= 0 ⇒ pk =

N∑
n=1

γ (zn,k) ∗ xn

N∑
n=1

γ (zn,k) ∗ tn

(20)

Figure 8 Distribution of m6A sites

Figure 9 Motifs detected by DREME in human and mouse cells
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In the same fashion, πk and Aj,k can be computed,

∂Q

∂πk
= 0 ⇒ πk =

γ (z11)
2∑
j=1

γ (z1j)
(21)

∂Q
∂Aj,k

= 0 ⇒ Aj,k =

N∑
n=2

ε(zn−1,j, zn,k)

2∑
l=1

N∑
n=2

ε(zn−1,j, zn,l)

(22)
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