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Abstract
Background: HMG-box proteins are a large and diverse superfamily of architectural factors that
share one or more copies of a sequence- and structurally-related DNA binding domain. These
proteins can modify chromatin structure by bending and unwinding DNA. HMG-box proteins can
be divided into two subfamilies based on whether they recognize DNA in a sequence-dependent
or sequence-independent manner. We recently identified an HMG-box protein involved in T cell
development, designated TOX, which is highly conserved in humans and mice.

Results: We show here that based on sequence alignment, TOX best fits into the sequence-
independent HMG-box family. Three other human and murine predicted proteins are identified
that share a common HMG-box domain with TOX, as well as other features. The gene encoding
one of these additional family members has a distinct but overlapping pattern of tissue expression
when compared to TOX. In addition, we identify genes encoding predicted TOX HMG-box
subfamily members in pufferfish and mosquito.

Conclusions: We have identified a novel subfamily of HMG-box proteins that is related to the
recently described TOX protein. The highly conserved nature of the TOX family of proteins in
humans and mice and differences in the pattern of expression between family members suggest
non-overlapping functions of individual proteins. In addition, our data suggest that the TOX subtype
of HMG-box domain first appeared in invertebrates, was duplicated in early vertebrates and likely
took on new functions in mammalian species.

Background
Regulation of DNA-dependent processes such as tran-
scription, replication, and strand repair requires bending
and unwinding of compacted chromatin structure. Many
of these structural changes are mediated by high mobility
group (HMG) proteins, a diverse superfamily of non-his-
tone chromosomal proteins that were originally classified
by their electrophoretic mobility [1]. HMG proteins con-
tain DNA-binding domains that allow them to produce
specific changes in target DNA structure [2,3]. Three struc-
turally distinct classes of HMG proteins have been de-
fined; the HMG-nucleosomal binding family, the HMG-

AT-hook family, and the HMG-box family (whose canon-
ical members are referred to as HMGN, HMGA and
HMGB respectively) [4]. In addition, a large number of
proteins have been found that contain HMG protein relat-
ed motifs.

All members of the HMG-box family possess a 70–80
amino acid DNA-binding domain (the HMG-box) related
to a motif originally identified in HMGB1 [5]. The HMG-
box may also be involved in protein-protein interactions.
For example, RAG1 has been reported to interact with the
tandem HMG-boxes of HMGB1 or HMGB2 [6]. Where it
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has been studied, HMG-boxes have been shown to be
structurally related, forming three α-helices in a character-
istic L-shaped structure [3,7]. The distortion of DNA by
the HMG-box is primarily mediated through contacts
with the minor groove of the DNA helix, potentially al-
lowing simultaneous binding of other transcriptional reg-
ulators to the DNA [8,9]. The HMG-box family has often
been subdivided based on DNA binding properties. One
group of HMG-box proteins recognizes structural features
of DNA with low or absent sequence specificity. These
proteins have broad tissue distribution, and typically con-
tain multiple HMG-box motifs. The second group of
HMG-box proteins recognizes DNA in a sequence-specific
manner akin to more traditional transcription factors.
These proteins have a restricted pattern of expression and
typically contain only one HMG-box [10]. Members of
both groups of HMG-box proteins also bind altered nucle-
ic acid structures such as 4-way junctions [11–13] and cis-
platinated DNA [14].

HMG-box family proteins are found in a variety of eukary-
otic organisms and most are known or suspected regula-
tors of gene expression. We recently identified a gene
designated Tox (for thymocyte selection-associated HMG-
box gene), encoding a novel nuclear protein that shows a
highly regulated pattern of expression during thymocyte
differentiation. The TOX protein is 526 amino acids with
an acidic N-terminal domain, a bipartite nuclear localiza-
tion signal sequence and a single centrally located HMG-
box motif [15]. Forced expression of TOX in the thymus
of transgenic mice leads to changes in the differentiation
program of developing T cells. These studies led us to pro-
pose that TOX is involved in regulating gene expression
during critical developmental checkpoints in the thymus,
and possibly elsewhere in the immune system. For exam-
ple, TOX may also be involved in germinal center B lym-
phocyte development and/or function [16].

