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Abstract
Background:  Kinesins constitute a superfamily of microtubule motor proteins that are found in
eukaryotic organisms. Members of the kinesin superfamily perform many diverse cellular functions
such as transport of vesicles and organelles, spindle formation and elongation, chromosome
segregation, microtubule dynamics and morphogenesis. Only a few kinesins have been
characterized in plants including Arabidopsis thaliana. Because of the diverse cellular functions in
which kinesins are involved, the number, types and characteristics of kinesins present in the
Arabidopsis genome would provide valuable information for many researchers.

Results:  Here we have analyzed the recently completed Arabidopsis genome sequence and
identified sixty-one kinesin genes in the Arabidopsis genome. Among the five completed eukaryotic
genomes the Arabidopsis genome has the highest percentage of kinesin genes. Further analyses of
the kinesin gene products have resulted in identification of several interesting domains in
Arabidopsis kinesins that provide clues in understanding their functions. A phylogenetic analysis of
all Arabidopsis kinesin motor domain sequences with 113 motor domain sequences from other
organisms has revealed that Arabidopsis has seven of the nine recognized subfamilies of kinesins
whereas some kinesins do not fall into any known family.

Conclusion:  There are groups of Arabidopsis kinesins that are not present in yeast, Caenorhabditis
elegans and Drosophila melanogaster that may, therefore, represent new subfamilies specific to
plants. The domains present in different kinesins may provide clues about their functions in cellular
processes. The comparative analysis presented here provides a framework for future functional
studies with Arabidopsis kinesins.

Background
During the last five years, the genomes of four diverse eu-
karyotic organisms have been completely sequenced.
These include Saccharomyces cerevisiae [1], a unicellu-
lar eukaryote, two multicellular organisms, Caenorhab-
ditis elegans [2], and Drosophila melanogaster [3] and
Arabidopsis thaliana, the first plant genome to be com-
pleted [4]. The sequencing of these major groups of or-

ganisms allows comparative analysis of genes, gene
families, and genomes across phylogenetically divergent
organisms.

A study of predicted gene families in various organisms
from single-cell to more complex animal and plant spe-
cies is of value in deducing functions of proteins and de-
velopmental control pathways. Comparison of family
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members to proteins in its own genome and the genomes
of other organisms can lead to further characterization of
the proteins and provide clues to their function. With the
information gained from these analyses, experimental
procedures could be designed to determine the functions
of the proteins. Budding yeast has 113 conventional pro-
tein kinase genes [5]. Using multiple alignment and par-
simony analysis of protein kinase catalytic domain
sequences, the yeast protein kinases were categorized
into subfamilies based on structural relatedness. This in-
formation led to identification of yeast specific kinases
and gave hints about the function of unknown kinases.
An analysis of proteins containing zinc finger domains in
bacteria, yeast and C. elegans revealed that bacteria do
contain some proteins that bind zinc but lack large fami-
lies of zinc-binding proteins found in eukaryotes [6]. Be-
tween eukaryotes, the presence and size of the different
zinc-binding families vary [6]. In a comparative analysis
of the genomes of Drosophila, C. elegans and S. cerevi-
siae the number of proteins for each of the 200 most fre-
quently occurring protein domains was identified for
each organism [7]. Among these domains were various
calcium-binding domains such as the EF-hand family. In
Drosophila there are 130 proteins with this domain
while in C. elegans there are 79 and only 16 in yeast. A
BLASTP and TBLASTN search of the Drosophila ge-
nome with members of the cytoskeleton protein families
identified 262 genes with moderate to completely con-
vincing homology to cytoskeletal genes [8]. New mem-
bers of the families were discovered and some proteins
that are present in other genomes were missing in the
Drosophila genome.

Kinesins constitute a superfamily of microtubule (MT)
motor proteins found in all eukaryotic organisms. Mem-
bers of the kinesin superfamily have a highly conserved
motor domain. The first kinesin was identified in squid
giant axons as a protein involved in transport of vesicles
[9,10]. The conventional kinesin is a tetramer with two
heavy chains and two light chains. The kinesin heavy
chains (KHCs) contain the motor domain with ATPase
activity, a central coiled-coil region and a tail that binds
the light chains. Historically, proteins with homology to
KHCs but falling in different subfamilies have been
called kinesin-like proteins. However, KHCs are now
recognized as a subfamily of the kinesin superfamily and
all members of the superfamily are referred to as kines-
ins. We have followed that pattern in this paper. KHCs
have been identified in fungi and animals and a large
number of other kinesins from other subfamilies have
been identified in all eukaryotes [11,12,13]. All kinesins
have a domain with homology to the motor domain of
KHC but little sequence similarity outside of this do-
main. Some kinesins have a coiled-coil region but others
do not. The tail domain, which is believed to interact with