Several other HMG-box proteins also play important roles
in lymphocyte development [17]. Mice doubly deficient
in lymphocyte enhancement factor-1 (LEF-1) and T cell
factor-1 (TCF-1) have a complete block in development of
T cells [18,19], while deficiency of SRY-box containing
protein 4 (SOX-4) in mice results in a lack of pro-B cell ex-
pansion and mild perturbation of thymocyte develop-
ment [20]. Unlike these HMG-box proteins, however, we
find that the HMG-box of TOX is more closely related to
the DNA binding domain of sequence-independent
HMG-box proteins. In addition, three other predicted pro-
teins share almost identical HMG-box domains with TOX,
defining a new subfamily of HMG-box proteins. The TOX
subfamily is highly conserved in mice and humans, and is
distributed on four separate chromosomes. Outside the
HMG-box domain, these proteins are less well conserved,
suggesting that they may have non-overlapping functions.

Our analysis also suggests that two exons encoding the
HMG-box domain may be the evolutionary unit of the
TOX subfamily, found as a single copy in an invertebrate
and replicated in early vertebrates. This expanded TOX
subfamily likely took on new functions, including specific
roles in the mammalian immune system.

Results and Discussion
TOX resembles sequence-independent HMG-box family 
members
Although there are few amino acid positions within the
HMG-box motif that are conserved throughout the HMG-
box protein superfamily, there are highly conserved resi-
dues within sequence-dependent and sequence-inde-
pendent subgroups [21]. The vast majority of HMG-boxes
have a tryptophan in helix 2, often as part of a GXXW mo-
tif (where X denotes any amino acid) [3,5]. Similarly, TOX
has a tryptophan at this position, although as part of the
less commonly found AXXW sequence. Figure 1 shows an
alignment of the HMG-box region of TOX with HMG-box
motifs found in seven other proteins representing the two
major subfamilies of HMG-box proteins. Human SRY,
murine SOX-4, SOX-17, and LEF-1 contain single HMG-
box motifs and bind DNA in a sequence-specific fashion.
Murine HMGB1 and yeast NHP6A bind DNA in a se-
quence-independent fashion. UBF-1 specifically binds the
ribosomal RNA gene promoter, although no particular
recognition sequence can be identified [22]. HMGB1 and
UBF-1 contain multiple HMG-box motifs, although only
one is shown (indicated by decimal in Fig. 1).

Positions 5, 10, 65 and 70 (as numbered in Fig. 1) are in-
cluded in regions that have previously been shown togeth-
er to be sufficient to confer sequence specificity to an
HMG-box protein [23]. Positions 5 and 10 are proline
and serine, respectively, in the sequence-independent
DNA binders as well as in TOX. In contrast, the sequence
specific HMG-box proteins have hydrophobic (V or I) and
asparagine residues present at positions 5 and 10, respec-
tively. The asparagine at position 10 makes contact with
DNA in the hSRY-DNA complex [24], as does the serine at
this position in the NHP6A-DNA complex [7]. A hydro-
phobic residue at position 32 that can partially intercalate
into DNA plays a role in DNA binding of some sequence-
independent HMG-box proteins [7,25,26]. Position 32 is
the hydrophobic residue phenylalanine in TOX, in con-
trast to the polar residues found at this position in SRY,
SOX proteins and LEF-1. Similarly, TOX is more closely
aligned with the sequence-independent HMG-box pro-
teins than the sequence-specific transcription factors at
position 65. The tyrosine at this position (shared with
TOX) is a DNA contact in the NHP6A-DNA complex [7].
Moreover, there is a conserved proline at position 70 of
the sequence-specific DNA binding proteins that truncates
the third alpha helix of the HMG-box structure allowing
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additional DNA contacts [24,27,28]. This proline is ab-
sent from TOX and the sequence-independent HMG-box
proteins. Based on these observations, TOX appears to
best fit into the family of structure-dependent but se-
quence independent HMG-box DNA binding proteins.
However, this has yet to be determined empirically by
DNA binding studies.

TOX is a member of a four-protein subfamily with nearly 
identical HMG-box sequences
Tox is the murine homologue of the human gene
KIAA0808, previously isolated from brain tissue [29].
TOX and KIAA0808 are approximately 90% identical at
both the nucleotide and amino acid level [15]. Using
BLAST program searches [30,31] we have now identified
3 other murine genes that are predicted to encode proteins
that have nearly identical HMG-box sequences to TOX
(Fig. 2A,2B). Human homologues of the three additional
murine genes have also been identified (Fig. 2A,2B). A full
length murine cDNA representing Langerhans cell protein
1 (LCP1) was originally cloned from maturing epidermal
Langerhans cells, while its human homologue KIAA0737
was cloned from human brain [29] as was a cDNA encod-
ing TNRC9 (also known as CAGF9) [32]. Searches of the
EST database confirm that all family members are ex-
pressed at the level of mRNA, and we have shown that
KIAA0808 is expressed at the level of protein using a cross-
reactive anti-TOX antisera (data not shown). Tox gene
family members are found on four different chromo-
somes in human (Fig. 2A). Similarly, the murine Tox gene
family is distributed across four different chromosomes,
in regions of synteny conserved between mouse and hu-
man (Fig. 2A).

All murine and human TOX subfamily members have a
single centrally located HMG-box (Fig. 2A,2B). Within the
first 70 amino acids of the HMG-box region only six posi-
tions show any variation and of those six, three are shared
between all family members except TOX/ KIAA0808
homologues while the remaining three changes are found
in the LOC241768/ C20ORF100 pair. Despite high simi-
larity in overall structure between HMG-boxes, individual
domains exhibit distinct DNA binding characteristics as
discussed above, and can interact with DNA in different
orientations. The high degree of conservation of the par-
ticular TOX-type HMG-box sequence is therefore likely to
reflect a specific DNA and/or protein interaction that is
important for function of this protein subfamily.

There is also complete identity of the HMG-boxes be-
tween murine and human homologues of a given family
member, consistent with formation of the Tox subfamily
by gene duplication prior to the rodentia and primate
split. This is further supported by the genomic organiza-
tion of the genes. The Tox gene has 9 exons spanning more
than 300 kb (data not shown). The HMG-box region of
TOX is encoded by two exons, as is found in some SOX
genes [33,34], although the exact intron break is unique
to TOX. Interestingly, the position of the intron/exon
boundary encoding the HMG-box is precisely conserved
among all family members in mouse and human (Fig.
2B). In general, the loss or gain of an intron represents a
major genetic rearrangement and is a relatively rare event
when compared with sequence changes [35]. It is highly
unlikely that an intron would arise at the same sequence
position in different gene lineages, further supporting that
the TOX family arose by gene duplication.

Figure 1
Comparison of HMG-box sequences. The HMG-box region of TOX is aligned with the HMG-box motifs found in seven 
other proteins representing the two major subfamilies of HMG-box proteins. Similarities between the HMG-boxes of both 
groups of proteins are highlighted in gray and include matches to the consensus HMG-box domain (accession number pf00505) 
defined in the Pfam protein families' database. Residues in red and purple distinguish these two subgroups of HMG-box pro-
teins and are discussed in the text. In addition, the consensus sequence GXXW (or more rarely AXXW, as also found in 
TOX) found commonly in HMG-boxes is shown in blue.
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Figure 2
Murine TOX subfamily members and their human homologues. (A) The HMG-box and putative NLS regions within 
each predicted protein are shown in blue and green, respectively. The predicted size and molecular weight of each protein and 
the chromosomal location of the gene that encodes the protein are also indicated. *Note that the predicted protein 
LOC241768 as it currently exists in the NCBI database has been modified, and there is some question as to chromosomal 
location (see Methods). (B) Pair-wise comparison of HMG-box domains of murine and human TOX subfamily members. The 
upper predicted protein of each pair is mouse derived. Residues that differ from TOX are highlighted in red and the AXXW 
motif is highlighted in blue. The vertical line represents the position of the conserved exon boundary of the respective genes. 
(C) Comparison of predicted NLS of murine and human TOX subfamily members. The consensus motif is highlighted in green.
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In addition to the box itself, the TOX family members
contain conserved lysine residues at the NH2-terminus of
the HMG-box motif, imbedded in the consensus sequence
[KR(X)5GKKXKXPKKKKK] (Fig. 2C). This sequence is the
likely nuclear localization signal (NLS) for these proteins
[15], similar to the bipartite NLS found in nucleoplasmin
[36]. The one exception is the Langerhans cell protein-1
(LCP1)/KIAA0737 pair, which lacks the second basic resi-
due of the motif. Nuclear localization signals are also
highly conserved in SRY-box and other HMG-box pro-
teins [37]. Basic residues outside of the HMG box motif
may also function to stabilize DNA binding by these pro-
teins [38].