specific cargoes, is nonconserved. Kinesin bind MTs and
a variety of cargoes and perform force-generating tasks
such as transport of vesicles and organelles, spindle for-
mation and elongation, chromosome segregation and
MT organization [12,13,14,15,16,17,18,19,20]. The motor
domain of KHC is in the N-terminal region but in other
kinesins it can also be located in the C-terminus or inter-
nally. Motility assays have been performed with a
number of the kinesins. The C-terminal domain kinesins
have been shown to have minus-end motility while the
others have plus-end motility [21,22,23,24]. Nine sub-
families of kinesins have been identified by phylogenetic
analysis using the conserved motor domain [25]. Not all
kinesins fall into one of the nine subfamilies and may
represent additional subfamilies.

The first two plant kinesins identified were found in to-
bacco pollen tube (pollen kinesin homologue, PKH) and
tobacco phragmoplast (tobacco kinesin related protein,
NtKRP125) [26,27,28,29]. Another kinesin isolated
more recently from tobacco pollen tubes has also been
characterized at the biochemical level [26]. Kinesins that
have been characterized at the molecular level in plants
include, NtKRP125 in tobacco [30], four Arabidopsis ki-
nesins identified by PCR-based cloning (KatA, KatB,
KatC, KatD) [31,32,33,34], KCBP (kinesin-like calmodu-
lin binding protein) found in Arabidopsis, tobacco, pota-
to, and maize [35,36,37,38], PAKRP in Arabidopsis [39]
and DcKRP120-1 and DcKRP120-2 in carrot [40].

With the complete sequencing of the Arabidopsis ge-
nome, it has become possible to search the Arabidopsis
database with the conserved motor domain of kinesins to
identify the kinesins encoded in the Arabidopsis genome.
We have identified 61 kinesin-like genes in Arabidopsis
and their general location on the five Arabidopsis chro-
mosomes. Surprisingly, the Arabidopsis genome con-
tains the largest number of kinesins among all eukaryote
genomes that have been sequenced. We have further an-
alyzed the predicted protein sequences for the presence
of domains that might lead to an understanding of their
function. By definition all have a kinesin motor domain
and several have a coiled-coil domain that might indicate
dimerization. A phylogenetic analysis of the 61 Arabi-
dopsis kinesin motor domain sequences with 113 other
motor domain sequences has revealed that there are Ara-
bidopsis kinesins that fall into seven of the nine recog-
nized subfamilies of kinesins. Some do not fall into any
family and there are some subfamilies unique to Arabi-
dopsis and maybe to plants.

Results and Discussion
Identification of Arabidopsis kinesins
The recent completion of the Arabidopsis genome has al-
lowed the analysis of the first plant genome for kinesins.

http://www.arabidopsis.org/blast/
http://www.arabidopsis.org/blast/
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Using the sequence of the conserved motor domain of ki-
nesins database searches were performed using BLASTP
and TBLASTN at TAIR (The Arabidopsis Information
Resource,  [http://www.arabidopsis.org/blast/] ). The
sequences obtained from TAIR were compared to the ki-
nesin-like sequences identified by the Munich Informa-
tion Centre for Protein Sequences (MIPS). Analysis of
both these databases resulted in identification of 61
unique sequences that contain a kinesin motor domain
as identified by the SMART ( [www.smart.embl-heidel-
berg.de/] ) program (1Table I). In our analysis of these
databases, we found some discrepancies between the
two. For example, some kinesins in TAIR are not identi-
fied as kinesins in the MIPS database. All 61 sequences
had BLASTP scores greater than or equal to 87 and E val-
ues equal to or less than 2e-017 and the next identified se-
quence had a score of only 34 and an E value of 0.13. A
TBLASTN search did not identify any other kinesins nor
did searches with a representative member of each of the
subfamilies of kinesins. In comparison, S. cerevisiae, S.
pombe, C. elegans and Drosophila have 6, 9, 19 and 24
kinesins respectively (Figure 1A). Arabidopsis has the
highest percentage (0.24%) of the total number of genes
as compared to S. cerevisiae and S. pombe with 0.1% and
0.17% respectively, C. elegans with 0.11% and Drosophila
with 0.18% (See Figure 1A).

Only six of the 61 Arabidopsis kinesins have been report-
ed in the literature [12]. The other 55 sequences obtained
from the Arabidopsis Database or from MIPS have been
sequenced as part of the Arabidopsis Genome Sequenc-
ing Project. The sequences are, therefore, predicted se-
quences that have not been verified by complete cDNAs.
The three AtKRP125 kinesins (AtKRP125a,b,&c; 1Table
I) show homology to the kinesin (NtKRP125) isolated
from phragmoplasts of tobacco [30]. AtKRP125b has
68% identity with NtKRP125 over the 1000 residues they
have in common (NtKRP has 56 additional residues).
The average sequence length of the Arabidopsis kinesins
is just over 1000 residues with the shortest sequence pre-
diction being 425 (AtF15A18.10) amino acids and the
longest are 2158 (AtMGD8.20) and 2756 (AtK13E13.17).
Besides the above two sequences, no other predicted se-
quence is over 1400 amino acids. Some of the intron/
exon predictions may not be correct which could reduce
or increase the size of predicted proteins in the databank
and so the sizes may change as more characterization is
done for each kinesin. A case in point is the sequence that
was isolated by Lee, et al. [39] for AtPAKRP which is
1292 amino acids while the predicted protein has 1662
due to an intron predication difference. The number of
known and predicted introns has a wide range from 3 in
AtF25I16.11 to 34 in AtK13E13.17 (1Table I.). In the Ara-
bidopsis genome, the number of introns ranges from 0 to
77 with an average of about five [41]. More than 85% of

Arabidopsis genes have 10 or less introns while the Ara-
bidopsis kinesin genes have an average of 16.4 with only
10 genes having 10 or less introns.

Three highly conserved regions in all kinesins were com-
pared to the sequences of the identified Arabidopsis ki-
nesins. We compared the conserved ATP binding site in
kinesins (FAYGTGSGKT) and two other sequences in-
volved in interacting with nucleotide phosphates (NXX-
SSRSH and VDLAGSE) [42,43]. The ATP binding site is
highly conserved in most cases and the divergence in
other cases is like that found in non-plant kinesins. The
VDLAGSE sequence was most conserved in the DLAG
residues with very few substitutions in these residues. V
was often substituted by I as is also found in non-plant
kinesins. Three Arabidopsis kinesins did not have a high-
ly conserved NXXSSRSH sequence that is completely
conserved in other kinesins. The predicted amino acid
sequence of AtMAA21.110 has only part of the ATP bind-
ing site and lacks the NXXSSRSH domain. However,
analysis of the genomic sequence indicates that the genes
contain the coding region for the conserved domains but
they are not present in the deduced sequence due to in-
accurate prediction of introns. Isolation of the cDNA for
this clone is needed to determine the correct sequence.

Using the Arabidopsis Sequence Map Overview of TAIR,
the location of each kinesin was determined (Figure 2).
The kinesins are distributed throughout the genome. In
four cases, pairs of kinesins were sequenced in the same
clone (F19H22, F14P13, F3K23 and F15H). One to 12
other predicted proteins in the clones separate the mem-
bers of the pairs. Interestingly, two pairs of clones show
closest homology to a member of the other pair,
AtF3K23.6-AtF19H22.50 and AtF3K23.14-
AtF19H22.150 (Figure 3) which suggests that this is a re-
sult of gene duplication. Analysis of the total Arabidopsis
genome revealed that a whole genome duplication oc-
curred followed by subsequent gene loss and extensive
local gene duplications [4]. The duplicated segments
represent 58% of the Arabidopsis genome. The S. cerevi-
siae genome has also had a complete ancient genome du-
plication and 30% of the genes form duplicate pairs .
Duplicated genes account for 48% of the total genes of C.
elegans and Drosophila [7].

Phylogenetic analysis
Using ScSMY1, a highly divergent kinesin [25], as an out-
group, the motor domain sequences of the 61 Arabidop-
sis kinesins and 113 kinesins from other organisms were
analyzed for phylogenetic relationships using PAUP [44]
(Figures 3 and 4). In other organisms nine subfamilies of
kinesins have been identified by phylogenetic analysis
using the conserved motor domain [25]. Functional
studies with members of three of the subfamilies (KHC,
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KRP85/95, and Unc104/KIF1) indicate that they are in-
volved in transport [20]. Members from the other
subfamilies (C-terminal, Kip3, MKLP1, BimC, chromok-
inesin/KIF4, and MCAK/KIF4) have been shown to
function in nuclear movement, chromosome segrega-
tion, spindle formation and stability, and other cytoskel-
etal processes associated with cell division [20]. Seven of
the nine families are represented in Arabidopsis. Howev-
er, several Arabidopsis kinesins do not fall into any of the
nine subfamilies and are likely to represent additional
subfamilies that are unique to plants (Figure 1B, 3 and
4). Most of the Arabidopsis kinesins are more closely re-
lated to another Arabidopsis or another plant kinesin
than to any other kinesin used in the comparison.