Outside of the HMG-box and NLS, the murine and hu-
man homologues of the three additional pairs of proteins
are highly conserved, as we reported for TOX and
KIAA0808 [15]. LCP1 and KIAA0737 proteins are approx-
imately 94% identical, while LOC241768 and
C20ORF100 share 85% identity. Comparison of
LOC244759 and TNRC9 revealed that these proteins were
highly similar, with the exception of the C-termini. The C-
terminal domain of TNRC9 contains an expansion of tri-
nucleotide repeats coding for glutamine. Long poly-
glutamine repeats have been found in a number of
transcription factors [39]. Notably, the C-terminus of
murine HMG-box protein SRY contains a large poly-
glutamine repeat region that is responsible for the sex-de-
termining function of this protein [40]. However, a
number of neurodegenerative disorders, such as Hunting-
ton disease and spinobulbar muscular atrophy, are also
strongly associated with proteins containing a poly-
glutamine stretch [41]. Conformational change and pro-
tein misfolding in the expanded polyglutamine region is
believed to be the molecular basis of the pathogenesis
[42]. Whether the presence of polyglutamine repeats in
the C-terminus of human TNRC9 is important for func-
tion or alternatively hinders its ability to form a functional
protein remains to be determined.

TOX family members are approximately 20–30% identi-
cal outside the NLS/HMG-box region (Table 1). A detailed
alignment of TOX and its close relative LCP1 is shown in
Fig. 3A. The HMG-box splits TOX family proteins into two
domains of approximately 200–300 amino acids. The N-
terminal domains (exclusive of the NLS and HMG-box)
are acidic for all human and murine TOX family proteins
(pI range of 4–6). In the context of the nucleus, acidic do-
mains are often protein-protein interaction domains. The
N-terminal regions are also more similar than C-terminal
regions when comparing different TOX subfamily mem-
bers (for example, Fig. 3A). The C-terminal regions tend to
be enriched for the presence of proline and to a lesser ex-
tent glutamine residues (data not shown). The C-terminal
domains of TOX/ KIAA0808 and LOC244579/ TNRC9 are

mildly to strongly basic respectively, while those of LCP1
and KIAA0737 are acidic. Despite overall similarity, the C-
terminal domain of LOC241768 is acidic while its human
homologue is basic.

The Tox and LCP1 genes have unique patterns of 
expression
Unlike other sequence-independent HMG-box proteins,
which show ubiquitous tissue expression, we have previ-
ously shown that TOX has a highly regulated tissue and
developmental expression profile. The Tox gene is most
abundantly expressed in the thymus followed by the liver
and brain; it is poorly expressed or absent in other tissues,
including heart, kidney, lung, muscle, skin, intestine,
spleen stomach and testis [15]. LCP1 is also expressed in
thymus, although whether expression is regulated during
different developmental stages remains to be determined
(Fig. 3B). Unlike Tox, however, the LCP1 gene is most
highly expressed in testis (Fig. 3B). In addition, LCP1 is
more highly expressed than Tox in skin, consistent with
isolation of LCP1 from Langerhans cells. LCP1 is also ex-
pressed in most other tissues tested (with the possible ex-
ception of muscle) and thus has a more widespread
pattern of expression than previously found for the Tox
gene.