A comparison of the five eukaryotic genomes that have
been sequenced shows that not all organisms have all
types of kinesins (Figure 1B). The subfamilies that are in-
volved in transport are underrepresented in Arabidopsis.
There are no members of the KRP85/95 or Unc104/KIF1
subfamilies in Arabidopsis while Drosophila and C. ele-
gans both have a few members in each of these families.
C. elegans does not have a Kip3-type kinesin, and yeasts
do not have KHC, MKLP1, chromokinesin, or MCAK/
KIF2 representatives. The C-terminal and BimC sub-
families are the only ones having at least one representa-
tive in each of the five organisms (Figure 1B). Each
organism has ungrouped kinesins. However, Arabidop-
sis has a larger number (24 out of 61) than in any of the
other sequenced organisms (Figure 1B).

The motor domain in kinesins is located either in the N
terminus, C terminus or in the middle of the protein.
Members of BimC subfamily, which are N-terminal plus-

end motors, are present in all five eukaryotic organisms
that have been sequenced. The three NtKRP125-like Ara-
bidopsis kinesins (AtKRP125a, b, and c) and AtF16L2.60
are grouped with the tobacco homologue in the BimC
subfamily which are involved in cross-linking and an-
tiparallel sliding of MTs (Figure 3) [20].

Twenty-one Arabidopsis kinesins fell into the C-terminal
subfamily (Figure 3). This is an unusually large number
compared to the other organisms. C. elegans has five and
S. pombe has two while Drosophila and S. cerevisiae
have only one (Fig. 1). It is also unusual because phyloge-
netically they group with other C-terminal proteins but,
structurally, 11 have internal motors and five have N-ter-
minal motors. The internal kinesins have a motor do-
main that is closer to the C-terminus than the N-
terminus but each has some sequence C-terminal to the
motor domain and could be called internal depending on
the parameters used to define an internal motor. Kat D,
At30B22.20 and At32N15.10 which have earlier been
classified as C-terminal kinesins [25] and six other Ara-
bidopsis kinesins form a subgroup within the C-terminal
family (See Fig. 3). The other two kinesins (AtT9I22.5
and AtT9N14.6) having an internal motor which fall into
the C-terminal subfamily form a subgroup with one of
the kinesins with an N-terminal motor (AtF15A18.10).
These three are most closely related to a group of animal
C-terminal kinesins including HsKIFC3 and MMFIFC2.
The other four kinesins with N-terminal motors that fall
into the C-terminal subfamily form a subgroup that is
most closely related to three C. elegans C-terminal kines-
ins.

Figure 1
Comparison of kinesins in completely sequenced eukaryotic genomes. A. The total number of kinesins per organism (in green)
and the number of kinesins per thousand genes (in red). B. The number of kinesins per organism in each family. C.Term - C-
Terminal motor, Chromo/KIF4 - chromokinesin/KIF4, U - ungrouped. At - Arabidopsis thaliana, Dm -Drosophila melanogaster, Ce
- Caenorhabditis elegans,, Sc -Saccharomyces cerevisiae, Sp -Schizosaccharomyces pombe
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As the phylogenetic tree was based on the motor domain
alone, it will be interesting to find out the direction of
movement of these kinesins whose motor domains are
N-terminal or internal but are most closely related to the
C-terminal subfamily. Kinesins in the C-terminal sub-
family translocate toward the minus-end of MTs [45].
The sequence responsible for the direction of movement
was recently determined [23,46,47]. C-terminal kinesins
have a conserved sequence at the neck/motor core junc-
tion (Fig. 5A) [47]. Endow and Waligora [47] determined
that the GN residues at the neck/motor core junction
(Fig. 5A) are necessary for minus end directed move-
ment. Examination of the neck/motor core junction of
the 21 C-terminal class Arabidopsis kinesins shows con-

servation of these residues in most of the C-terminal Ara-
bidopsis kinesins.

KCBP, a C-terminal calcium/calmodulin-regulated ki-
nesin, forms a distinct group within the C-terminal sub-
family (Figure 3). A few of the C-terminal Arabidopsis
kinesins (e.g., KatA, KCBP) have been localized to mitot-
ic MT arrays (spindle, spindle poles, and phragmoplast)
[33,48], suggesting a role for these kinesins in cell divi-
sion. The motor activity of only two Arabidopsis C-termi-
nal kinesins has been demonstrated experimentally and
both, as expected of C-terminal motors, showed minus-
end motor activity [33,49].

Figure 2
Location of kinesins on the Arabidopsis chromosomes. Roman numerals represent chromosome number. Large numbers indi-
cate chromosome length in cM. Small numbers are the kinesin numbers from Table I.
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Figure 3
3 and 4 Phylogenetic tree. The tree shown above was built from a kinesin motor domain sequence alignment using the heuris-
tic search method of PAUP v4.0b6, a maximum parsimony program, with random stepwise addition and tree bisection-recon-
nection (TBR). The tree is the consensus tree from 68 trees built from 100 replicates. It is arbitrarily rooted using ScSmy1 as
an outgroup. Vertical dashes indicate ungrouped kinesins (light dashes - those grouped with other kinesins, bold dashes - exclu-
sively Arabidopsis kinesins). The Arabidopsis kinesins are in bold. Kinesins from the following organisms were used: An,
Aspergillus nidulans; Bm, Bombyx mori; Ce, Caenorhabditis elegans; Cf, Cylindrotheca fusiformis; Cg, Cricetulus griseus; Cr,
Chlamydomonas rheinhardtii; Dd,Dictyostelium discoideum; Dm, Drosophila melanogaster; Gg, Gallus gallus; Hs, Homo sapiens; Lc,
Leishmania chagasi; Lm, Leishmania major; Lp, Loligo pealii; Mm, Mus musculus; Ms, Morone saxatilis; Nc, Neurospora crassa; Nh,
Nectria haematococca; N, Nicotiana tabacum; St, Solanum tuberosum; Rn, Rattus norvegicus; Sc, Saccharomyces cerevisiae; Sp, Strong-
ylocentrotus purpuratus; Spo, Schizosaccharomyces pombe; Sr, Syncephalastrum racemosum; Um, Ustilago maydis; Xl, Xenopus laevis.
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Figure 4
3 and 4 Phylogenetic tree. The tree shown above was built from a kinesin motor domain sequence alignment using the heuris-
tic search method of PAUP v4.0b6, a maximum parsimony program, with random stepwise addition and tree bisection-recon-
nection (TBR). The tree is the consensus tree from 68 trees built from 100 replicates. It is arbitrarily rooted using ScSmy1 as
an outgroup. Vertical dashes indicate ungrouped kinesins (light dashes - those grouped with other kinesins, bold dashes - exclu-
sively Arabidopsis kinesins). The Arabidopsis kinesins are in bold. Kinesins from the following organisms were used: An,
Aspergillus nidulans; Bm, Bombyx mori; Ce, Caenorhabditis elegans; Cf, Cylindrotheca fusiformis; Cg, Cricetulus griseus; Cr,
Chlamydomonas rheinhardtii; Dd,Dictyostelium discoideum; Dm, Drosophila melanogaster; Gg, Gallus gallus; Hs, Homo sapiens; Lc,
Leishmania chagasi; Lm, Leishmania major; Lp, Loligo pealii; Mm, Mus musculus; Ms, Morone saxatilis; Nc, Neurospora crassa; Nh,
Nectria haematococca; N, Nicotiana tabacum; St, Solanum tuberosum; Rn, Rattus norvegicus; Sc, Saccharomyces cerevisiae; Sp, Strong-
ylocentrotus purpuratus; Spo, Schizosaccharomyces pombe; Sr, Syncephalastrum racemosum; Um, Ustilago maydis; Xl, Xenopus laevis.
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Figure 5
Alignments of neck/motor core region and kinesin light chain binding site of KHC. Alignments were done using the Clustal
method in DNA STAR MEGALIGN. A. Alignment of the neck/motor core regions from the 21 kinesins falling in the C-terminal
subfamily. White letters on black are identical residues, white on dark gray are strongly similar and black on light gray are
weakly similar. Asterisks mark the two residues shown to confer minus end directed movement [47]. B. Alignment of the
kinesin light chain binding site in KHCs. The small letters indicate the heptad positions in the heptad repeats as given by Diefen-
bach et al. [52]. Hs, human KHC; Hsn, human neuronal KHC; Sp, sea urchin KHC, Dm, Drosophila melanogaster KHC; Nc, Neu-
rospora crassa KHC; Um, Ustilago maydis, At, AtMAA21.110 kinesin.
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The KHC subfamily (conventional kinesins) is made up
of two subgroups, one animal and one fungus. To date,
no KHC has been found in any plant. The phylogenetic
tree indicates that there is possibly one KHC-type kines-
in in Arabidopsis. AtMAA21.110 falls into the KHC group
with a closer relationship to KHCs found in fungi (Figure
3). Both Drosophila and C. elegans have one KHC
whereas the yeast genomes do not have any KHCs (Fig-
ure 1B). Some kinesin light chain sequences have been
predicted in the Arabidopsis genome but none have been
studied experimentally. Experimental data suggests that
fungal conventional kinesins do not have light chains
[50,51]. The KHC binding site for kinesin light chain pro-
teins has been identified [52]. The binding site consists
of four highly conserved contiguous heptad repeats
which are predicted to form a tight α-helical coiled-coil
interaction with the heptad repeat-containing N-termi-
nus of the light chain. The tail domain of AtMAA21.110,
four KHCs from vertebrates and invertebrates and two
fungi were aligned and compared for the presence of this
region (Fig. 4). The four vertebrate and invertebrate
KHCs have a very conserved sequence in this region
while the fungal sequences are conserved in respect to
these KHCs in only a few short stretches. The
AtMAA21.110 tail shows little similarity and in fact, has a
very short tail that does not show similarity to any other
kinesin (data not shown). However, the binding domain
is a coiled coil and the tail of AtMAA21.110 does have a
region of coiled-coil from residues 377-415. As stated
above, there are problems with the predicted amino acid
sequence of AtMAA21.110 and further work needs to be
done in order to determine if this is a KHC homolog.