The TOX subfamily is conserved in early vertebrates and 
mosquito
It has been suggested that at various times throughout
metazoan evolution, HMG-box containing sequences du-
plicated, in each case leaving one redundant copy, which
was free to evolve a new function or be lost from the ge-
nome [33]. The spare HMG-box-containing fragment re-
cruited preexisting functional domains and formed
mosaic proteins capable of rapidly taking on novel func-
tion. In this study, we examined the evolutionary history
of the TOX HMG domain. As discussed above, data sug-
gest that duplication of genes encoding the TOX-like
HMG-box occurred prior to mammalian radiation.

Table 1: Amino acid sequence comparison of murine TOX 
subfamily member proteins outside the HMG-box and NLS 
regions.

TOX LCP1 LOC241768 LOC244579

TOX 100* 28 32 31
LCP1 100 18 25

LOC241768 100 13
LOC244579 100

* Percent identity of the two proteins outside the HMG-box and NLS 
regions, using an unfiltered BLAST program comparison. Comparisons 
are always made in relation to the smaller protein of the pair. In all 
comparisons performed, Expect (E) values were 7e-14 or lower.
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Analysis of the genome of Fugu rubripes (pufferfish) re-
vealed that this duplication was even more ancient.

It has been shown that although the Fugu rubripes genome
is only one-eighth the size of the human genome, it con-
tains a comparable complement of protein-encoding
genes [43]. We found five sequences on different scaffolds
in the pufferfish genome that encode predicted proteins
containing a TOX-like HMG-box (Fig. 4). The genes
present on Scaffold-182 and Scaffold-2474 both encode
500 amino acid proteins. The gene present on Scaffold-16
encodes a 365 amino acid protein, while the Scaffold-
5698 gene encodes a protein of 159 amino acids. The
Fugu HMG-box sequences are nearly identical to mamma-
lian TOX HMG-boxes, and the exon/intron boundary en-
coding the box is at the characteristic position (Fig. 4). It
has previously been shown that the intron-exon structure
of most genes is conserved between Fugu and human
[44]. We also found an incomplete HMG-box encoded by
a gene on Scaffold 60. We could find no additional exons
to complete coding of the box, but whether additional

coding sequence is present, the sequence is a pseudogene,
or the gene encodes a truncated protein is unclear. In ad-
dition, the Fugu proteins we identified contain a lysine-
rich region immediately N-terminal to the HMG-box (Fig.
4), similar to the putative NLS sequence previously iden-
tified (Fig. 2B).

Fugu proteins share regions of homology with each other
outside of the HMG-box domain. Table 2 shows a cross-
comparison between family members. Interestingly, the
proteins encoded by the genes on Scaffold-182 and Scaf-
fold-2474 are 50% identical. There is also clear similarity
between these pufferfish protein sequences and the TOX
subfamily in regions outside of the putative NLS and
HMG-box. Table 3 shows a comparison of the murine
TOX subfamily members and the predicted homologues
in Fugu in these regions. The predicted protein encoded
by Scaffold-16 is approximately 60% identical to murine
LOC244579, while the protein encoded by Scaffold-2474
shares 50% identity with murine LCP1. It should also be
noted that the predicted Fugu protein sequences we have

Figure 3
Comparison of TOX and LCP1.  (A) Graphical representation of an unfiltered BLAST alignment comparing TOX and 
LCP1 proteins. Breaks in the proteins to allow maximum alignment are represented by a line. Residues in TOX that are identi-
cal to the aligned LCP1 protein are shown in black, while differences are shown in red. The NLS and HMG-box regions are 
indicated by green and blue bars, respectively. (B) Northern analysis of LCP1 gene expression in normalized poly-A+ RNA iso-
lated from various tissues. The signal obtained from a probe to the housekeeping GAPDH gene is also shown as a loading 
control.
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identified might not be full length. Thus, additional pro-
tein encoding exons may be present at these loci.
Zebrafish also contain multiple putative TOX family
members (data not shown).