One Arabidopsis kinesin groups with the MKLP1 sub-
family. Two internal motor Arabidopsis kinesins group
with the MCAK/KIF2 subfamily (also called the internal
family) which have members involved in vesicle trans-
port, chromosome movement and MT catastrophe [20].
Three Arabidopsis kinesins fall into a group with Kip3
subfamily members in which ScKip3 is involved in nucle-
ar movement [53]. Three Arabidopsis kinesins form a
branch off of the chromokinesin/KIF4 subfamily mem-
bers, some of which are involved in vesicle transport
(HsKIF) and spindle organization and chromosome po-
sitioning (Xlklp1) [20,25].

Several Arabidopsis kinesins show some similarity to
other ungrouped kinesins (Figures 3 and 4). The un-
grouped centromeric proteins (HsCENPE and UmKin1)
cluster with seven Arabidopsis kinesins. CENP-E binds
to the kinetochore throughout mitosis and to MTs of the
spindle mid-zone during late stages of mitosis [20]. One
Arabidopsis kinesin is paired with HsKid, an ungrouped
kinesin. HsKid is a kinesin-like DNA-binding protein
that is involved in spindle formation and the movements

of chromosomes during mitosis and meiosis [20]. Arabi-
dopsis PAKRP along with five other Arabidopsis kinesins
are grouped with XlKlp2. XlKlp2 is required for centro-
some separation and maintenance of spindle bipolarity
[54] whereas PAKRP associates with the phragmoplast
[39] and is expected to function in cytokinesis. Three
Arabidopsis kinesins form a subgroup separate from any
other kinesin but share a branch with CeLF22F4 and
DmNOD. Eight other Arabidopsis kinesins form a sub-
group separate from kinesins of any other organism. In
many cases a group of Arabidopsis kinesins forms a sep-
arate branch within the major subgroup in which they
fall. Since there are many processes unique to plants, it is
likely that these novel kinesins function in plant-specific
processes.

Domain analysis
Analysis of Arabidopsis kinesins with domain analysis
programs identified different domains in many of the ki-
nesins (Figure 6 and (1Table I). In addition to the motor
domain, most kinesins have a coiled-coil region. Only
three Arabidopsis kinesins do not contain some coiled-
coil domain (AtT1E22.130, AtMGL6.9, AtT20H2.17).
However, as can be seen in Fig. 5, some have very short
coiled-coil domains (i.e. AtKRP125b, AtKatD,
T9C5.240). AtKatD was reported [34] to lack a coiled-
coil domain but the SMART program identified a small
coiled-coil domain starting just inside the C-terminal
end of the motor domain.

A few Arabidopsis kinesins have predicted domains that
are not present in other kinesins. The SMART predicted
domains were listed as either confidently predicted
based on the E-value or less significant than the required
threshold. The confidently predicted domains may pro-
vide some clues about the possible functions of plant ki-
nesins. While the predictions that are below the
significant threshold may not be reliable, some consider-
ation of them may be warranted.

Some of the confidently predicted domains have a con-
nection with actin cytoskeleton in some way. KCBP has
MyTH4 (1.15e-49) and talin-like domains (6.34e-34)
present in some myosins, suggesting that it has domains
of both MT- and actin-based motors. Such motors may
be involved in cross talk between MT and actin cytoskel-
eton [12]. KCBP also has been shown to have a calmodu-
lin-binding domain [35,55,56]. KCBP is unique among
kinesins in having these domains. However, a sea urchin
kinesin, kinesin C, has also been reported to have a cal-
modulin binding domain but not the MyTH4 and talin-
like domains of KCBP [57]. Six of the Arabidopsis kines-
ins have a calponin homology domain (2.88e-49 to 2.89-
16), which is an actin-binding domain present in the N-
termini of spectrin-like proteins. The CH domain is a
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protein module of approximately 110 residues found in
cytoskeletal and signal transduction proteins either as
two domains in tandem or as a single copy [58]. Proteins
with a tandem pair of CH domains cross-link F-actin,
bundle actin or connect intermediate filaments to cy-
toskeleton. Proteins with a single copy are involved in
signal transduction [58,59]. Perhaps the kinesins con-
taining a CH domain bind actin and are involved in sig-
nal transduction or linking of actin and MTs.

Some domains that are involved in protein-protein or
protein-DNA interactions have been identified. Three
Arabidopsis kinesins with armadillo repeats (tandem re-
peats that form a superhelix of helices) form a group on
a separate branch from other kinesins except for a C. el-
egans kinesin that does not have an armadillo domain.
The E-values range from 4.84-03 to 1.51+01 and are above
the significant threshold. Kinesin-interacting protein
KAP3 that has armadillo repeats is thought to mediate
cargo binding as part of a heterotrimeric complex with
two kinesins in the KRP85/95 subfamily [18]. One kines-
in (AtMRO11.5) has a helix-hairpin-helix DNA binding
domain (2.48e+00) and also a nuclear localization signal.
This kinesin may be involved in signaling.

Domains with less significant E-values include six kines-
ins which contain spectrin repeats (1.91e00 to 2.97e01).
There is some evidence which suggests that spectrin fa-
cilitates Golgi membrane association with motor pro-
teins, including cytoplasmic dynein, kinesin and myosin
[60,61]. Perhaps these kinesins may be related to motor
functions involving the Golgi complex. In some cases the
coiled-coil and/or SPEC repeats overlapped with basic
region leucine zipper domains (AtZCF125, AtT15B3.190,
AtK13E13.17) and/or homeobox associated leucine zip-
per domains (AtK13E13.17, AtMCA23.6).

Other domains with less significant E-values include do-
mains that are associated with the Rho family of GTPas-
es, the RhoGEF domain (1.49e01), HR1 domain (3.09e01

and 3.35e01) and FH2 domain (1.23e01). Rho GTPases
control cellular processes including cytoskeletal reor-
ganization and transcriptional activation [62]. A Rho-
GEF protein was isolated that not only activates RhoA
but also directly interacts with MTs [63]. The HR1 repeat
has been identified as a binding site for Rho [64]. The
FH2 domain ties to both Rho and the actin cytoskeleton.
FH proteins control rearrangements of the actin cy-
toskeleton and members of this family have been found
to interact with Rho-GTPases. Kinesins having these do-
main may be involved in actin-MT cooperation during
processes such as vesicle and organelle transport, spin-
dle rotation and nuclear migration [65].

Figure 6
Schematic diagram of all Arabidopsis kinesins. Motor domain
and coiled-coil domains are marked in red and green, respec-
tively. CH, calponin homology domain; MyTH4, myosin tail
homology domain; Talin-like, talin-like domain; CBD, calmod-
ulin binding domain; ARM, armadillo/beta-catenin-like
repeats; HhH1, helix-hairpin-helix domain. Bar = 100 aa.
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Why do plants have so many kinesins?
Why do plants have so many kinesins? What is the func-
tion of each of these kinesins in plant growth and devel-
opment? There are many MT-associated processes that
are unique to plants [12]. For example, during cell divi-
sion in plants several plant-specific MT arrays such as
the preprophase band and the phragmoplast are formed
that are important in determining the future location of
the cell wall and cell wall formation, respectively. These
unique processes are likely to require additional plant-
specific motors. In addition, centrosomes play an impor-
tant role in MT organization in animals whereas plants
have no well-defined centrosomes. Hence, MT organiza-
tion and dynamics in plants may also require additional
MT motors. Also, in plants there is cell to cell transport
of macromolecules such as RNA through plasmodesma-
ta and such transport may also require MT motors [12].
It is possible that kinesins may participate in functions
other than transport, and MT dynamics and organization
[20]. Functional redundancy may also explain the large
number of kinesins. Three different S. cerevisiae kines-
ins (KAR3, KIP2, and KIP3) are involved in nuclear po-
sitioning [66,67,68]. The loss of one gene alone does not
alter viability but double mutants are lethal. Each has a
particular role in positioning but lack of one step is not
essential whereas loss of more leads to nonviability [20].
Six subfamilies of kinesins have been shown to be in-
volved in some aspect of cell division [12,20]. Three Ara-
bidopsis kinesins, Kat A, KCBP and PAKRP, have been
shown to be associated with the phragmoplast
[39,48,69] and so are expected to be necessary in some
way for cytokinesis. Immunolocalization and microinjec-
tion studies have shown the involvement of KCBP in cell
division [48,70]. However, KCBP mutants, (ZWICHEL),
grow normally with no apparent defects in cell division
except that they contain abnormal trichomes [71,72]. It is
likely that KCBP function in cell division in ZWICHEL
mutants is compensated by other C-terminal kinesin(s).