Database searches of genomic sequences from Saccharo-
myces cerevisiae (yeast), Caenorhabditis elegans (round-
worm), and Strongylocentrotus purpuratus (sea urchin) did
not reveal genes encoding the TOX HMG signature se-
quence (data not shown). However, analysis of the Anoph-
eles gambiae (mosquito) genome revealed a gene
(EAA06693) located on chromosome X that encodes a
109 amino acid protein (agCP13665) containing a TOX-
like HMG-box motif (Fig. 4). This mosquito HMG-box is
approximately 90% identical to that found in the mam-
malian TOX subfamily, despite the considerable evolu-
tionary history separating the two. In addition, the HMG
domain of agCP13665 is encoded by 2 exons, with an
identical exon break as that found in mammalian TOX
family members (Fig. 4). The highly conserved position of
the intron in the TOX HMG domain coding sequence in-
dicates that this is an ancient intron that was present be-
fore divergence of vertebrates.

The N-terminal domain of the mosquito protein consists
almost entirely of a poly-alanine stretch followed by a
lysine-rich sequence similar to the putative NLS of the
TOX subfamily (Fig. 4) The C-terminal domain of
agCP13665 is also short. Analysis of the genomic
sequence surrounding this locus, however, revealed that
the computer predicted sequence ends at a consensus
splice donor and there is at least one possible additional
exon approximately 15 kb downstream. This putative
exon encodes a protein region with some similarity to
KIAA0737 (data not shown). Thus, the agCP13665 pro-

tein may have a more extended C-terminal domain than
has currently been identified. It seems likely that this mos-
quito protein represents an ancestral form of a TOX HMG-
box protein that was subsequently duplicated and diversi-
fied during evolution of vertebrates.

Analysis of Drosophila melanogaster (fruitfly) sequences did
not reveal a gene encoding the conserved TOX-type HMG-
box. This is intriguing considering that both mosquito
and fly species belong to the same taxonomic order (Dip-
tera), and diverged approximately 250 million years ago,
as compared to the 450 million years separating pufferfish
and humans [45]. It has been noted that only half the
genes in the Drosophila and Anopheles genomes can be
interpreted as homologues [46]. We have identified a 250
amino acid protein (CG12104-PA) in the Drosophila da-
tabase, which contains a partial HMG-box motif with
weak similarity to the TOX family. The HMG-box of
CG12104-PA is encoded by a single exon, unlike other
TOX family members. However, the Drosophila genome
is significantly smaller than that of the mosquito, at least
in part due to loss of some introns [46]. Thus, it is possible
that the CG12104-PA protein originated from an ances-
tral TOX family member, but has significantly diverged in
Drosophila. In support of this possibility, CG12104-PA
also contains a region in its C-terminus that shows some
similarity to LCP1/ KIAA0737 (data not shown). Given
that the mosquito protein may also have similarity in its
C-terminal region to KIAA0737, it is possible that the lat-
ter human protein is most like the ancestral TOX family
protein. Understanding the function of the TOX family of
proteins should shed light on the evolutionary pressures
that would maintain the TOX HMG-box essentially un-
changed from mosquito to humans, but allow such diver-
gence in Drosophila.

Figure 4
Identification of TOX subfamily predicted proteins in pufferfish and mosquito. Shown is an amino acid comparison 
of the TOX NLS and HMG-box regions with predicted proteins encoded in the Fugu rubripes or Anopheles gambiae genomes. 
Fugu rubripes predicted proteins are designated here simply by the scaffold (Scaf) location of the corresponding gene (see Meth-
ods). Amino acids that differ from the TOX HMG-box are highlighted in red, the putative NLS regions are highlighted in green, 
and the AXXW motif is highlighted in blue. The vertical line represents the position of the conserved exon boundary of the 
respective genes. Alternative amino acids found in other mammalian family members are also shown (family).

TOX: EKRPASDM-GKKPKTPKKKKKKDPNEPQKPVSAYALFFRDTQAAIKGQNPNATFGEVSKIVASMWDGLGEEQKQVYKKKTEAAKKEYLKQLAAYRASLVSK
Scaf5698: EKRPSSDMMKPKPKPQKKKKKKDPNEPTKPVSAYALFFRDTQAAIKGQNPNATFGDVSKIVASMWDGLGEEQKQSYKRKTEAAKKEYLKALAAYRASLVSK

Scaf16: EKRPAPIDPTKKPKTPKKKKKKDPNEPQKPVSAYALFFRDTQAAIKGQNPNATFGEVSKIVASMWDGLGEEQKQVYKSKTEAAKKEYLKALAAYRASLVSK
Scaf182: AKQSAPLSVPGVVGNKKGRKKKDPNEPQKPVSAYALFFRDTQAAIKGQNPSASFGEVSKIVASMWDSLAEEQKQVYKRKTEAAKKEYLKALAAYKANQLSQ
Scaf2474: ASPTSSLQDDDMDDFRRGKKKKDPNEPQKPVSAYALFFRDTQAAIKGQNPNATFGEVSKIVASMWDSLGEEQKQVYKRKNEAAKKDYLKALAEYRAGQNSQ

Scaf60: EKRPSADMMKPKPKPQKKKKKKDPNEPQKPVSAYALFFRDTQAAIKGQNPNATFGDVSKIVASMWDSLGEEQKQ
agCP13665: MKAS(A) AKKPKVTKKKKKRDPNEPQKPVSAYALFFRDTQAAIKGQNPNASFGEVSKIVASMWDVLATEHKNVYKKKTEAAKKDYLKALAAYRASLVSK

family: S D S A R A KDNQECQ
12
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Conclusions
In this study, we introduce a subfamily of three additional
mammalian proteins, which share a common HMG-box
domain with TOX. We include a detailed analysis of the
TOX subfamily members and show that the four family
members are highly conserved in both mouse and hu-
man. Based on sequence alignment comparison with oth-
er previously characterized HMG-box proteins, we predict
that the TOX HMG-box subfamily will likely fall into the
sequence-independent category of HMG-box proteins. In
addition, we identify TOX-like HMG-box proteins in mos-
quito and pufferfish. The identification of these inverte-
brate and early vertebrate sequences provides valuable
insight into the evolution of the TOX subfamily. The doc-
umentation of this unique subfamily of HMG box pro-
teins is a necessary initial step in evaluation of their
biological function.

Methods
Database and sequence accession numbers
The sequences used in this study can be accessed through
the NCBI website at http://www.ncbi.nih.gov, the Fugu ru-
bripes website at http://genome.jgi-psf.org/fugu6/
fugu6.home.html [47] and the FlyBase Consortium web-
site at http://flybase.org/ [48]. The Fugu scaffold identities
presented here refer to assembly v.3.0 of the Fugu ge-
nome. HMG-box domains are defined in the protein-do-

main Pfam database at http://Pfam.wustl.edu. Yeast
sequences: NHP6A protein (accession NP_015377). Mouse
sequences: Tox mRNA (NM_145711), TOX protein
(NP_663757); LCP1 mRNA (AF228408), LCP1 predicted
protein (AAK00713); LOC241768 mRNA
(XM_141525.1), LOC244579 mRNA (XM_146430),
SOX-4 protein (NP_033264), SOX-17 protein
(NP_035571), LEF-1 protein NP_034833), HMGB1 pro-
tein (CAA56631), upstream binding factor 1 (UBF-1) pro-
tein (NP_035681). Human sequences: KIAA0808 mRNA
(AB018351), KIAA0808 protein (BAA34528); KIAA0737
(C14ORF92) mRNA (NM_014828), KIAA0737 predicted
protein (NP_055643); C20ORF100 mRNA
(NM_032883), C20ORF100 predicted protein
(NP_116272); TNRC9 mRNA (XM_049037), TNRC9 pre-
dicted protein (XP_049037), SEX determining region Y
protein (SRY) (XP_010468). Pufferfish sequences: Fugu
sequences have been designated by the scaffold location
of the gene; Scaffold 2474 (coding sequence start at nucle-
otide position 6733, positive strand), Scaffold 182 (start
228504, negative strand), Scaffold 16 (start 42713, nega-
tive strand), Scaffold 5698 (start 5865, negative strand).
Analysis of Fugu sequences was performed using tools
available on the Fugu website (see above). Mosquito se-
quence: Locus EAA06693, predicted protein agCP13665
(accession EAA06693). Fly sequences: CG12104 gene
(NP_647629), CG12104 predicted protein (CG12104-
PA).