Conclusions
In summary, Arabidopsis has a surprisingly large
number of kinesins among the five completed eukaryotic
genomes. Many Arabidopsis kinesins do not fall into any
known subfamilies of kinesins and several Arabidopsis
kinesins are not present in yeast, C.elegans and Dro-
sophila and are likely to represent new subfamilies spe-
cific to plants. Further analyses of kinesins have resulted
in identification of several interesting domains in Arabi-
dopsis kinesins that provide clues in understanding their
functions.

Although the functions of most of the Arabidopsis kines-
ins remains to be determined, phylogenetic analysis of
kinesins and identification of functional domains in
these proteins provide clues to their function which can

be tested empirically. Several knockout mutant libraries
obtained by T-DNA insertions are available to screen for
mutations in kinesins ( [www.arabidopsis.org] ). An
alignment of the motor domains of the Arabidopsis ki-
nesins revealed a few very conserved stretches of amino
acids in the motor domain that could be used for design-
ing a universal degenerate primer set to screen for muta-
tions in all kinesins. Once an insertion of T-DNA is
detected in a kinesin, the sequence of the amplified prod-
uct could be obtained to identify the kinesin involved.
Due to the redundancy in function that has been seen
with the non-plant kinesins, other strategies such as
overexpression of the kinesins may also be needed. Pro-
tein-protein interaction studies using the yeast two-hy-
brid trap and expression analysis of all kinesins in
different tissues and cell types with microarrays can also
provide valuable information about the function of the
kinesins.

Methods
Identification of Arabidopsis kinesin-like proteins
The motor domain sequence of AtKCBP (a plant kinesin)
was used to do BLAST™ Similarity Searches at TAIR (
[http://www.arabidopsis.org/blast/] ). Both BLASTP
and TBLASTN searches were done. The sequences show-
ing homology to the motor domain were obtained from
the Arabidopsis thaliana Database (AtDB) and analyzed
using SMART (Simple Modular Architecture Research
Tool,  [http://smart.embl-heidelberg.de/] ) which iden-
tifies putative domains within the sequence. Sequences
containing a kinesin motor domain were identified as ki-
nesin-like proteins. The sequences from TAIR were also
compared to the proteins containing kinesin-like motor
domains as listed at MIPS ( [http://www.mips.bio-
chem.mpg.de/proj/thal/db/index.html] ). Motor do-
mains from other subfamlies were also used in BLAST™
searches to identify any possible kinesins missed using
the AtKCBP motor domain sequence. The subsequence
containing the kinesin motor as delineated by the
SMART program was generated from each kinesin and
compared to all other Arabidopsis motor domain se-
quences to see if the kinesin was unique. In some cases,
two groups had sequenced the gene and the predicted in-
tron/exon status was not the same. We included the se-
quence with the closest homology to other kinesin motor
domains and eliminated the other sequence. Domains
were identified using the SMART program. Location of
the genes on the chromosome was identified using the
Arabidopsis Sequence Map Overview of TAIR ( [http://
www.arabidopsis.org/cgi-bin/maps/Schrom] ).

Phylogenetic analysis
The motor domains of the Arabidopsis kinesins and 113
kinesins from animals and yeast with the myosin motor
domain of ScMMY1 as an outgroup were aligned using

www.arabidopsis.org
www.arabidopsis.org
http://www.arabidopsis.org/blast/
http://www.arabidopsis.org/blast/
http://smart.embl-heidelberg.de/
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the Clustal method in the DNA STAR program MEGA-
LIGN. The alignment was saved as a PAUP file and used
to generate a phylogenetic tree using PAUP 4.0b6. A heu-
ristic search method with tree-bisection-reconnection
branch swapping and one hundred replicates was used.
The tree used in Figures 3 and 4 is the consensus tree of
68 trees retained in the search. The score of the best trees
was 15849.

Note Added in Proof

It has been recently reported that there are 45 kinesin
genes in the human genome (H Miki, M Setou, K Kane-
shiro, N Hirokawa: All kinesin superfamily protein, KIF,
genes in mouse and human. Pro Natl Acad Sci USA 2001
98:7004-7011). It is estimated that there are 35,000 -
45,000 genes in the human genome. Kinesin genes make
up 0.1 to 0.13% of the total number of human genes
whereas they represent 0.24% of Arabidopsis genes (61
out of 25,498 predicted Arabidopsis genes are kinesins).
Among all sequenced organisms arabidopsis has the
highest number of kinesins.
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