Note that the existing database sequence for LOC241768
encodes a predicted protein of 867 amino acids (accession
XP_141525). Based on sequence comparison with human
C20ORF100, analysis of exon boundaries, and EST evi-
dence, we believe this sequence contains insertion of ge-
nomic sequence in error. In addition, we have removed 8
amino acids within the HMG-box motif from the data-
base protein. This 8 amino acid insertion is not found in
other TOX subfamily members or the human homologue
C20ORF100, and can be explained by an error in the au-
tomated computer prediction of the end of the relevant
exon. Our revised exon boundary maintains a consensus
splice donor site. Therefore, a revised 520 amino acid pro-
tein based on coding sequence from 8 exons is described
in this study (see Additional File 1: revised sequence for
LOC241768). We also note that there is a difference in
length between mouse C20ORF100 and it's human
homologue. The mouse gene in the database includes a 3'
exon encoding 60 amino acids. Based on a lack of EST ev-
idence and RT-PCR (data not shown), this putative coding
region may not be part of the expressed gene. This change
is not included in the revised sequence (Additional File 1).
LOC241768 was originally placed on murine chromo-
some 2 in a syntenic region with human C20ORF100.
However, in Build 30 of the mouse genome assembly,
LOC241768 has not been placed.

Table 2: Amino acid sequence comparison of Fugu TOX 
subfamily proteins outside the HMG-box and NLS regions.

Scaf-16 Scaf-182 Scaf-2474 Scaf-5698

Scaf-16 100* 25 23 31
Scaf-182 100 50 0
Scaf-2474 100 0
Scaf-5698 100

* Percent identity of the two proteins as in Table 1. In all comparisons 
performed, Expect (E) values were 0.01 or lower.

Table 3: Amino acid sequence comparison of mouse and 
pufferfish TOX subfamily member proteins outside the HMG-box 
and NLS regions.

Scaf-16 Scaf-182 Scaf-2474 Scaf-5698

TOX 41* 16 24 33
LCP1 33 40 48 0

LOC241768 19 13 0 40
LOC244579 61 21 16 31

* Percent identity of the two proteins as in Table 1. In all comparisons 
performed, Expect (E) values were 2e-07 or lower.
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Note that the existing database sequence for LOC244579
encodes a predicted protein of 95 amino acids. Based on
sequence comparison with human TNRC9, we believe
that this represents an error generated by automated com-
putational analysis. The correct sequence for LOC244579,
which encodes a protein of 648 amino acids, can be locat-
ed using gi:20888005. Database entries for these anoma-
lous sequences are currently under review by NCBI
(personal communication).

We also note the presence of a nucleotide sequence on
chromosome 1 which is approximately 97% identical to
LCP1 (LOC226876). However, this gene does not have an
intron in the HMG-box coding region that is shared with
other members of the TOX subfamily. In addition, expres-
sion of this gene is not supported by EST evidence. It is
possible that this is a retroprocessed pseudogene similar
to those seen within the GAPDH family [49].

Northern Analysis
A 340-bp fragment of an LCP1 cDNA was radiolabeled
with [α32P]-dCTP using a random primer labeling kit (Ro-
che, Indianapolis, IN). This 3' LCP1 probe does not in-
clude the HMG-box encoding region and will not detect
genes encoding other subfamily members. The probe was
hybridized to a poly(A)+ RNA Northern blot of mouse tis-
sues (Origene Technologies, Rockville, MD) in ULTRAhyb
hybridization buffer (Ambion, Austin, TX) overnight at
42°C and washed according to the manufacturer's in-
structions. Amounts of mRNA on this blot have been nor-
malized previously with a β-actin probe (Origene
Technologies). In addition, we have performed an inde-
pendent normalization with a GAPDH probe. Blots were
visualized using a Storm 860 imaging system (Molecular
Dynamics, Sunnyvale, CA). Quantification of probe sig-
nal was preformed using NIH Image software. Results of
hybridization of this same tissue blot with a Tox probe
have been published [15].
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